JP3112805B2 - Method of treating iron chloride solution containing nickel - Google Patents
Method of treating iron chloride solution containing nickelInfo
- Publication number
- JP3112805B2 JP3112805B2 JP07073308A JP7330895A JP3112805B2 JP 3112805 B2 JP3112805 B2 JP 3112805B2 JP 07073308 A JP07073308 A JP 07073308A JP 7330895 A JP7330895 A JP 7330895A JP 3112805 B2 JP3112805 B2 JP 3112805B2
- Authority
- JP
- Japan
- Prior art keywords
- iron
- nickel
- solution
- component
- liter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- ing And Chemical Polishing (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【産業上の利用分野】本発明は、例えば、ブラウン管用
シャドーマスク、半導体用リードフレーム等の製造工程
で循環使用される塩化第2鉄を主成分としたエッチング
液の再生処理方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for regenerating an etching solution containing ferric chloride as a main component which is used in a manufacturing process of a shadow mask for a cathode ray tube, a lead frame for a semiconductor and the like. .
【0002】[0002]
【従来の技術】シャドーマスク等の製造工程では、ニッ
ケル合金からなる金属薄板をエッチング液に浸して所望
の微細パターンに加工している。この工程においては、
エッチングの進行に伴いニッケル合金が溶出するので、
液のエッチング能力が徐々に低下して最終的に使用困難
な廃液となってしまう。2. Description of the Related Art In a manufacturing process of a shadow mask or the like, a thin metal plate made of a nickel alloy is immersed in an etching solution to be processed into a desired fine pattern. In this step,
As the nickel alloy elutes with the progress of etching,
The etching ability of the liquid gradually decreases, and eventually becomes a waste liquid that is difficult to use.
【0003】経済性及び省資源の観点より、エッチング
廃液を再生しリサイクルすることは望ましいところであ
るが、エッチング廃液には、エッチング液としての能力
を低下させるニッケルが通常数千ppm〜1万ppm程
度存在しており、エッチング廃液を再使用するために
は、ニッケル含有量を例えば500ppm以下に抑える
必要がある。From the viewpoint of economy and resource saving, it is desirable to regenerate and recycle the etching waste liquid. However, the etching waste liquid usually contains nickel of about several thousand ppm to 10,000 ppm which lowers the capacity as an etching liquid. It is present, and in order to reuse the etching waste liquid, it is necessary to suppress the nickel content to, for example, 500 ppm or less.
【0004】そこで、このような廃液を再生し、エッチ
ング能力を回復するための試みが従来から種々行われて
いる。例えば特開昭61−104092号公報には、イ
オン交換膜によって区画された電解槽の陽極室に第1鉄
塩を含み第2鉄塩を有効成分とするエッチング廃液を供
給して連続的に酸化再生することが開示されている。こ
の方法では2価鉄から3価鉄への反応を電流効率ほぼ1
00%で行うことができるとしている。Therefore, various attempts have been made in the past to regenerate such waste liquid and restore the etching ability. For example, Japanese Unexamined Patent Publication (Kokai) No. 61-104092 discloses that an etching waste liquid containing a ferrous salt and containing a ferrous salt as an active ingredient is supplied to an anode chamber of an electrolytic cell partitioned by an ion exchange membrane to continuously oxidize the solution. It is disclosed to regenerate. In this method, the reaction from ferrous iron to ferrous iron is performed at a current efficiency of about 1
It is said that it can be performed at 00%.
【0005】しかしながら、当該方法においては、使用
する隔膜が陰イオン交換膜であるために、再生すべき廃
液中の陽イオン、特に2価のニッケルを陰極側へ移動さ
せることができない。また当該公報の実施例では、Fe
Cl3を追加してNiCl2を一定濃度に保つとしてお
り、当該方法では、増加する塩化鉄溶液を排出して別
途、処理することが必要とならざるをえない。更に使用
されるイオン交換膜は比較的高価で耐久性に乏しく、取
り扱いも煩雑で実用性の点で難がある。[0005] However, in this method, since the diaphragm used is an anion exchange membrane, cations, particularly divalent nickel, in the waste liquid to be regenerated cannot be moved to the cathode side. Further, in the example of the publication, Fe
The addition of Cl 3 keeps NiCl 2 at a constant concentration, and this method necessitates a separate treatment by discharging the increasing iron chloride solution. Further, the ion-exchange membrane used is relatively expensive and has poor durability, handling is complicated, and there is a difficulty in practicality.
【0006】[0006]
【発明が解決しようとする課題】それゆえ本出願人は、
同じく廃液を電解処理する方法として、特開平6−24
0475号公報において、電気的に中性で電気抵抗の小
さな隔膜を用い、陰極でニッケル及び鉄を電析回収する
とともに、陽極で含有する2価鉄イオンを3価鉄イオン
に酸化し、更に発生する塩素ガスについても、塩化第1
鉄を含むエッチング液の酸化に有効利用することを提案
した。SUMMARY OF THE INVENTION
Similarly, Japanese Patent Laid-Open No.
In Japanese Patent No. 0475, nickel and iron are electrodeposited and recovered at a cathode by using an electrically neutral diaphragm having a small electric resistance, and at the anode, divalent iron ions contained at the anode are oxidized to trivalent iron ions. Chlorine gas is also
It is proposed to use it effectively for the oxidation of the etchant containing iron.
【0007】更に優れた方法として、ニッケルを含む塩
化鉄系のエッチング液を、電気的に中性で電気抵抗の小
さな隔膜を有した電解槽に供給し、当該電解槽の陰極側
で金属を電析回収するとともに陽極側で電解酸化して2
価鉄を3価鉄とし、また陽極側で発生する塩素ガスを酸
化剤として用いることで、エッチング廃液を連続的に再
生する方法において、同じ組成の液を同じ電解槽でバッ
チ処理して得られる通電量と析出金属組成の関係から所
望金属比となる単位時間当たりの処理液量を決定し、こ
の単位時間当たりの液量で電解槽への液供給を行うこと
も提案している(特願平6−309031号)。[0007] As a more excellent method, an iron chloride-based etchant containing nickel is supplied to an electrolytic cell having an electrically neutral diaphragm having a small electric resistance, and the metal is charged on the cathode side of the electrolytic cell. Electrolytic oxidation at the anode side
In the method of continuously regenerating an etching waste liquid by using trivalent iron as the ferric iron and using chlorine gas generated on the anode side as an oxidizing agent, a solution having the same composition is obtained by batch processing in the same electrolytic cell. It has also been proposed to determine the amount of processing solution per unit time at which the desired metal ratio is obtained from the relationship between the amount of electricity and the composition of the deposited metal, and supply the solution to the electrolytic cell with the amount of solution per unit time (Japanese Patent Application Hei 6-309031).
【0008】このような方法によって、エッチング工程
で溶出するニッケル・鉄合金のみを系外に取り出すべ
く、電解槽の陰極側で析出回収される金属中のNi/F
e比を制御し、もって他の成分を全てリサイクル可能と
した。しかしながら、当該方法は、廃液中に数%含有す
るNiを約1/5の量にまで低下させるには良い方法で
あるが、より一層除去率を上げて、回収液中に残存する
ニッケル濃度を新液並みに低下させることは、経済的に
みて極めて困難である。また電解では、析出する金属中
の鉄とニッケルの含有率が電解の進行に伴い変化するた
めに安定した析出物が得にくい。また電極板上に析出す
る密着性のニッケル・鉄合金は、歪みや割れ、樹状結晶
の発生が起こりやすい。[0008] According to such a method, in order to take out only the nickel-iron alloy eluted in the etching step, Ni / F in the metal deposited and recovered on the cathode side of the electrolytic cell.
The e ratio was controlled so that all other components could be recycled. However, this method is a good method for reducing the amount of Ni contained in the waste liquid to several percent to about 1/5, but further increasing the removal rate and reducing the nickel concentration remaining in the recovered liquid. It is extremely difficult to reduce it to the same level as a new liquid from the viewpoint of economy. In addition, in electrolysis, since the contents of iron and nickel in the deposited metal change with the progress of electrolysis, it is difficult to obtain a stable precipitate. In addition, the adhesive nickel / iron alloy deposited on the electrode plate is liable to be distorted, cracked, and dendritic.
【0009】一方、金属鉄を添加することで脱ニッケル
を行う一連の提案がある。例えば特開平5−26327
3号公報には、塩化鉄水溶液に鉄材を加えて得られる液
に鉄粉を加えて当該水溶液中のニッケルを除去及び回収
するに際して、ニッケル析出に必要な鉄粉を分割添加
し、分割添加毎に析出するニッケルをその都度分離する
ことが開示されている。このような所謂鉄置換法による
処理では、再生液中に残存するニッケル濃度を100p
pmくらいまで低下させることができ、析出金属の回収
も鉄材とともに濾別すれば良く、容易であるが、上記シ
ャドーマスクやリードフレーム製造の際の廃液のように
多量の3価鉄を含有する液を処理する場合には、On the other hand, there are a series of proposals for removing nickel by adding metallic iron. For example, JP-A-5-26327
No. 3 discloses that, when iron powder is added to a solution obtained by adding an iron material to an aqueous solution of iron chloride to remove and recover nickel from the aqueous solution, iron powder necessary for nickel precipitation is divided and added. It is disclosed that the nickel which precipitates on the surface is separated in each case. In the treatment by such a so-called iron replacement method, the nickel concentration remaining in the regenerating solution is reduced to 100 p.
pm, and it is easy to collect the precipitated metal by filtration together with the iron material, but it is easy. However, a solution containing a large amount of trivalent iron, such as a waste solution used in the production of the above-mentioned shadow mask and lead frame. When processing
【0010】[0010]
【数1】 (Equation 1)
【0011】の反応に先行して、Prior to the reaction of
【0012】[0012]
【数2】 (Equation 2)
【0013】の反応が起こるため、塩化第2鉄を例えば
200g/lのように多量に含む液の場合、大量の余剰
塩化鉄の発生を伴い、その処分に苦慮しているのが現状
である。In the case of a solution containing a large amount of ferric chloride, for example, 200 g / l, a large amount of excess iron chloride is generated, and it is currently difficult to dispose of the solution. .
【0014】そこで本発明は、上記従来技術の問題に鑑
み、鉄置換法の利点である析出物回収の容易さと高いニ
ッケル回収率を活かし、しかも同法の欠点である余剰塩
化鉄発生を極めて抑制したエッチング液の再生方法を提
供することを課題とする。In view of the above-mentioned problems of the prior art, the present invention takes advantage of the ease of deposit recovery and high nickel recovery, which are the advantages of the iron substitution method, and extremely suppresses the generation of excess iron chloride, which is a disadvantage of the method. An object of the present invention is to provide a method for regenerating an etched liquid.
【0015】[0015]
【課題を解決するための手段】本発明は上記の課題を、
塩化第2鉄と塩化ニッケルを主成分とする溶液を電解還
元し、当該溶液に含有される3価鉄の少なくとも一部を
2価鉄とした後に、当該還元溶液を鉄材と接触させて、
溶液中に含有されるニッケルを還元析出することによ
り、解決した。The present invention solves the above problems,
After electrolytically reducing a solution containing ferric chloride and nickel chloride as main components and converting at least a part of ferric iron contained in the solution into ferrous iron, the reducing solution is brought into contact with an iron material,
The problem was solved by reducing and depositing nickel contained in the solution.
【0016】即ち、余剰塩化鉄の発生の回避のために、
3価鉄から2価鉄への還元反応を所謂電解法で行い、電
解処理後の液に鉄材を投入してニッケルを除去するもの
である。この電解処理にあたっては、電気的に中性で電
気抵抗の小さな隔膜を有した電解槽を用いるのが好まし
い。That is, in order to avoid the generation of excess iron chloride,
The reduction reaction from trivalent iron to ferrous iron is performed by a so-called electrolytic method, and an iron material is charged into the solution after the electrolytic treatment to remove nickel. In this electrolytic treatment, it is preferable to use an electrolytic cell having an electrically neutral diaphragm having a small electric resistance.
【0017】置換反応に使用する鉄材としては、取り扱
いが容易で接触面積を大きくすることができる鉄粉を使
用するのが好ましい。例えば粒径として、100メッシ
ュパス以上が好ましく、150〜350メッシュパスが
より好ましい。更に比表面積として、1m2/g以上を
有すれば、ニッケルの除去効率が上がり、好ましい。As the iron material used in the substitution reaction, it is preferable to use iron powder which can be easily handled and has a large contact area. For example, the particle size is preferably 100 mesh passes or more, and more preferably 150 to 350 mesh passes. Further, when the specific surface area is 1 m 2 / g or more, nickel removal efficiency increases, which is preferable.
【0018】上記電解工程では、その陰極側で3価鉄か
ら2価鉄への還元がなされるが、隔膜を通して陽極に移
動した塩素イオンは放電し塩素ガスを発生するので、こ
の塩素ガスを、ニッケルを還元析出した後の溶液に含有
される2価鉄の酸化に有効利用するのが、好都合であ
る。In the above electrolysis step, trivalent iron is reduced to ferrous iron on the cathode side. However, chlorine ions transferred to the anode through the diaphragm are discharged to generate chlorine gas. It is advantageous to effectively utilize the oxidation of ferrous iron contained in the solution after nickel is reduced and precipitated.
【0019】ニッケルを還元析出した後の溶液を、上記
電解工程の陽極側に送り、当該溶液に含有される2価鉄
を3価鉄に酸化再生するようにしても、好都合である。It is also advantageous that the solution after nickel is precipitated by reduction is sent to the anode side in the electrolysis step to oxidize and regenerate the ferrous iron contained in the solution to ferric iron.
【0020】[0020]
【実施例】以下に本発明の実施例を挙げて更に具体的に
説明する。実施例1 図1に示されるように、2価の鉄成分17g/リット
ル、3価の鉄成分196g/リットル、ニッケル成分1
5.8g/リットル、塩素成分411.4g/リットル
の組成からなる廃液500mlを、ポリエステル濾過布
の隔膜を有した電解槽1の陰極室(陰極:チタン板)に
導き、同じ組成液を陽極室(陽極:RuO 2/Ti網
(DSA電極))に満たして(250ml)、定電流1
0Aで、陰極、陽極とも電流密度20mA/cm2、電
圧2.0Vの条件下で電解した。電解中の液温を65℃
に保った。The present invention will now be described in more detail with reference to Examples.
explain.Example 1 As shown in FIG. 1, 17 g / liter of divalent iron component
196 g / liter of trivalent iron component, nickel component 1
5.8 g / l, chlorine component 411.4 g / l
500 ml of waste liquid having the composition of
In the cathode chamber (cathode: titanium plate) of the electrolytic cell 1 having a diaphragm of
The same composition solution was introduced into the anode chamber (anode: RuO Two/ Ti net
(DSA electrode)) (250 ml), constant current 1
0 A, current density of 20 mA / cm for both cathode and anodeTwo,
Electrolysis was performed under a pressure of 2.0 V. Liquid temperature during electrolysis is 65 ° C
Kept.
【0021】この結果、陰極側では還元作用により2価
の鉄成分211g/リットル、3価の鉄成分0.5g/
リットル未満、ニッケル成分15.8g/リットル、塩
素成分285g/リットルの組成からなる塩化第1鉄溶
液500mlを得た。一方、陽極側では塩素ガス58.
5gが発生したので、吸収塔2に送った。As a result, on the cathode side, a divalent iron component of 211 g / liter and a trivalent iron component of 0.5 g / l
500 ml of a ferrous chloride solution having a composition of less than 1 liter, a nickel component of 15.8 g / liter and a chlorine component of 285 g / liter were obtained. On the other hand, chlorine gas 58.
Since 5 g was generated, it was sent to the absorption tower 2.
【0022】次いで、得られた上記塩化第1鉄溶液50
0mlを鉄置換槽3に導き、これに約38gの鉄粉(液
中のNiに対して5倍モル相当)を3回に分けて投入
し、撹拌しながら液温60℃で合計48時間(16時間
×3)かけて反応させた。Next, the obtained ferrous chloride solution 50
0 ml was introduced into the iron replacement tank 3, and about 38 g of iron powder (equivalent to 5 times the molar amount of Ni in the liquid) was charged in three portions, and stirred at a liquid temperature of 60 ° C. for a total of 48 hours ( The reaction was performed over 16 hours x 3).
【0023】次に、この反応後の液を濾過したところ、
2価の鉄成分228g/リットル、3価の鉄成分0.5
g/リットル未満、ニッケル成分110mg/リット
ル、塩素成分285g/リットルの組成からなる回収液
500mlと、Fe=77.5%、Ni=19.2%か
らなる金属粉41gが得られた。Next, when the liquid after the reaction was filtered,
228 g / liter of divalent iron component 0.5 of trivalent iron component
500 ml of a recovery liquid having a composition of less than g / l, a nickel component of 110 mg / l and a chlorine component of 285 g / l, and 41 g of metal powder consisting of 77.5% of Fe and 19.2% of Ni were obtained.
【0024】なお、上記電解還元工程では、少量の箔状
の金属が陰極板上に析出したが、容易に電極から掻き落
とすことができた。析出金属の組成は、Fe=12%、
Ni=87%で、重量は0.3gであった。In the above-mentioned electrolytic reduction step, a small amount of foil-like metal was deposited on the cathode plate, but could be easily scraped off from the electrode. The composition of the deposited metal is Fe = 12%,
Ni = 87% and the weight was 0.3 g.
【0025】最後に、上記回収液500mlを吸収塔2
に移し、電解槽1で生じた塩素ガスに接触させた。塩素
ガス吸収後の液組成は、2価の鉄成分44g/リット
ル、3価の鉄成分184g/リットル、ニッケル成分1
10mg/リットル、塩素成分402g/リットルであ
った。この時の所要電力は110.7wh(還元された
3価鉄1g当たり1.13wh)であった。Finally, 500 ml of the above-mentioned recovered liquid was added to the absorption tower 2
And brought into contact with chlorine gas generated in the electrolytic cell 1. The liquid composition after absorption of chlorine gas is as follows: divalent iron component 44 g / liter, trivalent iron component 184 g / liter, nickel component 1
The amount was 10 mg / liter and the chlorine component was 402 g / liter. The required power at this time was 110.7 wh (1.13 wh per gram of reduced ferric iron).
【0026】実施例2 図2に示されるように、上記実施例1と同様に電解槽1
の陰極室に同じ液組成の廃液500mlを導き、同一条
件で電解した。この結果、陰極側では還元作用により2
価の鉄成分213g/リットル、3価の鉄成分0.5g
/リットル未満、ニッケル成分15.9g/リットル、
塩素成分286g/リットルの組成からなる塩化第1鉄
溶液500mlを得た。 Embodiment 2 As shown in FIG. 2, the electrolytic cell 1
Of 500 ml of the same liquid composition was introduced into the cathode chamber of No. 1 and electrolyzed under the same conditions. As a result, on the cathode side, 2
213g / liter of trivalent iron component 0.5g of trivalent iron component
Per liter, nickel component 15.9 g / liter,
500 ml of a ferrous chloride solution having a composition of 286 g / liter of a chlorine component was obtained.
【0027】次いでこの塩化第1鉄溶液500mlを鉄
置換槽3に導き、これに約38gの鉄粉(液中のNiに
対して5倍モル相当)を3回に分けて投入し、撹拌しな
がら液温65℃で合計48時間(16時間×3)かけて
反応させた。Next, 500 ml of the ferrous chloride solution was introduced into the iron substitution tank 3, and about 38 g of iron powder (equivalent to 5 times the molar amount of Ni in the liquid) was charged in three portions and stirred. The reaction was carried out at a liquid temperature of 65 ° C. for a total of 48 hours (16 hours × 3).
【0028】次に、この反応後の液を濾過したところ、
2価の鉄成分228g/リットル、3価の鉄成分0.5
g/リットル未満、ニッケル成分120mg/リット
ル、塩素成分285g/リットルの組成からなる回収液
500mlと、Fe=76.3%、Ni=19.8%か
らなる金属粉40gが得られた。Next, when the liquid after the reaction was filtered,
228 g / liter of divalent iron component 0.5 of trivalent iron component
500 ml of a recovery liquid having a composition of less than g / l, a nickel component of 120 mg / l and a chlorine component of 285 g / l, and 40 g of a metal powder composed of 76.3% of Fe and 19.8% of Ni were obtained.
【0029】この回収液500mlを隔膜電解槽1の陽
極室に導いて、電解後の液組成を調べたところ、2価の
鉄成分46.3g/リットル、3価の鉄成分182g/
リットル、ニッケル成分120mg/リットル、塩素成
分401g/リットルであった。この時の所要電力は、
112whであった。塩素ガスの発生はなかった。500 ml of the recovered solution was introduced into the anode chamber of the membrane electrolyzer 1 and the composition of the solution after the electrolysis was examined. As a result, 46.3 g / liter of divalent iron component and 182 g / liter of trivalent iron component were obtained.
Liter, nickel component 120 mg / liter, chlorine component 401 g / liter. The required power at this time is
112 wh. There was no generation of chlorine gas.
【0030】比較例 2価の鉄成分17g/リットル、3価の鉄成分196g
/リットル、ニッケル成分15.8g/リットル、塩素
成分411.4g/リットルの組成からなる廃液500
mlに鉄粉95gを投入し、純水約220mlを加え
て、pH<1になるように時々塩酸を摘下しながら、液
温60℃で48時間反応させたところ、2価の鉄成分2
29g/リットル、3価の鉄成分0.5g/リットル未
満、ニッケル成分200mg/リットル、塩素成分28
6g/リットルの組成からなる液720mlと、Fe=
82%、Ni=16%からなる金属粉45gが得られ
た。 Comparative Example 17 g / liter of divalent iron component 196 g of trivalent iron component
/ 500, 15.8 g / l of nickel component and 411.4 g / l of chlorine component
95 g of iron powder was added to the mixture, and about 220 ml of pure water was added. The mixture was allowed to react at a liquid temperature of 60 ° C. for 48 hours while occasionally removing hydrochloric acid so that pH <1.
29 g / liter, trivalent iron component less than 0.5 g / liter, nickel component 200 mg / liter, chlorine component 28
720 ml of a liquid having a composition of 6 g / liter and Fe =
45 g of a metal powder composed of 82% and Ni = 16% was obtained.
【0031】実施例と比較例の余剰塩化鉄発生率は、実
施例が7%増加で、比較例が54%増加となり、ほぼ理
論値と一致した。The excess iron chloride generation rate of the example and the comparative example increased by 7% in the example and increased by 54% in the comparative example, which almost coincided with the theoretical value.
【0032】[0032]
【発明の効果】請求項1に記載の発明によれば、余剰塩
化鉄の発生の回避のために、3価鉄から2価鉄への還元
反応を所謂電解法で行い、電解処理後の液に鉄材を投入
してニッケルを除去するので、余剰塩化鉄の発生量を回
収ニッケル量と等モル程度まで低減可能で、数%含有す
るニッケルを例えば500ppm以下の新液に近いレベ
ルまで除去することができるとともに、電極からの析出
物回収のための複雑な機構を必要としない電解装置を用
いて、従来の例えば特開平6−240475号公報で指
摘された約3〜4Vよりも低い電圧(1.5〜2.5
V)で電解還元を行い、金属電析可能なために、低コス
ト、高効率の再生システムを実現することができる。According to the first aspect of the invention, in order to avoid the generation of excess iron chloride, the reduction reaction from trivalent iron to ferrous iron is performed by a so-called electrolytic method, and the solution after the electrolytic treatment is treated. Since nickel is removed by adding iron material to the furnace, the amount of surplus iron chloride generated can be reduced to about the same mole as the recovered nickel, and nickel containing several percent is removed to a level close to a new solution of, for example, 500 ppm or less. And a voltage (1) lower than about 3 to 4 V pointed out in a conventional Japanese Patent Application Laid-Open No. 6-240475, for example, by using an electrolytic apparatus that does not require a complicated mechanism for recovering deposits from the electrodes. 0.5-2.5
Since the electrolytic reduction is performed in V) and metal deposition can be performed, a low-cost and high-efficiency regeneration system can be realized.
【0033】請求項2に記載の発明では、電解工程にお
いて隔膜を通して陽極に移動した塩素イオンによって発
生する塩素ガスを用いて、ニッケルを還元析出した後の
溶液に含有される2価鉄の酸化に有効利用することがで
きるので、従来のようにガス発生を抑制することを考慮
する必要がなく、電解工程での反応を効果的に用いるこ
とができる。According to the second aspect of the present invention, the chlorine gas generated by the chlorine ions moved to the anode through the diaphragm in the electrolysis step is used to oxidize the divalent iron contained in the solution after the nickel is reduced and precipitated. Since it can be effectively used, there is no need to consider suppressing the gas generation unlike the related art, and the reaction in the electrolysis step can be used effectively.
【0034】請求項3に記載の発明では、ニッケルを還
元析出した後の溶液を、電解工程の陽極側に送り、当該
溶液に含有される2価鉄を3価鉄に酸化再生するので、
電解工程での両極の反応をともに有効に利用することが
できる。According to the third aspect of the present invention, the solution obtained by reducing and depositing nickel is sent to the anode side in the electrolysis step, and the ferrous iron contained in the solution is oxidized and regenerated to trivalent iron.
Both electrode reactions in the electrolysis step can be effectively utilized.
【図1】本発明に係る処理工程を説明する概念図であ
る。FIG. 1 is a conceptual diagram illustrating a processing step according to the present invention.
【図2】本発明に係る別の処理工程を説明する概念図で
ある。FIG. 2 is a conceptual diagram illustrating another processing step according to the present invention.
1 隔膜電解槽 2 吸収塔 3 鉄置換槽 1 diaphragm electrolysis tank 2 absorption tower 3 iron replacement tank
───────────────────────────────────────────────────── フロントページの続き (72)発明者 三上 八州家 東京都西多摩郡日の出町平井字欠下2− 1 日鉄鉱業株式会社内 (72)発明者 加藤 正義 神奈川県横浜市栄区小菅ヶ谷1−11−2 (56)参考文献 特開 昭55−18558(JP,A) 特開 平5−263273(JP,A) 特開 平6−240475(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23F 1/46 C02F 1/461 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Mikami Yasushiya 2-1 Hirai-cho, Hinodecho, Nishitama-gun, Tokyo Nippon Steel Mining Co., Ltd. (72) Inventor Masayoshi Kato Kosugaga, Sakae-ku, Yokohama-shi, Kanagawa Tani 1-11-2 (56) References JP-A-55-18558 (JP, A) JP-A-5-263273 (JP, A) JP-A-6-240475 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C23F 1/46 C02F 1/461
Claims (3)
る溶液を電解還元し、当該溶液に含有される3価鉄の少
なくとも一部を2価鉄とした後に、当該還元溶液を鉄材
と接触させて、溶液中に含有されるニッケルを還元析出
する方法。1. A solution containing ferric chloride and nickel chloride as main components is electrolytically reduced, and at least a part of ferric iron contained in the solution is converted to divalent iron. A method in which nickel contained in a solution is reduced and precipitated by contact.
を、ニッケルを還元析出した後の溶液に含有される2価
鉄の酸化に利用することを特徴とする請求項1に記載の
方法。2. The method according to claim 1, wherein chlorine gas generated during the electrolysis step is used for oxidizing ferrous iron contained in the solution after nickel is reduced and precipitated.
解工程の陽極側に送り、当該溶液に含有される2価鉄を
3価鉄に酸化再生することを特徴とする請求項1に記載
の方法。3. The method according to claim 1, wherein the solution after the nickel is reduced and precipitated is sent to the anode side in the electrolysis step, and the ferrous iron contained in the solution is oxidized and regenerated to trivalent iron. the method of.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07073308A JP3112805B2 (en) | 1995-03-30 | 1995-03-30 | Method of treating iron chloride solution containing nickel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07073308A JP3112805B2 (en) | 1995-03-30 | 1995-03-30 | Method of treating iron chloride solution containing nickel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08269744A JPH08269744A (en) | 1996-10-15 |
JP3112805B2 true JP3112805B2 (en) | 2000-11-27 |
Family
ID=13514417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07073308A Expired - Fee Related JP3112805B2 (en) | 1995-03-30 | 1995-03-30 | Method of treating iron chloride solution containing nickel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3112805B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03130103U (en) * | 1990-04-10 | 1991-12-26 |
-
1995
- 1995-03-30 JP JP07073308A patent/JP3112805B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03130103U (en) * | 1990-04-10 | 1991-12-26 |
Also Published As
Publication number | Publication date |
---|---|
JPH08269744A (en) | 1996-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3764503A (en) | Electrodialysis regeneration of metal containing acid solutions | |
EP1165443B1 (en) | Water purification process | |
US4786380A (en) | Method for the electrolytic preparation of hypochlorite in flowing salt-containing water | |
JPH01294368A (en) | Preparation of electrolyte for redox flow battery | |
KR100207041B1 (en) | Method of recovering antimony and bismuth from copper electrolyte | |
JPH09503956A (en) | Conversion of metal cation complexes and salts by electrodialysis. | |
JPH036228B2 (en) | ||
JP3112805B2 (en) | Method of treating iron chloride solution containing nickel | |
JP3112807B2 (en) | Method of treating iron chloride solution containing nickel | |
JP3112806B2 (en) | Method of treating iron chloride solution containing nickel | |
JPS63190187A (en) | Point of sodium permanent anode | |
JP2640933B2 (en) | Electrolytic treatment method for chemical plating waste liquid | |
EP0267704A1 (en) | Electrochemical removal of chromium from chlorate solutions | |
US4238302A (en) | Electrolytic process of recovering oxyacids of chlorine or salts thereof | |
JP3242289B2 (en) | Method for treating iron chloride solution containing copper and nickel | |
JP2002194581A (en) | Method for recovering platinum group metal from metal electrode | |
JP3294678B2 (en) | Regeneration method of copper etchant | |
US4609443A (en) | Procedure for the cathodic electrowinning of metals, with the corresponding acid generation, from its salt solution | |
JP2839153B2 (en) | Process for producing alkali dichromates and chromic acid | |
JP2698253B2 (en) | Treatment method of ferric chloride etching solution containing copper | |
JP2965457B2 (en) | Regeneration method of iron chloride waste liquid containing nickel | |
JP2965442B2 (en) | Regeneration method of iron chloride waste liquid containing nickel | |
JPH06240475A (en) | Treatment of iron chloride based etchant containing nickel | |
JP3597907B2 (en) | Regeneration method of ferric chloride solution | |
JP2964440B2 (en) | Treatment method of iron chloride solution containing nickel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080922 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |