JPH0633373B2 - Iron oxide for fuel additive and method of using the same - Google Patents

Iron oxide for fuel additive and method of using the same

Info

Publication number
JPH0633373B2
JPH0633373B2 JP10774986A JP10774986A JPH0633373B2 JP H0633373 B2 JPH0633373 B2 JP H0633373B2 JP 10774986 A JP10774986 A JP 10774986A JP 10774986 A JP10774986 A JP 10774986A JP H0633373 B2 JPH0633373 B2 JP H0633373B2
Authority
JP
Japan
Prior art keywords
iron oxide
fuel
particles
slurry
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10774986A
Other languages
Japanese (ja)
Other versions
JPS62265391A (en
Inventor
良夫 原田
正之 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Toa Kagaku Kogyo KK
Original Assignee
Mitsubishi Heavy Industries Ltd
Toa Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Toa Kagaku Kogyo KK filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10774986A priority Critical patent/JPH0633373B2/en
Publication of JPS62265391A publication Critical patent/JPS62265391A/en
Publication of JPH0633373B2 publication Critical patent/JPH0633373B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Carbonaceous Fuels (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、石炭、石油系燃料の添加剤及びその添加剤の
使用方法に関する。
TECHNICAL FIELD The present invention relates to an additive for coal and petroleum-based fuels and a method for using the additive.

〔従来の技術〕[Conventional technology]

ボイラ及びガスタービンなどの原動機では運転経費に占
める燃料費の割合が高いため、アスフアルトや石油コー
クス、石油化学における残渣油、副生油など石油系低質
燃料の実用化が進められている。これらの燃料は、LN
G、軽質油はもとより一般の重油に比べて安価であるば
かりか、発熱量も高く、既設設備の簡単な改造で転用で
きるため、今後需要が大きく伸びることが予想される。
又、ベネズエラ産のオリノコタールと称される高粘度で
S(硫黄)、V(バナジウム)、Na(ナトリウム)を多
量に含む重質油などもエネルギーの長期的立場から見れ
ば、燃料としての用途が考えられる。
Since the ratio of fuel cost to operating cost is high in a prime mover such as a boiler and a gas turbine, practical use of petroleum-based low-quality fuels such as asphalt, petroleum coke, residual oil in petrochemicals, and by-product oil is being promoted. These fuels are LN
G and light oil are not only cheaper than general heavy oil, but also have high calorific value and can be diverted by simple modification of existing equipment, so demand is expected to grow significantly in the future.
In addition, heavy oil containing a large amount of S (sulfur), V (vanadium), and Na (sodium) with high viscosity, called orinocotar from Venezuela, is also used as a fuel from a long-term energy perspective. Can be considered.

しかし、これらの石油系低質燃料は、軽質油はもとより
一般の重油に比べても(1)固定炭素量が多く揮発分が少
ない、(2)着火温度が高く、又燃焼速度も遅いため安定
した燃焼状態が得られず、燃焼ガス中に多くの未燃炭素
が含まれるなどの欠点がある。
However, these petroleum-based low-quality fuels are stable because they have (1) a large amount of fixed carbon and a small amount of volatile components, (2) a high ignition temperature and a slow burning rate, compared to light oil and general heavy oil. There are drawbacks such that the combustion state cannot be obtained and a large amount of unburned carbon is contained in the combustion gas.

これらの欠点を補う方法として、(1)燃焼用空気を多く
する。(2)石油コークスなどの固形燃料は微粉化して燃
焼用空気との接触面積を大きくする。(3)アスフアルト
やタール類に対しては予熱温度を上げると共に、噴霧燃
焼時の粒子を微細化して接触面積を大きくする。(4)こ
の目的に合致したバーナを開発するなどの方法が実施さ
れている。
As a method of compensating for these drawbacks, (1) increase combustion air. (2) Solid fuel such as petroleum coke is pulverized to increase the contact area with the combustion air. (3) For asphalt and tars, increase the preheating temperature and atomize the particles during spray combustion to increase the contact area. (4) Methods such as developing burners that meet this purpose are being implemented.

しかし、これらの改善策は次のような問題点があり、十
分な対策とはいえない。
However, these improvement measures have the following problems and cannot be said to be sufficient measures.

すなわち、(1)燃焼用空気の増加は、ボイラ効率の低下
のみならず、燃焼ガス中のNOxやSO3の生成を促し、環境
汚染や硫酸露点腐食を発生させる。(2)の微細化は粉砕
機の能力に限界があり、微粉砕するには多大の設備費用
を要する。又、(3)の予熱温度の上昇はエネルギの消耗
につながり、(4)のバーナの改良、開発についても容易
でなく、現在のところ完全なものは開発されていない。
That is, (1) The increase in combustion air not only lowers the boiler efficiency, but also promotes the production of NOx and SO 3 in the combustion gas, causing environmental pollution and sulfuric acid dew point corrosion. The miniaturization of (2) has a limit to the capacity of the crusher, and a large equipment cost is required for fine crushing. Further, the increase in the preheating temperature of (3) leads to energy consumption, and it is not easy to improve and develop the burner of (4), and at present, a complete burner has not been developed.

以上のような状況に鑑み、従来から助燃剤(燃焼促進
剤)の研究が行われBa、Mn、Ce、Cu、CO などの化合物
を燃料中に添加する方法が採用されている場合がある
が、これらの金属類は重金属類に属し公害上の問題があ
るほか、経済的でないなどの欠点がある。
In view of the above situation, there have been cases where a method of adding compounds such as Ba, Mn, Ce, Cu, and CO to the fuel has been adopted and research has been conducted on the combustion improver (combustion accelerator). However, these metals belong to heavy metals and have problems of pollution, and they are not economical.

本発明者らはさきに、特願昭60−244155「燃料
添加剤」として鉄酸化物の燃料中への添加によつて、燃
焼によつて発生する多くの障害を防止する方法を提案し
た。
The present inventors have previously proposed, as Japanese Patent Application No. 60-244155 "fuel additive", a method of preventing many obstacles caused by combustion by adding iron oxide to a fuel.

鉄化合物としては、FeO、Fe3O4、Fe2O3、FeOOH、Fe(OH)
3、FeCO3、FeSO4、FeCl2、Fe(NO3)2などの無機のもの、
オクチル酸鉄、ナフテン酸鉄、ステアリン酸鉄、錯酸
鉄、蟻酸鉄、メタクリル酸鉄などの有機系のものに分類
され、いずれの化合物も高温の燃焼領域では酸化した
り、分解する工程を経て最終的にはFe2O3 粒子として燃
焼ガス中に浮遊するものである。
As iron compounds, FeO, Fe 3 O 4 , Fe 2 O 3 , FeOOH, Fe (OH)
Inorganic substances such as 3 , FeCO 3 , FeSO 4 , FeCl 2 , Fe (NO 3 ) 2
It is classified into organic ones such as iron octylate, iron naphthenate, iron stearate, iron complexate, iron formate, and iron methacrylate.Each compound undergoes a process of being oxidized or decomposed in a high temperature combustion region. Eventually, they are suspended in the combustion gas as Fe 2 O 3 particles.

一般に無機系鉄化合物は微粉末状として燃料中へ添加
し、有機系鉄化合物は水溶液や燃料中の溶解した状態で
使用されることが多い。燃料中への分散や燃焼ガス中で
の均一分布性などについては、有機系の鉄化合物の方が
はるかに有利であるが高価であるため、安価な石油系低
質燃料を採用しているメリツトが少なくなつているのが
現状である。
In general, the inorganic iron compound is often added to the fuel in the form of fine powder, and the organic iron compound is often used in a state of being dissolved in an aqueous solution or the fuel. Regarding the dispersion in fuel and the uniform distribution in combustion gas, organic iron compounds are much more advantageous, but they are expensive. The current situation is that the number is decreasing.

このような事情から「特願昭60−244155」 では微細な鉄酸化物の使用を提案し、(少なくとも1μ
m以下の粒子を80%以上含むもの)一応の目的は達し
たが、昨今では微細で反応性に富む酸化鉄添加剤の要求
が強く、又、前記石油系低質燃料のみならず、石炭燃料
に対しても有効な鉄酸化物の出現が望まれている。
Under such circumstances, "Japanese Patent Application No. 60-244155" proposes the use of fine iron oxide (at least 1 μm).
Although the purpose has been met for the time being, the demand for fine and highly reactive iron oxide additives is strong, and not only for the petroleum-based low-quality fuels but also for coal fuels. On the contrary, the appearance of an effective iron oxide is desired.

さらにこの種の無機系鉄化合物に要求される性質とし
て、水溶液や燃料中で均一に分散すると共に、これらを
輸送するポンプ動力が少なくて済み、ポンプ部分及びバ
ーナノズルなどに対しても摩耗を起さないものが期待さ
れている。
Furthermore, the properties required for this type of inorganic iron compound are that it disperses evenly in an aqueous solution or fuel, and that the pump power for transporting these is small, and that the pump part and burner nozzle also wear. What is not expected is expected.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明は、長期間連続使用しても運転経費の安い酸化鉄
を使用する際、従来の鉄酸化物を使用した場合の下記の
欠点、すなわち、水溶液中及び燃料中における均一分
散性の悪さ、これらに多量の酸化鉄を加えると粘度が
上昇するため、燃料配管への注入時に大きな動力を必要
とすること、又水溶液中や燃料中に添加している酸化
鉄が長期間の保管中のその一部分が容器の底部に沈降し
た際、泥状となつて固着し再分散させにくいなどの取扱
上の欠点を改善し、更にボイラなどへ従来の酸化鉄を燃
料中へ注入した場合、期待される下記の問題点、すなわ
ち、燃料の燃焼促進効果の向上、燃焼ガス中で生成
するNOx発生量の抑制効果の向上、燃焼排ガス中に含
まれているダストの電気集じん装置(以下EP)での捕集
効率の向上、さらにボイラ炉内に脱硝用触媒が設置さ
れている場合はこの触媒機能に悪影響を与えないのみな
らず、機能を向上させるなどの作用機構が十分でない現
状を改善するものである。
The present invention, when using iron oxide that is low in operating costs even when continuously used for a long period of time, has the following drawbacks when using a conventional iron oxide, that is, poor uniform dispersion in an aqueous solution and a fuel, If a large amount of iron oxide is added to these, the viscosity will increase, so a large amount of power is required when injecting into the fuel pipe, and the iron oxide added to the aqueous solution or fuel will not be stored during long-term storage. When a part of it settles at the bottom of the container, it becomes muddy and sticks, and it is difficult to re-disperse.It is expected to be improved when the conventional iron oxide is injected into the fuel. The following problems, namely, improvement of combustion promotion effect of fuel, improvement of suppression effect of NOx generation amount in combustion gas, and electrostatic precipitator (hereinafter EP) of dust contained in combustion exhaust gas Improvement of collection efficiency, further in the boiler furnace If 硝用 catalyst is placed not only does not adversely affect the catalyst function, the mechanism of action of such to improve the function is to improve the current situation is not sufficient.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、 (1) 微細な酸化鉄よりなり、その形状が板状又は板状
の中央部に貫通孔を有する環状であることを特徴とする
燃料添加剤、 (2) 板状及び環状酸化鉄をMg化合物中に混入してなる
ことを特徴とする燃料添加剤 及び (3) 板状又は環状酸化鉄を水スラリ又はオイルスラリ
として石油系及び石炭燃料中に混入することを特徴とす
る上記添加剤の使用方法である。
The present invention is (1) a fuel additive characterized by comprising fine iron oxide, the shape of which is a plate or a ring having a through hole in the center of the plate, (2) a plate and a ring oxide A fuel additive characterized by mixing iron into a Mg compound, and (3) a plate-like or cyclic iron oxide as a water slurry or an oil slurry mixed into petroleum-based and coal fuels This is how to use the additive.

〔作用〕[Action]

(1) 酸化鉄の微細化による作用機構の向上 酸化鉄を燃料中に添加する場合、一般に重量含有量によ
つて規定されることが多いが粒子径が異なると、その表
面積や粒子数に大きな差が生ずることとなる。例えば直
径44μmの酸化鉄粒子の表面積を1とすれば、同じ重
量の酸化鉄粒子を20μmに粉砕するとその表面積は
2.2倍となり、同じく10μmとすると4.4倍、2
μmで22倍、0.5μmでは88倍に増大する。又4
4μmの酸化鉄粒子数を1とすると、20μmに粉砕し
たものの数は11個、10μmでは85個、2μmでは
10,600個、0.5μmにすれば681,000個
に達する。(但しこれらの計算は粒子の形状を球とした
場合) このように酸化鉄を超微粒子にすると、同じ添加重量で
も表面積は勿論、粒子数が飛躍的に増加する。表面積の
増大は酸化鉄表面における化学反応の促進に効果があ
り、粒子数の増加は燃焼ガス中に浮遊している未燃炭素
と接触する機会を著しく増加させることとなり、粗粒子
の酸化鉄に比べ物理的に反応機会を増大させることとな
る。
(1) Improvement of action mechanism by refining iron oxide When iron oxide is added to fuel, it is generally regulated by weight content, but if the particle size is different, the surface area and the number of particles are large. There will be a difference. For example, assuming that the surface area of iron oxide particles having a diameter of 44 μm is 1, the surface area becomes 2.2 times as large as the same weight of iron oxide particles is pulverized to 20 μm, and the same surface area becomes 4.4 times 2 times.
It increases 22 times in μm and 88 times in 0.5 μm. Again 4
Assuming that the number of iron oxide particles of 4 μm is 1, the number of particles pulverized to 20 μm is 11, 10 particles of 85 μm, 2 particles of 10,600 particles, and 0.5 μm of 681,000 particles. (However, these calculations assume that the shape of the particles is a sphere.) When the iron oxide is made into ultrafine particles in this manner, the surface area as well as the number of particles is dramatically increased even with the same added weight. The increase in surface area has the effect of promoting the chemical reaction on the iron oxide surface, and the increase in the number of particles significantly increases the chances of contact with unburned carbon suspended in the combustion gas, resulting in coarse particles of iron oxide. Compared with this, the reaction opportunity is physically increased.

(2) 酸化鉄粒子の形状と作用機構 一般に酸化鉄粒子は超微粒子と称されるものでも、その
形状は針状を呈しているものが多い。このような粒子は
たとえ燃料中に分散剤と共に添加していても輸送時など
の振動が加えられたり、長期間そのままの状態で保管さ
せて置くと粒子同志が相互にからみ合つて粗大粒子を形
成して、容器の底部へ沈殿する現象がある。このように
粒子が相互にからみ合つて粗大粒子を形成したものは機
械的に撹拌しても元の微細な粒子に戻ることはなく、終
局的には粗大な酸化鉄粒子を使用していることと同じこ
ととなる。このため、燃料配管中に沈降したり、燃料ポ
ンプやバーナチツプを摩耗損傷させる原因となる。
(2) Shape and action mechanism of iron oxide particles Although iron oxide particles are generally called ultrafine particles, many of them have a needle-like shape. Even if such particles are added to the fuel together with the dispersant, vibration during transportation is applied, or if they are stored for a long period of time, the particles will entangle with each other to form coarse particles. Then, there is a phenomenon in which it settles on the bottom of the container. In this way, particles in which coarse particles are entangled with each other do not return to the original fine particles even when mechanically stirred, and eventually, coarse iron oxide particles are used. Will be the same as. For this reason, it may cause sedimentation in the fuel pipe and wear damage to the fuel pump and the burner chip.

本発明の酸化鉄粒子は、超微粒子であるために、前述の
(1)の効果に加え、次に示すような極めて有用な作用機
能を示す。
Since the iron oxide particles of the present invention are ultrafine particles,
In addition to the effect of (1), it exhibits the following extremely useful function.

すなわち、酸化鉄粒子が鋭角のない板状を呈しているた
め、燃料中に多量に添加していてもポンプやバーナチツ
プを摩耗させることがない。又粒子同志が相互にからみ
合うことが少ないため、二次的に粗大粒子をつくること
がなく、沈降現象がない上、同一添加量であればその燃
料油の粘度に対する影響が少なく輸送動力が少なくて済
むこととなる。
That is, since the iron oxide particles have a plate shape without an acute angle, the pump and the burner chip are not worn even if a large amount is added to the fuel. In addition, since the particles do not entangle with each other, secondary coarse particles are not formed, there is no sedimentation phenomenon, and if the addition amount is the same, the effect on the viscosity of the fuel oil is small and the transportation power is small. Will be completed.

さらに板状粒子の中央に貫通孔を有する酸化鉄では(以
下環状酸化鉄)貫通孔中を燃料が通過することが可能と
なるため、前述の板状粒子の作用機能を一段と向上させ
るほか、燃焼後でも、この貫通孔中を燃焼ガス成分が通
過するため酸化鉄表面で起る諸種の化学反応が著しく促
進することとなる。
In addition, iron oxide having a through hole in the center of the plate-like particles (hereinafter referred to as “ring iron oxide”) allows fuel to pass through the through-holes, further improving the function of the plate-like particles described above, and burning. Even after that, since the combustion gas component passes through the through holes, various chemical reactions occurring on the iron oxide surface are significantly accelerated.

以上の板状、環状酸化鉄粒子は、工技院大阪工業技術試
験所発行の“大工試ニユース”vol.29(1985)No.11に
記載されている。
The above-mentioned plate-like and cyclic iron oxide particles are described in "Carpentry Test News" vol.29 (1985) No. 11 published by Kogakuin Osaka Industrial Research Institute.

第5図及び第6図に本発明の板状及び環状酸化鉄粒子
の、第7図に市販の針状酸化鉄粒子の電子顕微鏡写真を
示した。
5 and 6 show electron micrographs of plate-like and cyclic iron oxide particles of the present invention, and FIG. 7 shows commercially available acicular iron oxide particles.

〔実施例〕〔Example〕

(実施例1) 本発明の板状及び環状酸化鉄を用いた燃料添加剤の組成
とその特性について述べる。
(Example 1) The composition and characteristics of a fuel additive using the plate-shaped and cyclic iron oxide of the present invention will be described.

オイルスラリとして使用する場合 本発明の酸化鉄を使用して燃料添加剤を製造する場合の
一例を次に示す。
When Used as Oil Slurry An example of producing a fuel additive using the iron oxide of the present invention is shown below.

この組成のものを4枚羽根を有する撹拌機でよく撹拌す
るとオイルスラリーの燃料添加剤となる。このようにし
て製造した本発明の酸化鉄含有のオイルスラリと市販の
他の酸化鉄を同量添加したオイルスラリをつくり20℃
における粘度とオイルスラリ中における酸化鉄の安定度
を調査した。安定度の調査はよく撹拌した後、目盛のあ
るガラス管に100mlとり、1〜3カ月間静置して上澄
層の生成量と底部に堆積する酸化鉄量を比較した。第1
表はこの結果を示したもので、比較例の市販酸化鉄を含
むオイルスラリーの粘度は、仮え酸化鉄が微粒子であつ
ても粘度が非常に高くなつており、その取扱いが困難で
あることがわかる。この点ではFe3O4 の粒状酸化物の方
が粘度が低い。しかし安定性に乏しく、30日後その殆ん
ど全部が底部に沈降した。この点、針状の酸化鉄の安定
性は粒状のものに比べるとはるかに良好であつた。
If this composition is well stirred with a stirrer having four blades, it becomes a fuel additive for oil slurry. An oil slurry containing iron oxide containing iron oxide of the present invention produced in this manner and another commercially available iron oxide are added in the same amount to prepare an oil slurry of 20 ° C.
The viscosity of iron oxide and the stability of iron oxide in oil slurry were investigated. Stability was investigated by mixing well, stirring 100 ml in a glass tube having a scale, and leaving it still for 1 to 3 months to compare the amount of supernatant formed with the amount of iron oxide deposited on the bottom. First
The table shows these results, the viscosity of the oil slurry containing the commercially available iron oxide of the comparative example, the viscosity is very high even if the iron oxide is fine particles, the handling is difficult. I understand. In this respect, the granular oxide of Fe 3 O 4 has a lower viscosity. However, the stability was poor, and almost all of it settled to the bottom after 30 days. In this respect, the stability of needle-shaped iron oxide was far better than that of granular iron oxide.

これに対し、本発明の板状及び環状酸化鉄は粘度が低く
1ケ月間静置しても粒子の沈降は全く認められず良好な
安定性を示した。
On the other hand, the plate-like and cyclic iron oxides of the present invention have low viscosities, and even when they are allowed to stand for one month, no sedimentation of particles is observed and good stability is exhibited.

次いで、針状と本発明の酸化鉄を含むスラリーを3カ月
間静置した結果、Cの針状酸化鉄と本発明の酸化鉄スラ
リーから少量の沈降現象が認められたが他の比較例は全
て沈降量が多く安定性に乏しいことが判明した。次いで
3ケ月間静置した本発明の酸化鉄とC及びDの針状酸化
鉄スラリについて、ガラス管の上下を数回(5〜6回)
逆転して沈降した酸化鉄を再分散させて、再び1ケ月静
置したところ、針状の酸化物の沈降現象は早くなり、安
定性に乏しくなつていることが判明した。これは針状の
酸化鉄が微細であつても、一旦沈降すると粒子同志が相
互にからみ合つて見かけ上大きな粒子をつくり、沈降速
度を早くしたためと考えられる。この点板状及び環状の
酸化物はその形状から明らかなようにからみ合うことが
なく、長期間安定性を維持することが確認された。
Then, as a result of allowing the slurry containing the acicular iron oxide of the present invention to stand for 3 months, a small amount of sedimentation phenomenon was observed from the acicular iron oxide of C and the iron oxide slurry of the present invention, but other comparative examples were All were found to have a large amount of sedimentation and poor stability. Next, with respect to the iron oxide of the present invention and the acicular iron oxide slurry of C and D that were left standing for 3 months, the glass tube was moved up and down several times (5 to 6 times).
When the iron oxide that had reversed and precipitated was redispersed and allowed to stand for one month again, it was found that the sedimentation phenomenon of the acicular oxide was accelerated and the stability was poor. It is considered that this is because even if the acicular iron oxide was fine, once settled, the particles became entangled with each other to form apparently large particles, which accelerated the settling rate. It was confirmed that the point-plate-shaped and ring-shaped oxides did not become entangled as apparent from the shape, and maintained stability for a long period of time.

水スラリとして使用する場合 本発明の酸化鉄を水スラリとして使用する場合の組成例
を次に示す。
When used as water slurry The following is an example of the composition when the iron oxide of the present invention is used as a water slurry.

オイルスラリーを製造するときと同様よく撹拌した後、
水スラリの粘度及びスラリとしての安定性を針状の酸化
鉄を同量添加したものと比較した。比較試験の方法はオ
イルスラリの場合と同様としたが、水スラリの場合は本
発明の酸化鉄スラリの特性が1カ月静置後針状のものに
比較して極めて良好であつたため、3カ月静置及びその
後の再撹拌などの試験は実施しなかつた。
After stirring as well as when producing the oil slurry,
The viscosity of the water slurry and the stability of the slurry were compared with those of the same amount of acicular iron oxide added. The method of the comparative test was the same as that of the oil slurry, but in the case of the water slurry, the characteristics of the iron oxide slurry of the present invention were extremely good as compared with those of the needle-like shape after standing for 1 month, and thus 3 months. No tests such as standing and subsequent re-stirring were performed.

第2表は水スラリとして調整した場合の試験結果を示し
たもので、オイルスラリの場合と同様、スラリ粘度が低
く、1カ月間静置しても極めて安定であることが判明し
た。特に環状の酸化鉄の水スラリは優れた特性を有して
いることが認められた。
Table 2 shows the test results when the water slurry was prepared. As with the oil slurry, it was found that the viscosity of the slurry was low and it was extremely stable even when left standing for one month. In particular, it was found that the water slurry of cyclic iron oxide has excellent properties.

以上の結果から本発明の板状及び環状酸化鉄は、オイル
スラリはもとより水スラリ状態にしても燃料添加剤とし
て極めて有望であることが判明した。
From the above results, it was found that the plate-like and cyclic iron oxides of the present invention are extremely promising as a fuel additive not only in oil slurry but also in water slurry state.

(実施例2) 実施例1のに示したオイルスラリ組成を用い、本発明
の酸化鉄2種類と市販の針状酸化鉄の金属材料に対する
摩耗特性を調査した。摩耗特性の調査はそれぞれの酸化
鉄を含むオイルスラリ中にAl合金鋳物2種B(JIS H 52
02のAC2AでAl-Cu-Si 系)製の直径80mmの4枚羽根
のプロペラを浸漬し、一分間300回転させつつ、20
0時間連続試験を行つた。その後プロペラを取り出し、
試験前後の外観変化と重量変化から形状の異なる酸化鉄
の摩耗特性を評価した。この試験ではプロペラの回転数
を一定としたため、本発明の酸化鉄を含むオイルスラリ
粘度は低く容易に回転したが、比較品の針状酸化鉄のオ
イルスラリ中では同一回転数を得るのに前者に比べ大き
な動力を要したことはいう迄もない。
(Example 2) Using the oil slurry composition shown in Example 1, the wear characteristics of two types of iron oxide of the present invention and a commercially available acicular iron oxide with respect to metal materials were investigated. The wear characteristics were investigated by investigating Al alloy castings type 2 B (JIS H 52
Immerse a 4-blade propeller with a diameter of 80 mm made of Al-Cu-Si) in AC2A of 02 and rotate it 300 times for 1 minute.
A 0-hour continuous test was conducted. After that, take out the propeller,
The wear characteristics of iron oxides having different shapes were evaluated from the change in appearance and the change in weight before and after the test. In this test, the propeller rotation speed was kept constant, so the viscosity of the oil slurry containing iron oxide of the present invention was low and it rotated easily, but in the oil slurry of the needle-shaped iron oxide of the comparative product, the same rotation speed was obtained in the former case. Needless to say, it required a great deal of power compared to.

第3表は、この結果を示したもので、板状及び環状酸化
鉄を含むオイルスラリではAl合金製のプロペラでも外観
上殆んど形状変化が認められず、プイペラの表面が軽く
研摩されていたにとどまつたが、針状酸化鉄のオイルス
ラリではプロペラ表面に微細なスリ傷が無数に発生し
た。このような外観状の相違はプロペラの重量変化にも
あらわれ、本発明の酸化鉄スラリ中で回転させたものの
重量減少は極めて微小であつたのに対し、比較品の酸鉄
スラリ中で回転させたものは20倍以上の摩耗量が確認
された。
Table 3 shows the results. In oil slurries containing plate-shaped and ring-shaped iron oxide, almost no shape change was observed in the appearance even with an Al alloy propeller, and the surface of the piper was lightly polished. However, the needle-shaped iron oxide oil slurry caused numerous scratches on the propeller surface. Such a difference in appearance also appears in the change in the weight of the propeller, and the weight reduction of the iron oxide slurry of the present invention was extremely small, whereas the weight loss of the comparative iron oxide slurry was small. The wear amount of 20 times or more was confirmed.

(実施例3) 第1図に本発明の酸化鉄を水スラリとしてボイラ燃料中
へ添加し、燃料の燃焼と共にボイラ炉内へ分散させた例
を示す。燃料は燃料タンク1から配管2を通り燃料用ポ
ンプ3によつてボイラ炉4内へ噴霧され燃焼する。燃焼
後の高温ガスはボイラ伝熱管と熱交換を行い、空気予熱
器5を経て、電気集じん装置6によつてガス中の固形物
(ばいじん)を除去し、煙突7から外部へ放出される。
一方、燃焼用の空気は8の位置から空気予熱器5によつ
て熱交換を行つて昇温し、燃焼用空気として燃料用バー
ナを通つて炉内へ注入される。
(Embodiment 3) FIG. 1 shows an example in which the iron oxide of the present invention is added as a water slurry into a boiler fuel and dispersed in the boiler furnace along with the combustion of the fuel. Fuel is sprayed from the fuel tank 1 through the pipe 2 into the boiler furnace 4 by the fuel pump 3 and burned. The hot gas after combustion exchanges heat with the boiler heat transfer tube, passes through the air preheater 5, and the electric dust collector 6 removes the solid matter (dust) in the gas, and is discharged from the chimney 7 to the outside. .
On the other hand, the combustion air is heat-exchanged from the position 8 by the air preheater 5 to raise the temperature, and is injected into the furnace as combustion air through the fuel burner.

本発明の酸化鉄を水スラリ状態で使用する場合は、実施
例1のに示した化学組成より高濃度の酸化鉄スラリ
(50%)をつくつて水スラリタンク13に貯蔵する。
一方、工業用水貯蔵タンク9から水を配管10を通し
て、ポンプ11を経て燃料配管中へ圧入するがその位置は
燃料ポンプ3の前後のいずれでも注入可能なように水ス
ラリ配管12を2系列設けている。酸化鉄の水スラリは
貯蔵槽13から配管14を通り、ポンプ15によつて水
配管15によつて水配管10中へ注入するようになつて
いるので、この注入位置から燃料中へ注入される迄の配
管中には酸化鉄粒子の水スラリが存在していることとな
る。この水スラリ濃度は燃料消費量によつて、自動的に
ポンプ15及びポンプ11によつて制御できるようにな
つている。又、ポンプ15から貯水槽9へ酸化鉄粒子を
配管16を用いて送り、貯水槽中にて所定濃度の水スラ
リをつくり、燃料中へ注入することも可能である。
When the iron oxide of the present invention is used in a water slurry state, an iron oxide slurry (50%) having a higher concentration than the chemical composition shown in Example 1 is prepared and stored in the water slurry tank 13.
On the other hand, water is injected from the industrial water storage tank 9 through the pipe 10 into the fuel pipe through the pump 11, but at that position, two series of water slurry pipes 12 are provided so that water can be injected either before or after the fuel pump 3. There is. The water slurry of iron oxide passes from the storage tank 13 through the pipe 14, and is injected by the pump 15 into the water pipe 10 by the water pipe 15. Therefore, it is injected into the fuel from this injection position. Water slurry of iron oxide particles is present in the pipes up to this point. The water slurry concentration can be automatically controlled by the pump 15 and the pump 11 according to the fuel consumption amount. It is also possible to send iron oxide particles from the pump 15 to the water storage tank 9 through the pipe 16 to form water slurry having a predetermined concentration in the water storage tank and inject it into the fuel.

酸化鉄水スラリ貯蔵タンク13内には空気吹込配管17
が付属されており、必要に応じ稼動できる状態となつて
いる。
In the iron oxide water slurry storage tank 13, an air blowing pipe 17
Is included and is ready for operation as needed.

試験条件 供試ボイラ:蒸発量 600t/h 燃 料:市販C重油(S:2.5%,V:30pp
m,Na:20ppm) 注入した酸化鉄 (A) 本発明の超微粒板状酸化鉄(以下A酸化鉄粒子) (B) 本発明の超微粒環状酸化鉄(以下B酸化鉄粒子) (C) 市販の超微粒針状酸化鉄(以下C酸化鉄粒子) (D) 無注入 性能比較項目 空気予熱器5出口排ガス中のばいじん量とその中に
含まれている未燃炭素量 電気集じん装置の効率 空気予熱器5入口の位置における排ガス中のSO3、N
Ox量 第4表は、上記の試験結果を無注入時の測定値を100
としてその比で示したものである。(尚、酸化鉄Fe2O3
としての燃料中への注入量は100ppmになるように設
定したが実際には80〜210ppmの範囲にあつた。) 酸化鉄の注入によつて、ばいじん量及びばいじん中の未
燃炭素分が減少しこれに伴つて、集じん効率が向上して
いるのが見られる。一般に電気集じん装置の効率は、ば
いじんの電気抵抗値が105〜108Ωcm程度のものに対
して極めて有効に作用するが、酸化鉄の注入によつて、
電気抵抗値の大きい未燃炭素の抵抗値が低下した効果が
あらわれたものと考えられる。SO3,NOxの低下は注入し
た酸化鉄が燃焼炉壁管に付着して、その輻射吸収率を高
め、燃焼領域の最高温度を低くしたことによつて活性化
された酸素の発生量が低下し、SO2→SO3への酸化及びサ
ーマルNOxの発生を抑制したものと思われる。
Test conditions Boiler under test: Evaporation amount 600t / h Fuel: Commercial C heavy oil (S: 2.5%, V: 30pp
m, Na: 20 ppm) Injected iron oxide (A) Ultra-fine plate-like iron oxide of the present invention (hereinafter A iron oxide particles) (B) Ultra-fine cyclic iron oxide of the present invention (hereinafter B iron oxide particles) (C) Commercially available ultrafine acicular iron oxide (hereinafter referred to as C iron oxide particles) (D) No injection Performance comparison item Dust amount in the exhaust gas from the air preheater 5 and unburned carbon amount contained in it Efficiency SO 3 , N in exhaust gas at the position of the air preheater 5 inlet
Ox amount Table 4 shows the above test results with 100 measured values without injection.
Is shown as the ratio. (Note that iron oxide Fe 2 O 3
The injection amount into the fuel was set to be 100 ppm, but actually it was in the range of 80 to 210 ppm. The amount of dust and the amount of unburned carbon in the dust are decreased by the injection of iron oxide, and it can be seen that the dust collection efficiency is improved accordingly. Generally, the efficiency of the electrostatic precipitator is extremely effective when the electric resistance of soot and dust is about 10 5 to 10 8 Ωcm.
It is considered that the effect of lowering the resistance value of unburned carbon having a large electric resistance value appeared. The decrease in SO 3 and NOx is caused by the injected iron oxide adhering to the combustion furnace wall tube, increasing its radiation absorption rate and lowering the maximum temperature in the combustion region, which reduces the amount of activated oxygen generated. However, it is considered that the oxidation of SO 2 → SO 3 and the generation of thermal NOx were suppressed.

このように酸化鉄の注入は極めて有効な作用を示した
が、特に本発明の板状及び環状酸化鉄の効果は一段と向
上 していることが確認された。
Thus, the injection of iron oxide showed a very effective action, but it was confirmed that the effect of the plate-like and cyclic iron oxide of the present invention was further improved.

この理由は、酸化鉄が微粒子であることとともに、燃料
中へ均一に分散し、板状及び環状形をしているため、ガ
ス成分、燃料成分との接触がよくなり、又炉壁管に付着
しても、安定した状態で存在して剥離、脱落することが
少なく、長期間に亘つて酸化鉄特有の機能を発揮するも
のと考えられる。
The reason for this is that iron oxide is fine particles, and it is evenly dispersed in the fuel and has a plate shape and an annular shape, so it makes good contact with gas components and fuel components and adheres to the furnace wall tube. Even so, it is considered that it exists in a stable state, rarely exfoliates and falls off, and exerts a function peculiar to iron oxide for a long period of time.

(実施例4) 第2図に本発明の酸化鉄を含むオイルスラリを注入した
ボイラの概要を示す。
(Embodiment 4) FIG. 2 shows an outline of a boiler injected with an oil slurry containing iron oxide according to the present invention.

アスフアルト貯蔵タンク21は流動性を維持するため、
蒸気加熱装置22を設置しており、これをボイラへ導く
ための配管にも同種の加熱機構をもたせている。アスフ
アルトは180〜230℃に加熱され、ポンプ33によ
つて、ボイラ4中へ注入して燃焼させる。オイルスラリ
は貯蔵タンク24より配管25を通り、注入ポンプ26
により燃料ポンプ33の出口側へ配管27によつて注入
される。
The asphalt storage tank 21 maintains fluidity,
The steam heating device 22 is installed, and the piping for guiding this to the boiler is also provided with the same kind of heating mechanism. Asphalt is heated to 180 to 230 ° C., and injected into the boiler 4 by the pump 33 and burned. The oil slurry passes from the storage tank 24 through the pipe 25 and the injection pump 26.
Is injected into the outlet side of the fuel pump 33 by the pipe 27.

ボイラから排出されるガス通路に設けられている空気予
熱器5、電気集じん装置6、煙突7は第1図と同様であ
り、燃焼用の空気8は空気予熱器5を通過して燃焼用空
気として燃料の燃焼に使用される。
The air preheater 5, the electrostatic precipitator 6, and the chimney 7 provided in the gas passage discharged from the boiler are the same as those in FIG. 1, and the combustion air 8 passes through the air preheater 5 for combustion. Used as air to burn fuel.

試験条件 供試ボイラ:蒸発量180t/h 燃 料:アスフアルト(S:3.2%,V:50
0ppm,Na:100ppm)70%にC重油(S:1.8
%,V:63ppm,Na:17ppm)30%混合したもの 注入した酸化鉄;実施例3で使用したのと同じA酸化
鉄粒子、B酸化粒子及びC酸化鉄粒子を用い、下記の組
成のオイルスラリを調合して供試した。
Test conditions Test boiler: Evaporation rate 180t / h Fuel: Asphalt (S: 3.2%, V: 50
0ppm, Na: 100ppm) 70% to C heavy oil (S: 1.8
%, V: 63 ppm, Na: 17 ppm) 30% mixture Iron oxide injected; A iron oxide particles, B oxide particles and C iron oxide particles which were the same as those used in Example 3 were used, and an oil having the following composition A slurry was prepared and tested.

マシンオイル J−9(出光興産商品名) 160g 石油系スルホン酸カルシウム 3g ソルビタンモノオレエト 3g 酸 化 鉄 57g 性能比較項目:実施例3と同じ 第5表は本実施例の結果を示したもので、アスフアルト
中に酸化鉄を注入してもC重油中へ注入した場合と同様
な効果が得られた。又酸化鉄としては本発明の板状及び
環状のものが従来の針状結晶のものに比べ、さらに良好
であることが認められた。
Machine oil J-9 (trade name of Idemitsu Kosan Co., Ltd.) 160 g Petroleum-based calcium sulfonate 3 g Sorbitan monooleate 3 g Iron oxide 57 g Performance comparison item: Same as Example 3 Table 5 shows the results of this Example. Injecting iron oxide into asphalt gave the same effect as injecting into C heavy oil. Further, it was confirmed that the iron oxides of the plate-like and ring-like ones of the present invention were more excellent than those of the conventional needle-like crystals.

(実施例5) 本発明の酸化鉄を石油コークスを燃焼しているボイラに
適用した例を第3図に示す。石油コークス貯蔵タンク3
1から出たコークスはミル32によつて所定の粒度に粉
砕され、空気予熱器5を通つて加温された空気配管33
を経由してボイラ炉4内へ導入される。一方、C重油貯
蔵タンク37からポンプ38によつて、配管39を通して
同じくボイラ4へ導入される。
(Example 5) Fig. 3 shows an example in which the iron oxide of the present invention is applied to a boiler burning petroleum coke. Petroleum coke storage tank 3
The coke discharged from No. 1 is crushed into a predetermined particle size by a mill 32, passed through an air preheater 5, and heated to an air pipe 33.
Is introduced into the boiler furnace 4 via. On the other hand, it is also introduced into the boiler 4 from the C heavy oil storage tank 37 by the pump 38 through the pipe 39.

酸化鉄を含むオイルスラリは、貯蔵タンク34から定量ポ
ンプ35によつて所定量を配管36を通してC重油配管
39へ注入し、ボイラ炉4内で8から吸引された燃焼用
空気によつて、石油コークスとC重油がボイラ炉内で燃
焼するようになつている。ボイラから出た燃焼ガスが煙
突から排出される迄の装置の設備は第1図及び第2図と
同様である。
A predetermined amount of oil slurry containing iron oxide is injected from the storage tank 34 into the C heavy oil pipe 39 through the pipe 36 by the metering pump 35, and the combustion air sucked from the boiler furnace 4 from the combustion oil 8 Coke and heavy fuel oil C are being burned in the boiler furnace. The equipment of the apparatus until the combustion gas emitted from the boiler is discharged from the chimney is the same as that shown in FIGS. 1 and 2.

試験条件 供試ボイラ:蒸発量 180t/h 燃 料:市販の石油コークス(S:4.2%,
V:670ppm,Na:60ppm)60%にC重油(S:
1.8%,V:40ppm,Na:10ppm)40%の割合で
混合したもの。
Test conditions Test boiler: Evaporation rate 180t / h Fuel: Commercial petroleum coke (S: 4.2%,
V: 670ppm, Na: 60ppm) 60% to C heavy oil (S:
(1.8%, V: 40 ppm, Na: 10 ppm) 40% mixed together.

注入した酸化鉄:実施例4で使用したものを重油中へ
実施例3と同量注入した。
Injected iron oxide: The same amount as in Example 3 was injected into heavy oil by using the one used in Example 4.

性能比較項目:実施例3と同じ 第6表に試験結果を示した。この結果から明らかなよう
に、石油コークスを燃焼するボイラに対しても、本発明
の酸化鉄は極めて優れた性能を発揮した。
Performance comparison item: same as in Example 3 Table 6 shows the test results. As is clear from this result, the iron oxide of the present invention exhibited extremely excellent performance even for a boiler burning petroleum coke.

尚、本発明の酸化鉄を粉体状で石油コークス粉と混合し
た場合についても試験したところ、C重油中へ注入した
場合とほぼ同等の効果が認められた。ただこの方法では
酸化鉄粉末の注入量を制御するのが実用上困難である
上、粉末の輸送、取扱いなどの点でオイルスラリ状のも
のに比べ劣ることが判明した。
When the iron oxide of the present invention was mixed in powder form with petroleum coke powder, it was also tested, and it was confirmed that the same effect as when the iron oxide was injected into C heavy oil was obtained. However, it was found that it is practically difficult to control the injection amount of iron oxide powder by this method, and it is inferior to the oil slurry type in terms of powder transportation and handling.

(実施例6) 本発明の酸化物を重油燃焼ボイラのガス側で発生する腐
食(例えばボイラの過熱器管では燃焼灰中に含まれてい
るV,Na 及びS化合物によつて加速酸化腐食を受け、
又排ガス中に含まれているSO3が空気予熱器などの低温
部へ硫酸となつて凝縮付着して構成材料を酸腐食させ
る)対策として常用されているMg系化合物(Mg(OH)2,M
gCO3,MgO)中に添加した場合の実施例を説明する。
(Example 6) Corrosion of the oxide of the present invention generated on the gas side of a heavy oil combustion boiler (for example, accelerated oxidation corrosion by V, Na and S compounds contained in combustion ash in a superheater tube of a boiler) received,
In addition, the SO 3 contained in the exhaust gas is used as a measure against Mg compounds (Mg (OH) 2 , M
An example in the case of being added to gCO 3 , MgO) will be described.

使用したボイラ第2図のものと同じもので、アスフアル
ト貯蔵タンク21中にC重油を入れ、酸化鉄オイルスラ
リタンク24中に酸化鉄とMg(OH)2の混合オイルスラリ
を入れた。酸化鉄オイルスラリーの組成は実施例4に使
用したものを用いMg(OH)2中にFe2O3 として重量2%に
なるように調整した。Mg(OH)2は0.1μmの粒度が全
体の80%で残りの20%は0.7〜1.2μmのもの
である。
The boiler used was the same as that shown in FIG. 2, and the heavy oil C was put in the asphalt storage tank 21, and the mixed oil slurry of iron oxide and Mg (OH) 2 was put in the iron oxide oil slurry tank 24. The composition of the iron oxide oil slurry was the same as that used in Example 4 and was adjusted so that the weight of Fe 2 O 3 in Mg (OH) 2 was 2%. Mg (OH) 2 has a particle size of 0.1 μm of 80% of the whole and the remaining 20% has a particle size of 0.7 to 1.2 μm.

又、Mg(OH)2 オイルスラリの組成は次の通りである。The composition of the Mg (OH) 2 oil slurry is as follows.

この実施例における試験条件は次の通りである。 The test conditions in this example are as follows.

供試ボイラ:実施例4と同じ 燃 料:C重油(S:1.8%,V:63ppm,N
a:17ppm) 使用した添加剤の種類 添加剤注入量:燃料中のV含有量に対し、Mg/V=1.
5(重量比)の割合いで燃料中へ注入した。
Test boiler: Same as in Example 4 Fuel: C heavy oil (S: 1.8%, V: 63 ppm, N
a: 17ppm) Type of additive used Additive injection amount: Mg / V = 1.
It was injected into the fuel at a ratio of 5 (weight ratio).

性能調査項目 ボイラ伝熱管上に付着しているデボジットの融点測定 排ガス中のNOx及びSO3量の測定 (試験結果) 第7表は6カ月間に亘つて、供試添加剤を注入した場合
の結果を示したものである。Mg(OH)2のみの注入では伝
熱管上のデボジツトの融点は確実に上昇して、デボジツ
ト中に含まれているS,V,Na化合物の腐食性を抑制し
ているが、注入期間が長くなると排ガス中のNOx量が増
加する欠点がある。この原因は白色のMgO{Mg(OH)2が過
熱されてMgOとなる}が火壁管表面を覆つて白色炉壁管
となるため、輻射吸収熱が減少してその分燃焼領域が高
温状態を維持する結果、サーマルNOxの発生が増加した
ためである。
Performance investigation item Measurement of melting point of Devogit adhering to the boiler heat transfer tube Measurement of NOx and SO 3 amounts in exhaust gas (test result) Table 7 shows the case where the test additive was injected over 6 months. The results are shown. Injecting only Mg (OH) 2 surely raises the melting point of the divodyt on the heat transfer tube and suppresses the corrosiveness of S, V, and Na compounds contained in the divodyt, but the injection period is long. Then, there is a drawback that the amount of NOx in the exhaust gas increases. The cause of this is that white MgO {Mg (OH) 2 is overheated to become MgO} covers the surface of the fire wall tube and becomes a white furnace wall tube, so the radiation absorption heat decreases and the combustion area is in a high temperature state accordingly. This is because the generation of thermal NOx increased as a result of maintaining the above.

これに対し、酸化鉄を含ませておくと、MgOによる白色
化が抑制され、前記現象が抑制されている。特に本発明
の酸化鉄を含んでいるMg(OH)2は針状酸化物添加のもの
に比べさらに有効であり、添加量が少ないためMg(OH)2
のデポジツトの融点上昇効果はそのまま利用でき、MgO
の着色によつてサーマルNOxの抑制を完全に果してい
る。針状酸化鉄に比べ板状や環状酸化鉄は微細ではある
うえ平板としての機能を有しているためMgOの着色化に
対し、針状のものより有効であることが判明した。又SO
3発生量に対してもよくその効果が認められている。
On the other hand, when iron oxide is included, whitening due to MgO is suppressed and the above phenomenon is suppressed. In particular Mg (OH) 2 containing iron oxide of the present invention is more effective than that of adding acicular oxide, since the amount added is less Mg (OH) 2
The effect of increasing the melting point of the deposit can be used as it is.
Staining of thermal NOx is completely achieved by coloring. It was found that plate-like and cyclic iron oxides are more effective than needle-like ones for coloring MgO because they are finer than acicular iron oxides and have a function as a flat plate. Again SO
3 The effect is well recognized for the amount generated.

(実施例7) 第4図は本発明の酸化鉄を石炭燃料へ混合させたボイラ
の概要を示したものである。石炭は微粉状となつて、ボ
イラ炉内41へ投入されて燃焼し、高温の燃焼ガスは過
熱器42,42′,42″及び再熱器43,43′、節
炭器44を通り、空気予熱器5で空気と熱交換を行い、
電気集じん装置6を経て煙突7から外部へ排煙される。
8は燃焼用空気の取入部で空気予熱器5で加熱され石炭
の燃焼用に使用される。ボイラ炉内の49は燃焼ガスの
流れを示し、40は石炭灰の取出し部を示したものであ
る。
(Example 7) Fig. 4 shows an outline of a boiler in which iron oxide of the present invention is mixed with coal fuel. The coal is made into a fine powder and is put into the boiler furnace 41 and burned, and the high-temperature combustion gas passes through the superheaters 42, 42 ', 42 ", the reheaters 43, 43', and the economizer 44, Preheater 5 exchanges heat with air,
Smoke is exhausted from the chimney 7 to the outside through the electric dust collector 6.
Reference numeral 8 is a combustion air intake portion, which is heated by the air preheater 5 and used for combustion of coal. Reference numeral 49 in the boiler furnace indicates a flow of combustion gas, and 40 indicates a coal ash take-out portion.

試験条件 供試ボイラ:蒸発量 600t/h 燃 料:第8表に示す石炭を使用した。又この石
炭の燃焼灰の化学組成は第9表に示した。
Test conditions Test boiler: Evaporation amount 600t / h Fuel: Coal shown in Table 8 was used. The chemical composition of the combustion ash of this coal is shown in Table 9.

注入した酸化鉄:実施例3と同じ。但し酸化鉄を添加
する場合には実施例1の水スラリとして石炭粉末に散布
した酸化鉄の添加量は300〜500ppm(石炭量に対
し)の割合となるようにしたが、実際には200〜10
00ppmの範囲であつた。
Injected iron oxide: same as in Example 3. However, when iron oxide was added, the addition amount of iron oxide sprinkled on the coal powder as the water slurry of Example 1 was adjusted to a ratio of 300 to 500 ppm (based on the amount of coal), but actually 200 to 10
It was in the range of 00 ppm.

性能比較項目 実施例3と同じ 第10表に試験結果を要約したが、本実施例でも無添加
の場合の測定値を100としその比で示した。この結果
から明らかなように、本発明の酸化鉄は石油系燃料を使
用するボイラの場合同様な効果が認められた。すなわち
針状の酸化鉄を注入しても、石炭の燃焼を促進し排ガス
中の未燃炭素量を少くすると共にSO3,NOxの発生を抑制
し、電気集じん効率を向上させているが、板状及び環状
酸化鉄ではそれらの効果が一段と向上しているのが認め
られる。
Performance Comparison Items The test results are summarized in Table 10 which is the same as in Example 3. In this example, the measured value in the case of no addition was set as 100 and shown as the ratio. As is clear from these results, the iron oxide of the present invention was found to have the same effect in the case of a boiler using petroleum-based fuel. That is, even if needle-shaped iron oxide is injected, the combustion of coal is promoted, the amount of unburned carbon in the exhaust gas is reduced, the generation of SO 3 and NOx is suppressed, and the electric dust collection efficiency is improved. It is recognized that the effects of plate-shaped and cyclic iron oxides are further improved.

石炭灰の電気抵抗は一般に高く、石油系燃料灰に比し捕
集しにくいのが普通であるが酸化鉄の注入によつて石炭
灰中に抵抗の低い酸化鉄が混入すると共に、酸化鉄の触
媒作用によつて排ガス中のSO2がSO3に酸化され、これが
酸化鉄粉末の表面にのみ付着し、石炭灰の抵抗値を下げ
電気集じん装置の効率を向上させたものと考えられる。
酸化鉄注入によるNOx,SO3発生量の低下は石油系燃料の
実施例で述べたものと同様な機構によるものと考えられ
る。
The electric resistance of coal ash is generally high, and it is usually difficult to collect it as compared with petroleum fuel ash, but the injection of iron oxide mixes iron oxide with low resistance into the coal ash, and It is considered that the catalytic action oxidizes SO 2 in the exhaust gas into SO 3 , which adheres only to the surface of the iron oxide powder, lowering the resistance value of the coal ash and improving the efficiency of the electrostatic precipitator.
The decrease in NOx and SO 3 generation due to iron oxide injection is considered to be due to the same mechanism as described in the examples of petroleum-based fuels.

〔発明の効果〕 本発明は、長期間連続使用しても運転経費の安い酸化鉄
を使用する際、従来の鉄酸化物を使用した場合の下記の
欠点すなわち、水溶液中及び燃料中における均一分散
性の悪さ、これらに多量の酸化鉄を加えると粘度が上
昇するため、燃料配管への注入時に大きな動力を必要と
すること、又水溶液中や燃料中に添加している酸化鉄
が長期間の保管中にその一部分が容器の底部に沈降した
際、泥状となつて固着し再分散させにくい、などの取扱
上の欠点を改善する効果を奏し、更にボイラなどへ従来
の酸化鉄を燃料中へ注入した場合、期待される下記の問
題点、すなわち、燃料の燃焼促進効果の向上、燃焼
ガス中で生成するNOx発生量の抑制効果の向上、燃焼
排ガス中に含まれているダストの電気集じん装置での捕
集効率の向上、さらにボイラ炉内に脱硝用触媒が設置
されている場合はこの触媒機能に悪影響を与えないのみ
ならず、機能を向上させるなどの効果を奏する。
[Advantages of the Invention] The present invention has the following drawbacks when conventional iron oxides are used when using iron oxide, which has a low operating cost even when continuously used for a long period of time, namely, uniform dispersion in an aqueous solution and a fuel. Poor performance, because adding a large amount of iron oxide to these increases the viscosity, so a large amount of power is required when injecting into the fuel pipe, and the iron oxide added to the aqueous solution or fuel may not be used for a long time. When a part of it settles on the bottom of the container during storage, it has the effect of improving handling defects such as sticking as a mud and making it difficult to re-disperse. When injected into a fuel cell, the following problems are expected: improvement of the combustion promotion effect of fuel, improvement of the effect of suppressing the amount of NOx generated in combustion gas, and collection of dust contained in combustion exhaust gas. Improved collection efficiency with dust collectors Furthermore, when a denitration catalyst is installed in the boiler furnace, not only does this catalyst function not be adversely affected, but the function is improved.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第4図は本発明の実施例において採用したフロ
ーを示す図、第5図〜第7図は酸化鉄結晶の電子顕微鏡
写真で、第5図が本発明で使用する板状結晶、第6図が
同じく環状結晶、第7図が従来の酸化鉄で針状結晶をそ
れぞれ示す。
1 to 4 are diagrams showing a flow adopted in the embodiment of the present invention, FIGS. 5 to 7 are electron micrographs of iron oxide crystals, and FIG. 5 is a plate crystal used in the present invention. 6 shows the same ring-shaped crystal, and FIG. 7 shows the conventional iron oxide needle-shaped crystal.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】微細な酸化鉄よりなり、その形状が板状又
は板状の中央部に貫通孔を有する環状であることを特徴
とする燃料添加剤。
1. A fuel additive comprising fine iron oxide and having a plate-like shape or an annular shape having a through hole in the center of the plate-like shape.
【請求項2】板状及び環状酸化鉄をMg化合物中に混入し
てなることを特徴とする燃料添加剤。
2. A fuel additive comprising tabular and cyclic iron oxides mixed in an Mg compound.
【請求項3】板状又は環状酸化鉄を水スラリ又はオイル
スラリとして石油系及び石炭燃料中に混入することを特
徴とする上記添加剤の使用方法。
3. A method of using the above-mentioned additive, which comprises mixing plate-like or cyclic iron oxide as water slurry or oil slurry into petroleum-based and coal fuels.
JP10774986A 1986-05-13 1986-05-13 Iron oxide for fuel additive and method of using the same Expired - Lifetime JPH0633373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10774986A JPH0633373B2 (en) 1986-05-13 1986-05-13 Iron oxide for fuel additive and method of using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10774986A JPH0633373B2 (en) 1986-05-13 1986-05-13 Iron oxide for fuel additive and method of using the same

Publications (2)

Publication Number Publication Date
JPS62265391A JPS62265391A (en) 1987-11-18
JPH0633373B2 true JPH0633373B2 (en) 1994-05-02

Family

ID=14466994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10774986A Expired - Lifetime JPH0633373B2 (en) 1986-05-13 1986-05-13 Iron oxide for fuel additive and method of using the same

Country Status (1)

Country Link
JP (1) JPH0633373B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012039429A1 (en) * 2010-09-24 2012-03-29 株式会社マリネックス Water-mixed fuel and method for producing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104640960B (en) * 2012-07-26 2019-02-12 高效燃料解决方案有限责任公司 Molecular dimension fuel additive main body
JP7240254B2 (en) * 2019-05-29 2023-03-15 日工株式会社 Method for treating woody tar-containing wastewater generated at a woody biomass power generation facility

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012039429A1 (en) * 2010-09-24 2012-03-29 株式会社マリネックス Water-mixed fuel and method for producing same
JP2012067188A (en) * 2010-09-24 2012-04-05 Marinekkus:Kk Water-mixed fuel and method for producing the same

Also Published As

Publication number Publication date
JPS62265391A (en) 1987-11-18

Similar Documents

Publication Publication Date Title
Zou et al. Evaluation of catalytic combustion of pulverized coal for use in pulverized coal injection (PCI) and its influence on properties of unburnt chars
US3692503A (en) Activated manganese containing additive for fuels
US8088184B2 (en) High flash point additives for treating carbon-based fuels
JPS6348392A (en) Method of controlling clinker ash of coal exhaust gas dust
AU2004231173A1 (en) Mixed metal catalyst additive and method for use in hydrocarbonaceous fuel combustion system
CN1064994C (en) Sulfur-immobilizing coal-saving additive
KR20190125103A (en) Additive composition for solid fuel
US20130199426A1 (en) Increasing the efficiency of combustion processes
JPH0413798A (en) Fuel additive
JPH0633373B2 (en) Iron oxide for fuel additive and method of using the same
US4428310A (en) Phosphated alumina as slag modifier
US3514273A (en) Fuel oil additive
JPS5824478B2 (en) How to burn fuel
EP0349548A1 (en) Process for removing sulfur gases from a combustion gas
US20110232548A1 (en) Method for improving the efficiency of heat transfer in a furnace
JPH0560516B2 (en)
JPH0579117B2 (en)
JPH0768533B2 (en) Solid fuel combustion method
JP2004332972A (en) Combustion method of pulverized coal
JPS6327598A (en) Combustion of emulsion fuel composed of ultra-heavy oil and water
JP3609119B2 (en) Fuel additive and fuel composition containing the same
JPH0699697B2 (en) Powder fuel and manufacturing method thereof
JPH0560517B2 (en)
WO2022224986A1 (en) Unburnt carbon reduction method and heating method using ferric oxide
JPH0362754B2 (en)