JP7240254B2 - Method for treating woody tar-containing wastewater generated at a woody biomass power generation facility - Google Patents

Method for treating woody tar-containing wastewater generated at a woody biomass power generation facility Download PDF

Info

Publication number
JP7240254B2
JP7240254B2 JP2019099891A JP2019099891A JP7240254B2 JP 7240254 B2 JP7240254 B2 JP 7240254B2 JP 2019099891 A JP2019099891 A JP 2019099891A JP 2019099891 A JP2019099891 A JP 2019099891A JP 7240254 B2 JP7240254 B2 JP 7240254B2
Authority
JP
Japan
Prior art keywords
tar
power generation
burner
woody
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019099891A
Other languages
Japanese (ja)
Other versions
JP2020193764A (en
Inventor
雄司 今田
裕樹 北野
Original Assignee
日工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日工株式会社 filed Critical 日工株式会社
Priority to JP2019099891A priority Critical patent/JP7240254B2/en
Publication of JP2020193764A publication Critical patent/JP2020193764A/en
Application granted granted Critical
Publication of JP7240254B2 publication Critical patent/JP7240254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)
  • Incineration Of Waste (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、木質バイオマス発電施設にて木質系バイオマスを熱分解して生成した可燃性の熱分解ガスを精製処理するにあたり、副産物として発生する木質系のタール含有廃水の処理方法に関する。 TECHNICAL FIELD The present invention relates to a method for treating woody tar-containing wastewater generated as a by-product when purifying combustible pyrolysis gas generated by pyrolyzing woody biomass in a woody biomass power generation facility.

資源の有効利用として、廃木材や間伐材などの木質系のバイオマスをガス化炉にて無酸素あるいは低酸素下で熱分解して水素やメタンなどを含んだ可燃性の熱分解ガスを生成し、該可燃性の熱分解ガスを精製処理した上でガスエンジン等にて燃焼させて発電に利用する木質バイオマス発電が知られている。 As an effective use of resources, woody biomass such as waste wood and thinned wood is thermally decomposed in a gasification furnace in an oxygen-free or low-oxygen environment to generate combustible pyrolysis gas containing hydrogen and methane. Also known is woody biomass power generation in which the combustible pyrolysis gas is purified and then combusted in a gas engine or the like for use in power generation.

なお、熱分解ガスの精製処理時には副産物として多量のタール含有廃水が発生するため、従来、回収した前記タール含有廃水を産業廃棄物として廃棄処理したり、高温に加熱維持した燃焼処理炉に投入して焼却処理するなどしている(特許文献1参照)。 In addition, since a large amount of tar-containing wastewater is generated as a by-product during the purification process of pyrolysis gas, the collected tar-containing wastewater has conventionally been disposed of as industrial waste or put into a combustion treatment furnace heated and maintained at a high temperature. are incinerated (see Patent Document 1).

また、木質系のタールを単に産廃として廃棄処理したり、焼却処理するのではなく、有価物として利用する一例として、本出願人は、前記タールを予熱することでバーナ燃料として燃焼可能とし、ボイラーやドライヤ等の加熱や乾燥に利用可能なバーナ装置を提案している(特許文献2参照)。 In addition, as an example of utilizing woody tar as a valuable resource instead of simply disposing of it as industrial waste or incinerating it, the present applicant has made it possible to burn the tar as burner fuel by preheating it, and We have proposed a burner device that can be used for heating and drying such as a dryer (see Patent Document 2).

特開2008-25876号公報JP 2008-25876 A 特開2010-91198号公報JP 2010-91198 A

しかしながら、現状、重油やプロパンガス等の化石燃料に代えて木質系のタールをバーナ燃料等として有効利用しようとするケースは少なく、多量に余ってしまっている。したがって、前記のように廃棄処理するか、燃焼処理炉等に持ち込んで焼却処理するしかないものの、産廃として廃棄処理するには多額の処理費用が掛かり、また燃焼処理炉での焼却時にも多量の化石燃料を要してそれなりに費用が掛かるため、化石燃料の使用量をできるだけ抑えられて効率よく処理できる処理方法が望まれる。 However, at present, there are few cases where woody tar is effectively used as burner fuel in place of fossil fuels such as heavy oil and propane gas, and a large amount of tar is left over. Therefore, although there is no choice but to dispose of it as described above or to bring it into a combustion treatment furnace and incinerate it, it costs a lot of money to dispose of it as industrial waste, and a large amount of waste is also incinerated in a combustion treatment furnace. Since fossil fuels are required and costs accordingly, it is desirable to have a treatment method that can efficiently treat the amount of fossil fuels used as much as possible.

本発明は上記の点に鑑み、木質バイオマス発電施設にて発生する木質系のタール含有廃水を効率よく処理可能な処理方法を提供することを課題とする。 In view of the above points, an object of the present invention is to provide a treatment method capable of efficiently treating woody tar-containing wastewater generated at a woody biomass power generation facility.

上記課題を解決するために、本発明者らは、本出願人が以前提案した木質系のタールを燃料とするバーナ装置に着目し、該バーナ装置を燃焼処理炉のバーナに採用すれば、バイオマス発電施設にて発生するタール含有廃水に含まれるタール成分を燃焼処理炉のバーナ燃料として有効利用でき、化石燃料の使用量を低減しながらもタール含有廃水を効率よく処理できるのではないかと考え、本発明に至ったものである。 In order to solve the above problems, the present inventors focused on a burner device using woody tar as fuel, which was previously proposed by the present applicant. We thought that the tar component contained in the tar-containing wastewater generated at the power plant could be effectively used as burner fuel for the combustion treatment furnace, and that the tar-containing wastewater could be treated efficiently while reducing the amount of fossil fuels used. The inventors have arrived at the present invention.

即ち、本発明に係る請求項1記載の木質バイオマス発電施設にて発生する木質系のタール含有廃水の処理方法では、タール含有廃水をタンクに貯蔵する廃水貯蔵工程と、貯蔵したタール含有廃水を比重差によって重質タールと含水軽質タールとに分離する比重分離工程と、該比重分離した重質タールと含水軽質タールとを個別のタンクに貯蔵するタール貯蔵工程と、前記含水軽質タールを加熱して水分を蒸発させて軽質タールとタール揮発成分を含んだ水蒸気とに分離する加熱分離工程と、前記重質タールを燃焼させるバーナを備えた燃焼処理炉の炉本体内に前記軽質タールと水蒸気とを個別に導入して燃焼処理するタール燃焼処理工程と、前記バーナに供給する燃焼用空気を所定温度に予熱する燃焼用空気予熱工程とを有し、タール含有廃水から分離した重質タールを所定温度まで加熱し、予熱した燃焼用空気を前記燃焼処理炉のバーナに供給しながら重質タールをバーナの燃料として燃焼しつつ、含水軽質タールから分離した軽質タールと水蒸気とを前記炉本体内に導入して燃焼処理することを特徴としている。 That is, in the method for treating woody tar-containing wastewater generated in a woody biomass power generation facility according to claim 1 of the present invention, there is provided a wastewater storage step of storing tar-containing wastewater in a tank, and a specific gravity of the stored tar-containing wastewater. A specific gravity separation step of separating heavy tar and water-containing light tar according to the difference, a tar storage step of storing the separated heavy tar and water-containing light tar in separate tanks, and heating the water-containing light tar. A heat separation step of evaporating water to separate light tar and water vapor containing tar volatile components, and a combustion treatment furnace equipped with a burner for burning the heavy tar, wherein the light tar and water vapor are placed in a furnace body. and a combustion air preheating step of preheating the combustion air supplied to the burner to a predetermined temperature. While supplying preheated combustion air to the burner of the combustion treatment furnace, the heavy tar is burned as fuel for the burner, and the light tar separated from the water-containing light tar and steam are introduced into the furnace body. It is characterized by combustion treatment.

また、本発明に係る請求項2記載の木質バイオマス発電施設にて発生する木質系のタール含有廃水の処理方法では、前記燃焼処理炉の予熱運転時には、前記木質バイオマス発電施設にて生成した発電用の熱分解ガスを前記燃焼処理炉の炉本体内に吹き込んで補助燃料として燃焼させることを特徴としている。 Further, in the method for treating woody tar-containing wastewater generated in a woody biomass power generation facility according to claim 2 of the present invention, during preheating operation of the combustion treatment furnace, is blown into the furnace body of the combustion treatment furnace and burned as an auxiliary fuel.

また、本発明に係る請求項3記載の木質バイオマス発電施設にて発生する木質系のタール含有廃水の処理方法では、前記バーナの燃焼用空気を燃焼処理炉から導出される排ガスと熱交換させて予熱することを特徴としている。 Further, in the method for treating woody tar-containing wastewater generated in a woody biomass power generation facility according to claim 3 of the present invention, the combustion air of the burner is heat-exchanged with the exhaust gas discharged from the combustion treatment furnace. It is characterized by preheating.

また、本発明に係る請求項4記載の木質バイオマス発電施設にて発生する木質系のタール含有廃水の処理方法では、含水軽質タールから加熱分離した水蒸気を前記燃焼処理炉の炉本体の接線方向から導入することを特徴としている。 Further, in the method for treating woody tar-containing wastewater generated in a woody biomass power generation facility according to claim 4 of the present invention, steam separated by heating from water-containing light tar is separated from the tangential direction of the furnace body of the combustion treatment furnace. It is characterized by introducing

本発明に係る請求項1記載の木質バイオマス発電施設にて発生する木質系のタール含有廃水の処理方法によれば、タール含有廃水をタンクに貯蔵する廃水貯蔵工程と、貯蔵したタール含有廃水を比重差によって重質タールと含水軽質タールとに分離する比重分離工程と、該比重分離した重質タールと含水軽質タールとを個別のタンクに貯蔵するタール貯蔵工程と、前記含水軽質タールを加熱して水分を蒸発させて軽質タールとタール揮発成分を含んだ水蒸気とに分離する加熱分離工程と、前記重質タールを燃焼させるバーナを備えた燃焼処理炉の炉本体内に前記軽質タールと水蒸気とを個別に導入して燃焼処理するタール燃焼処理工程と、前記バーナに供給する燃焼用空気を所定温度に予熱する燃焼用空気予熱工程とを有し、タール含有廃水から分離した重質タールを所定温度まで加熱し、予熱した燃焼用空気を前記燃焼処理炉のバーナに供給しながら重質タールをバーナの燃料として燃焼しつつ、含水軽質タールから分離した軽質タールと水蒸気とを前記炉本体内に導入して燃焼処理するので、タール含有廃水から分離回収した可燃性の重質タールを燃焼処理炉のバーナ用の燃料として有効利用できる一方、残りの難燃性の含水軽質タールも前記燃焼処理炉の炉本体内に導入することで燃焼処理でき、木質バイオマス発電施設にて発生するタール含有廃水を重油等の化石燃料をできるだけ使用することなく効率よく処理できる。 According to the method for treating woody tar-containing wastewater generated in a woody biomass power generation facility according to claim 1 of the present invention, the wastewater storage step of storing the tar-containing wastewater in a tank and the specific gravity of the stored tar-containing wastewater A specific gravity separation step of separating heavy tar and water-containing light tar according to the difference, a tar storage step of storing the separated heavy tar and water-containing light tar in separate tanks, and heating the water-containing light tar. A heat separation step of evaporating water to separate light tar and water vapor containing tar volatile components, and a combustion treatment furnace equipped with a burner for burning the heavy tar, wherein the light tar and water vapor are placed in a furnace body. and a combustion air preheating step of preheating the combustion air supplied to the burner to a predetermined temperature. While supplying preheated combustion air to the burner of the combustion treatment furnace, the heavy tar is burned as fuel for the burner, and the light tar separated from the water-containing light tar and steam are introduced into the furnace body. Therefore, the combustible heavy tar separated and recovered from the tar-containing wastewater can be effectively used as a fuel for the burner of the combustion treatment furnace, while the remaining flame-retardant water-containing light tar is also used for the combustion treatment furnace. Combustion treatment can be performed by introducing it into the furnace body, and tar-containing wastewater generated at a woody biomass power generation facility can be efficiently treated without using fossil fuels such as heavy oil as much as possible.

また、本発明に係る請求項2記載の木質バイオマス発電施設にて発生する木質系のタール含有廃水の処理方法によれば、前記燃焼処理炉の予熱運転時には、前記木質バイオマス発電施設にて生成した発電用の熱分解ガスを前記燃焼処理炉の炉本体内に吹き込んで補助燃料として燃焼させるので、燃焼処理炉の予熱運転時における化石燃料の使用量も低減できる上、早期に予熱運転を完了できてタール含有廃水を効率よく処理できる。また、補助燃料として利用する熱分解ガスは、近傍の木質バイオマス発電施設にて発電用に生成したものを流用するので、比較的簡単にかつ安価に供給できる上、環境負荷の軽減効果も期待できる。 Further, according to the method for treating woody tar-containing wastewater generated in a woody biomass power generation facility according to claim 2 of the present invention, during preheating operation of the combustion treatment furnace, the wastewater generated in the woody biomass power generation facility Since the pyrolysis gas for power generation is blown into the furnace main body of the combustion treatment furnace and burned as auxiliary fuel, the amount of fossil fuel used during the preheating operation of the combustion treatment furnace can be reduced, and the preheating operation can be completed early. can effectively treat tar-containing wastewater. In addition, the pyrolysis gas used as supplementary fuel is diverted from the gas generated for power generation at a nearby woody biomass power generation facility, so it can be supplied relatively easily and cheaply, and the effect of reducing the environmental load can be expected. .

また、本発明に係る請求項3記載の木質バイオマス発電施設にて発生する木質系のタール含有廃水の処理方法によれば、前記バーナの燃焼用空気を燃焼処理炉から導出される排ガスと熱交換させて予熱するので、燃焼処理炉にて発生した排ガスが保有する熱エネルギーを無駄なく有効利用でき、環境負荷を一層軽減することが期待できる。 Further, according to the method for treating woody tar-containing wastewater generated in a woody biomass power generation facility according to claim 3 of the present invention, the combustion air of the burner exchanges heat with the exhaust gas discharged from the combustion treatment furnace. Since the exhaust gas generated in the combustion treatment furnace is heated and preheated, the thermal energy possessed by the exhaust gas generated in the combustion treatment furnace can be effectively used without waste, and further reduction of the environmental load can be expected.

また、本発明に係る請求項4記載の木質バイオマス発電施設にて発生する木質系のタール含有廃水の処理方法によれば、含水軽質タールから加熱分離した水蒸気を前記燃焼処理炉の炉本体の接線方向から導入するので、水蒸気を炉本体の内壁に沿って旋回させながらバーナからの燃焼ガスと密に接触させることができ、水蒸気に含まれるタール揮発成分を効率よく燃焼処理できる。 Further, according to the method for treating woody tar-containing wastewater generated in a woody biomass power generation facility according to claim 4 of the present invention, steam separated by heating from water-containing light tar is separated from the tangential line of the furnace body of the combustion treatment furnace. Since the steam is introduced from the direction, the steam can be brought into intimate contact with the combustion gas from the burner while swirling along the inner wall of the furnace body, and the tar volatile components contained in the steam can be efficiently burned.

本発明に係る木質バイオマス発電施設にて発生する木質系のタール含有廃水の処理方法のフロー図である。1 is a flowchart of a method for treating woody tar-containing wastewater generated in a woody biomass power generation facility according to the present invention. FIG. 同上の一実施例を示す概略説明図である。FIG. 4 is a schematic explanatory diagram showing one embodiment of the same; 図2の燃焼処理炉の一部切り欠き詳細図である。FIG. 3 is a partially cutaway detailed view of the combustion treatment furnace of FIG. 2; 図3の一部を省略したA-A断面図である。FIG. 4 is a cross-sectional view taken along the line AA with a part of FIG. 3 omitted;

本発明に係る木質系のタール含有廃水の処理方法にあっては、木質バイオマス発電施設にて発生する木質系のタール含有廃水を一時的にタンクに貯蔵する廃水貯蔵工程と、貯蔵したタール含有廃水を適宜の比重分離器にて比較的比重が大きく可燃性の重質タールと比較的比重が小さく水分を多く含んで難燃性の含水軽質タールとに分離する比重分離工程と、該比重分離した重質タールと含水軽質タールとを個別のタンクに貯蔵するタール貯蔵工程とを有する。 In the method for treating woody tar-containing wastewater according to the present invention, a wastewater storage step of temporarily storing woody tar-containing wastewater generated in a woody biomass power generation facility in a tank; is separated into a combustible heavy tar with a relatively large specific gravity and a flame-retardant water-containing light tar with a relatively small specific gravity and a large amount of water in an appropriate specific gravity separator, and the specific gravity separation is performed. and a tar storage step of storing the heavy tar and the water-containing light tar in separate tanks.

また、貯蔵した含水軽質タールを加熱して含有水分を蒸発させてタール揮発成分を若干含む水蒸気と軽質タールとに分離する加熱分離工程と、前記重質タールを燃焼させるバーナを備えた燃焼処理炉の炉本体内に前記水蒸気と軽質タールとを個別に導入して燃焼処理するタール燃焼処理工程と、前記バーナに供給する燃焼用空気(外気)を、重質タールの霧化を促進してバーナ燃料として燃焼させ得る所定温度、例えば略200~300℃程度の高温に予熱する燃焼用空気予熱工程とを有する。 In addition, a heating separation step of heating the stored water-containing light tar to evaporate the contained water to separate it into light tar and steam containing a small amount of tar volatile components, and a combustion treatment furnace equipped with a burner for burning the heavy tar. A tar combustion treatment step in which the water vapor and the light tar are separately introduced into the furnace body and burned, and the combustion air (outside air) supplied to the burner is accelerated to atomize the heavy tar to the burner. and a combustion air preheating step for preheating the air to a predetermined temperature at which it can be combusted as fuel, for example, a high temperature of about 200 to 300°C.

また、タール含有廃水から分離した高粘度の重質タールをバーナ燃料として円滑に供給可能でかつ微粒化しやすい程度の粘度に調整し得る所定温度、例えば略70~90℃程度に加熱し、予熱した前記燃焼用空気(予熱空気)を前記燃焼処理炉のバーナに供給しながら重質タールをバーナの燃料として燃焼しつつ、含水軽質タールから分離した軽質タールと水蒸気とを高温雰囲気下の前記炉本体内に個別に導入して燃焼処理する。 In addition, the high-viscosity heavy tar separated from the tar-containing wastewater is heated and preheated to a predetermined temperature, for example, about 70 to 90° C., which can be smoothly supplied as a burner fuel and can be adjusted to a viscosity that is easily atomized. While supplying the combustion air (preheated air) to the burner of the combustion treatment furnace, the heavy tar is burned as fuel for the burner, and the light tar separated from the water-containing light tar and water vapor are separated from the water-containing light tar into the furnace body in a high-temperature atmosphere. It is introduced separately into the inside and is combusted.

前記燃焼処理炉としては、例えば、内壁面に蓄熱性を有するキャスターを周設した略円筒状の炉本体を備え、該炉本体の基端部には重質タールを圧縮空気と共に噴射する二流体方式の噴射ノズルを具備したバーナと、重油やプロパンガス等の化石燃料を使用する予熱バーナとを並設する。 As the combustion treatment furnace, for example, it is equipped with a substantially cylindrical furnace body in which casters having heat storage properties are provided around the inner wall surface, and a two-fluid system that injects heavy tar together with compressed air at the base end of the furnace body. A burner equipped with an injection nozzle and a preheating burner that uses fossil fuels such as heavy oil and propane gas are installed side by side.

重質タールは常温下では重油等の化石燃料と比較すると高粘度で難燃性であるため、そのままではバーナ燃料として利用することは難しいものの、重質タールを略70~90℃程度に加熱維持して粘度を下げた上で、二流体方式の噴射ノズルを採用して圧縮空気と共に噴射することで微粒化しつつ、燃焼用空気を適宜の加熱手段にて略200~300℃程度の高温に予熱することで重質タールの霧化を促進し、難燃性の重質タールをバーナ燃料として安定して燃焼可能とする。 Heavy tar is more viscous and flame-retardant than fossil fuels such as heavy oil at room temperature, so it is difficult to use it as burner fuel as it is, but the heavy tar is heated and maintained at about 70-90°C. After reducing the viscosity, a two-fluid injection nozzle is adopted to inject it with compressed air to atomize it, and the combustion air is preheated to a high temperature of about 200 to 300 ° C by an appropriate heating means. By doing so, atomization of heavy tar is promoted, and flame-retardant heavy tar can be stably burned as burner fuel.

また、好ましくは、前記燃焼処理炉を木質バイオマス発電施設の近傍に併設し、前記燃焼処理炉の予熱運転時に、前記木質バイオマス発電施設にて発電用に生成した熱分解ガスの一部を前記燃焼処理炉の炉本体内に吹き込んで補助燃料として燃焼させるようにしてもよく、これにより予熱運転時における化石燃料の使用量も低減できる上、早期に予熱運転を完了できてタール含有廃水を効率よく処理できる。 Further, preferably, the combustion treatment furnace is installed in the vicinity of the woody biomass power generation facility, and a part of the pyrolysis gas generated for power generation in the woody biomass power generation facility is burned during the preheating operation of the combustion treatment furnace. It may be blown into the furnace body of the treatment furnace and burned as an auxiliary fuel, thereby reducing the amount of fossil fuel used during preheating operation, and preheating operation can be completed early to efficiently dispose of tar-containing wastewater. can be processed.

さらに、好ましくは、前記バーナ用の燃焼用空気(外気)を予熱するにあたり、前記燃焼処理炉から導出される排ガスと熱交換させて予熱するようにしてもよく、これにより燃焼処理炉にて発生した高温の排ガスが保有する熱エネルギーを無駄なく有効利用できる。 Further, preferably, when preheating the combustion air (outside air) for the burner, the heat may be exchanged with the exhaust gas discharged from the combustion treatment furnace to preheat the air. The thermal energy possessed by the high-temperature exhaust gas can be used effectively without waste.

またさらに、好ましくは、含水軽質タールから加熱分離した水蒸気を前記燃焼処理炉の炉本体の接線方向から導入するようにしてもよく、これにより水蒸気を炉本体の内壁に沿って旋回させながらバーナからの燃焼ガスと密に接触させることができ、水蒸気に含まれるタール揮発成分を効率よく燃焼処理できる。 Furthermore, preferably, the steam separated by heating from the water-containing light tar may be introduced from the tangential direction of the furnace main body of the combustion treatment furnace. can be brought into close contact with the combustion gas, and the tar volatile components contained in the steam can be efficiently burned.

そして、木質バイオマス発電施設にて発生する木質系のタール含有廃水を処理するにあたっては、発生した前記タール含有廃水を廃水貯蔵タンクに随時投入して貯蔵しておく。タール含有廃水は、比較的燃えやすくてバーナ燃料として利用可能な重質タールと、水分を多く含んで比較的燃えにくくバーナ燃料としては不適な含水軽質タールとからなり、前記重質タールは比重が大きい一方、含水軽質タールは比重が小さい特徴を有する。 In treating woody tar-containing wastewater generated in a woody biomass power generation facility, the generated tar-containing wastewater is put into a wastewater storage tank as needed and stored. The tar-containing wastewater consists of heavy tar that is relatively combustible and can be used as burner fuel, and water-containing light tar that contains a large amount of water and is relatively incombustible and is unsuitable as burner fuel. The heavy tar has a specific gravity. On the other hand, water-containing light tar is characterized by a small specific gravity.

前記特徴(比重差)を利用し、前記廃水貯蔵タンクに貯蔵したタール含有廃水を、例えば重力沈降式や遠心分離式等の適宜の比重分離機にて重質タールと含水軽質タールとに分離し、この比重分離した重質タールと含水軽質タールとをそれぞれ個別の貯蔵タンクに貯蔵する。次いで、比重分離した前記含水軽質タールを加熱して含有水分を蒸発させ、軽質タールとタール揮発成分を含んだ水蒸気とに更に分離する。 Utilizing the characteristics (difference in specific gravity), the tar-containing wastewater stored in the wastewater storage tank is separated into heavy tar and water-containing light tar by an appropriate specific gravity separator such as a gravity sedimentation type or a centrifugal separation type. , the heavy tar and the water-containing light tar separated by specific gravity are stored in individual storage tanks. Next, the water-containing light tar that has been separated by specific gravity is heated to evaporate the contained water, and is further separated into light tar and water vapor containing tar volatile components.

そして、燃焼処理炉の予熱バーナを点火し、重油やプロパンガス等の化石燃料を燃焼させ、必要に応じて近傍の木質バイオマス発電施設にて発電用に生成した熱分解ガスの一部を前記燃焼処理炉の炉本体内に吹き込んで補助燃料として燃焼させて燃焼処理炉の炉本体内を予熱していき、炉本体内がある程度予熱されれば前記予熱バーナを消火してバーナの燃焼に切り替える。 Then, the preheating burner of the combustion treatment furnace is ignited to burn fossil fuels such as heavy oil and propane gas, and if necessary, a part of the pyrolysis gas generated for power generation at the nearby woody biomass power generation facility is burned. The fuel is blown into the furnace body of the treatment furnace and burned as auxiliary fuel to preheat the furnace body of the combustion treatment furnace.

このとき、前記バーナでは重油等の化石燃料と比較すれば高粘度で難燃性の重質タールを燃料とするため、前記重質タールを加熱して粘度を低下させた上で圧縮空気と共に噴射して微粒化しつつ、燃焼用空気も予熱することで噴射した前記重質タールを霧化しながら安定燃焼させる。 At this time, since the burner uses heavy tar, which is highly viscous and flame-retardant compared to fossil fuels such as heavy oil, the heavy tar is heated to reduce its viscosity and then injected together with compressed air. The heavy tar is atomized and stably burned by preheating the combustion air while atomizing the tar.

そして、炉本体内の温度がタール揮発成分や軽質タールを完全燃焼可能な略850℃程度になれば、含水軽質タールから加熱分離した若干のタール揮発成分を含む水蒸気と軽質タールとを前記炉本体内へと個別に導入して燃焼処理する。 When the temperature in the furnace body reaches approximately 850° C., at which the volatile components of tar and light tar can be completely combusted, steam containing some volatile components of tar separated from the water-containing light tar by heating and light tar are added to the furnace body. It is introduced separately into the inside and burned.

このように、木質バイオマス発電施設にて発生するタール含有廃水を可燃性の重質タールと難燃性の含水軽質タールとにその比重差を利用して比重分離し、重質タールは加熱昇温した上で微粒化すると共に、燃焼用空気も予熱することによって霧化を促進し、燃焼処理炉のバーナの燃料として有効に利用可能とする一方、含水率が高くてバーナ燃料としては不適な含水軽質タールは加熱してタール揮発成分を含んだ水蒸気と軽質タールとに更に加熱分離した上で、前記バーナからの燃焼ガスが供給される高温雰囲気下の燃焼処理炉の炉本体内に個別に導入することで効率よく燃焼処理でき、重油等の化石燃料の使用量を低減しながらも多くのタール含有廃水を好適に処理できる。 In this way, tar-containing wastewater generated at a woody biomass power generation facility is separated into combustible heavy tar and flame-retardant water-containing light tar using the difference in specific gravity, and the heavy tar is heated to raise its temperature. In addition to atomization, the combustion air is also preheated to promote atomization, making it possible to effectively use it as fuel for burners in combustion treatment furnaces. The light tar is heated and further heated and separated into steam containing tar volatile components and light tar, and then introduced individually into the furnace body of a combustion treatment furnace under a high-temperature atmosphere to which the combustion gas from the burner is supplied. By doing so, efficient combustion treatment can be performed, and a large amount of tar-containing wastewater can be suitably treated while reducing the amount of fossil fuels such as heavy oil used.

以下、本発明の一実施例を図面に基づいて説明する。 An embodiment of the present invention will be described below with reference to the drawings.

図1は木質バイオマス発電施設にて副産物として発生する木質系のタール含有廃水の処理方法を示したフロー図であって、図1中の一点鎖線で囲んだ木質バイオマス発電1に含まれる、ガス化工程2、ガス精製工程3、発電工程4と、前記ガス精製工程3にて発生するタール含有廃水を燃焼処理する、廃水貯蔵工程5、比重分離工程6、タール貯蔵工程7(含水軽質タール貯蔵工程8、重質タール貯蔵工程9)、加熱分離工程10、タール燃焼処理工程11、燃焼用空気予熱工程12とからなる。 FIG. 1 is a flowchart showing a method for treating woody tar-containing wastewater generated as a by-product at a woody biomass power generation facility. Process 2, gas refining process 3, power generation process 4, wastewater storage process 5 in which tar-containing wastewater generated in gas refining process 3 is combusted, specific gravity separation process 6, tar storage process 7 (hydrous light tar storage process 8. It consists of a heavy tar storage process 9), a heat separation process 10, a tar combustion treatment process 11, and a combustion air preheating process 12.

前記ガス化工程2では、廃木材や間伐材等の木質系のバイオマスを木質バイオマス発電施設のガス化炉にて無酸素下または低酸素下で熱分解して可燃性の熱分解ガスを生成する。また、前記ガス精製工程3では、生成した可燃性の熱分解ガスからガスエンジンでの燃焼時に悪影響を及ぼすタール成分をガス精製機にて除去して精製する。また、前記発電工程4では、精製した熱分解ガスを発電機であるガスエンジンに供給・燃焼させて発電する。 In the gasification step 2, woody biomass such as waste wood and thinned wood is pyrolyzed in an oxygen-free or low-oxygen gasification furnace of a woody biomass power generation facility to generate combustible pyrolysis gas. . In the gas refining step 3, the generated combustible pyrolysis gas is refined by removing tar components that adversely affect combustion in a gas engine by means of a gas purifier. In the power generation step 4, the refined pyrolysis gas is supplied to a gas engine, which is a power generator, and burned to generate power.

また、前記廃水貯蔵工程5では、前記ガス精製工程3にて副産物として発生するタール含有廃水を廃水貯蔵タンクに随時投入して貯蔵する。また、前記比重分離工程6では、前記廃水貯蔵タンクに貯蔵したタール含有廃水を適宜のタイミングで(例えば、廃水貯蔵タンクが略一杯になれば)、水分を多く含んで比較的燃えにくくかつ比重の小さい含水軽質タールと、比較的燃えやすくかつ比重の大きい重質タールとに適宜の比重分離機にて比重分離する。また、前記タール貯蔵工程7のうち、含水軽質タール貯蔵工程8では、タール含有廃水から比重分離した含水軽質タールを含水軽質タール貯蔵タンクに貯蔵し、重質タール貯蔵工程9では、タール含有廃水から比重分離した重質タールを重質タール貯蔵タンクに貯蔵する。 In the wastewater storage step 5, tar-containing wastewater generated as a by-product in the gas refining step 3 is stored in a wastewater storage tank as needed. In the specific gravity separation step 6, the tar-containing wastewater stored in the wastewater storage tank is removed at an appropriate timing (for example, when the wastewater storage tank is almost full). A suitable gravity separator is used to separate the water-containing light tar, which is relatively combustible, and the heavy tar, which has a relatively high specific gravity. In the water-containing light tar storage step 8 of the tar storage step 7, the water-containing light tar separated by specific gravity from the tar-containing wastewater is stored in a water-containing light tar storage tank. Gravity-separated heavy tar is stored in a heavy tar storage tank.

また、前記加熱分離工程10では、含水軽質タール貯蔵タンクに貯蔵した難燃性の含水軽質タールをヒータ等の含水軽質タール加熱手段にて略70~90℃程度に加熱し、含有水分を蒸発させてタール揮発成分を若干含む水蒸気と軽質タールとに更に分離する。また、前記タール燃焼処理工程11では、前記重質タールを燃焼させるバーナを備えた燃焼処理炉の炉本体内に前記軽質タールと水蒸気とを個別に導入して燃焼処理する。また、前記燃焼用空気予熱工程12では、前記燃焼処理炉のバーナに供給する燃焼用空気(外気)を、燃焼処理炉から導出される高温の排ガスと熱交換器にて熱交換させて略200~300℃程度に予熱する。 In the heat separation step 10, the flame-retardant water-containing light tar stored in the water-containing light tar storage tank is heated to about 70 to 90° C. by a water-containing light tar heating means such as a heater to evaporate the contained water. It is further separated into water vapor containing a small amount of tar volatile components and light tar. Further, in the tar combustion treatment step 11, the light tar and steam are separately introduced into a furnace main body of a combustion treatment furnace equipped with a burner for burning the heavy tar, and are burned. Further, in the combustion air preheating step 12, the combustion air (outside air) supplied to the burner of the combustion treatment furnace is heat-exchanged with the high-temperature exhaust gas discharged from the combustion treatment furnace by a heat exchanger to obtain approximately 200 Preheat to ~300°C.

そして、前記重質タール貯蔵工程9にて重質タール貯蔵タンクに貯蔵した重質タールをヒータ等の重質タール加熱手段にて、バーナ燃料として円滑に供給可能でかつ微粒化しやすい程度の粘度に調整し得る、略70~90℃程度に加熱した上で、略200~300℃程度に予熱した前記燃焼用空気(予熱空気)を前記燃焼処理炉のバーナに供給しながら重質タールを前記バーナの燃料として燃焼しつつ、前記加熱分離工程10にて含水軽質タールから加熱分離した軽質タールと水蒸気とを高温雰囲気下にある前記燃焼処理炉の炉本体内に個別に導入して燃焼処理するようにしている。 Then, the heavy tar stored in the heavy tar storage tank in the heavy tar storage step 9 is heated by a heavy tar heating means such as a heater so that it can be smoothly supplied as a burner fuel and has a viscosity that is easily atomized. After heating to about 70 to 90 ° C., which can be adjusted, the combustion air (preheated air) preheated to about 200 to 300 ° C. is supplied to the burner of the combustion treatment furnace, and heavy tar is supplied to the burner. While burning as a fuel, the light tar and water vapor separated by heating from the water-containing light tar in the heat separation step 10 are individually introduced into the furnace main body of the combustion treatment furnace under a high-temperature atmosphere and burned. I have to.

図2は、木質バイオマス発電施設、並びに前記タール燃焼処理工程11で使用する燃焼処理炉及びその付帯装置等の一実施例を示す概略説明図である。図2中の13は木質バイオマス発電施設であって、該木質バイオマス発電施設13内には廃木材や間伐材などの木質系のバイオマスを無酸素あるいは低酸素下で熱分解して可燃性の熱分解ガスを生成するガス化炉14、該ガス化炉14にて生成した熱分解ガスを冷却して不純物であるタール成分を凝縮・除去して精製処理するガス精製機15、精製処理した熱分解ガスを貯蔵する熱分解ガス貯蔵タンク16、貯蔵した熱分解ガスを所定量ずつ供給・燃焼させて発電するガスエンジン17等を備えている。18は前記熱分解ガス貯蔵タンク16から前記ガスエンジン17に熱分解ガスを供給する熱分解ガス供給配管である。 FIG. 2 is a schematic explanatory diagram showing an embodiment of a woody biomass power generation facility, a combustion treatment furnace used in the tar combustion treatment step 11, ancillary equipment, and the like. In FIG. 2, reference numeral 13 denotes a woody biomass power generation facility. In the woody biomass power generation facility 13, woody biomass such as waste wood and thinned wood is thermally decomposed under oxygen-free or low-oxygen conditions to produce combustible heat. A gasification furnace 14 that generates a cracked gas, a gas purifier 15 that cools the pyrolysis gas generated in the gasification furnace 14, condenses and removes tar components as impurities, and performs purification treatment, and pyrolysis that has undergone purification treatment. It is equipped with a pyrolysis gas storage tank 16 for storing gas, a gas engine 17 for supplying and burning the stored pyrolysis gas in predetermined amounts, and generating power. Reference numeral 18 denotes a pyrolysis gas supply pipe for supplying the pyrolysis gas from the pyrolysis gas storage tank 16 to the gas engine 17 .

前記木質バイオマス発電施設13の近傍には、前記ガス精製機15にて熱分解ガスから除去したタール成分を含んだ廃水(タール含有廃水)を貯蔵する廃水貯蔵タンク19を備えていると共に、該廃水貯蔵タンク19に貯蔵したタール含有廃水をバーナ燃料として利用可能な可燃性の重質タールと、含水率が高くてバーナ燃料としては不適な難燃性の含水軽質タールとにそれぞれの比重差を利用して比重分離する、例えば重力沈降式や遠心分離式等の比重分離機20を備えている。 In the vicinity of the woody biomass power generation facility 13, a wastewater storage tank 19 for storing wastewater containing tar components (tar-containing wastewater) removed from the pyrolysis gas by the gas purifier 15 is provided. The difference in specific gravity between combustible heavy tar that can use tar-containing wastewater stored in the storage tank 19 as burner fuel and flame-retardant water-containing light tar that is high in water content and unsuitable as burner fuel is utilized. It is equipped with a specific gravity separator 20 such as a gravity sedimentation type or a centrifugal type, for example.

また、前記木質バイオマス発電施設13の近傍には、前記廃水貯蔵タンク19及び比重分離機20と併せて、該比重分離機20にてタール含有廃水から分離回収した重質タールを貯蔵する重質タール貯蔵タンク21と、含水軽質タールを貯蔵する含水軽質タール貯蔵タンク22と、前記各貯蔵タンク21、22に貯蔵する重質タール及び含水軽質タールを燃焼処理する燃焼処理炉23とを併設している。 In the vicinity of the woody biomass power generation facility 13, together with the wastewater storage tank 19 and the gravity separator 20, a heavy tar for storing heavy tar separated and recovered from the tar-containing wastewater by the gravity separator 20 is stored. A storage tank 21, a water-containing light tar storage tank 22 for storing water-containing light tar, and a combustion treatment furnace 23 for burning the heavy tar and the water-containing light tar stored in the storage tanks 21 and 22 are installed side by side. .

前記燃焼処理炉23は、図2、3に示すように、内壁面に蓄熱性・耐熱性のキャスター24を周設した横置き型で略円筒状の炉本体25を備え、該炉本体25の基端部側には重質タールをコンプレッサ26から供給される圧縮空気と共に微粒化しながら噴射する二流体方式の噴射ノズル27を具備したバーナ28と、化石燃料であるプロバンガスを使用する予熱バーナ29とを備えている。 The combustion treatment furnace 23, as shown in FIGS. A burner 28 equipped with a two-fluid type injection nozzle 27 that injects heavy tar while atomizing it together with compressed air supplied from a compressor 26 on the base end side, and a preheating burner 29 that uses propane gas, which is a fossil fuel. It has

また、前記バーナ28や予熱バーナ29の火炎が形成されて特に高温となる前記炉本体25の基端部側には、含水軽質タールから加熱分離したタール揮発成分を含んだ水蒸気を炉本体25の接線方向より導入する水蒸気導入管30を接続し、炉本体25内に導入した水蒸気が、図4中の矢印にて示すように、炉本体25の内壁に周設した蓄熱性のキャスター24表面に沿って旋回しながら下流方向へと流下する構成としている。これにより、前記水蒸気を高温下でバーナ28からの燃焼ガスと密に接触させることができ、水蒸気中に少量しか含まれていないことで燃焼させることの困難なタール揮発成分を効率よく燃焼処理できる。 Further, on the base end side of the furnace body 25 where the flames of the burner 28 and the preheating burner 29 are formed and the temperature is particularly high, steam containing tar volatile components separated from the water-containing light tar by heating is supplied to the furnace body 25. The steam introduced into the furnace body 25 by connecting the steam introduction pipe 30 introduced from the tangential direction is, as indicated by the arrow in FIG. It is configured to flow down in the downstream direction while turning along. As a result, the steam can be brought into intimate contact with the combustion gas from the burner 28 at a high temperature, and the volatile components of tar, which are difficult to burn due to the small amount contained in the steam, can be efficiently burned. .

なお、本実施例では、図4に示すように、水蒸気導入管30を二本接続しているが、何らこれに限定されず、例えば一本だけにすることもできる。ただし、本実施例のように、炉本体25の円周方向に沿って接続位置を若干ずらして複数接続することにより、図4中の矢印にて示すように、各水蒸気導入管30から導入される水蒸気同士を合流時に撹拌でき、含有するタール揮発成分の燃焼効率の向上が期待できるものとなる。 In this embodiment, as shown in FIG. 4, two steam introduction pipes 30 are connected, but the number is not limited to this, and for example, only one is possible. However, as in the present embodiment, by connecting a plurality of the furnace body 25 with the connection positions slightly shifted along the circumference direction, as shown by the arrows in FIG. It is possible to agitate the water vapor at the time of merging, and an improvement in the combustion efficiency of the contained tar volatile components can be expected.

また、前記水蒸気導入管30の接続位置よりも下流側の前記炉本体25の中間部には、含水軽質タールから加熱分離した軽質タールをコンプレッサ31から供給される圧縮空気と共に微粒化しながら噴射する二流体方式の噴射ノズル32を具備した軽質タール導入管33を接続しており、該軽質タール導入管33から噴射・導入した軽質タールの微粒分が高温下の炉本体25内で霧化し、その状態で前記バーナ28からの燃焼ガスと接触することで効率よく燃焼処理可能な構成としている。 In addition, the light tar separated by heat from the water-containing light tar is injected into the intermediate portion of the furnace body 25 on the downstream side of the connection position of the steam introduction pipe 30 while being atomized together with the compressed air supplied from the compressor 31. A light tar introduction pipe 33 equipped with a fluid type injection nozzle 32 is connected, and fine particles of light tar injected and introduced from the light tar introduction pipe 33 are atomized in the furnace main body 25 under high temperature, and the state thereof. By coming into contact with the combustion gas from the burner 28, efficient combustion treatment is possible.

なお、前記炉本体25の炉長としては、水蒸気中に含まれるタール揮発成分や軽質タールが略850℃程度の高温雰囲気下で完全燃焼可能な程度、例えば炉本体25基端部の水蒸気導入管30から導入される水蒸気や、炉本体25中間部の軽質タール導入管33から導入される軽質タール微粒分が炉本体25内を通過するのに略2秒以上かかる炉長とすると好ましい。 The furnace length of the furnace main body 25 is such that the tar volatile components and light tar contained in the steam can be completely burned in a high temperature atmosphere of about 850° C. It is preferable to set the furnace length so that it takes about 2 seconds or more for the steam introduced from 30 and the light tar fine particles introduced from the light tar introduction pipe 33 in the middle of the furnace body 25 to pass through the furnace body 25 .

また、前記軽質タール導入管33の接続位置よりも更に下流側の炉本体25の終端部側の内壁面には縮径部(絞り部)34を形成しており、図3中の矢印にて示すように、炉本体25の内壁である蓄熱性のキャスター24表面に沿って旋回しながら下流方向へと流下する水蒸気及び軽質タールの混合気の一部が前記縮径部34にぶつかって上流方向へと押し返されることで炉本体25内に不規則な乱流が生じ、これにより前記バーナ28からの燃焼ガスとの接触機会を増やして水蒸気中に含まれるタール揮発成分や軽質タールの燃焼効率の向上を図っている。 A reduced diameter portion (throttled portion) 34 is formed on the inner wall surface of the terminal portion of the furnace body 25 further downstream from the connection position of the light tar introduction pipe 33, and is indicated by the arrow in FIG. As shown, part of the mixture of steam and light tar that flows downstream while swirling along the surface of the heat storage casters 24 that are the inner walls of the furnace body 25 collides with the diameter-reduced portion 34 and moves upstream. By being pushed back into the furnace body 25, an irregular turbulent flow is generated in the furnace body 25, which increases the chance of contact with the combustion gas from the burner 28, and improves the combustion efficiency of tar volatile components and light tar contained in the steam. We are working to improve

図中の35は前記燃焼処理炉23の炉本体25から排ガスを導出する排気ダクトであって、該排気ダクト35の途中には排ガス温度検出用の排ガス温度センサ36と、熱交換器37とを備えている。図中の38は前記バーナ28へ予熱した燃焼用空気を供給する予熱空気供給ダクトであって、該予熱空気供給ダクト38の基端部には送風機39を備えていると共に、予熱空気供給ダクト38の途中を前記熱交換器37と連結しており、前記送風機39から供給される常温の燃焼用空気(外気)を前記炉本体25から導出される高温の排ガスと前記熱交換器37にて熱交換させて予熱する構成としている。 35 in the figure is an exhaust duct for leading out the exhaust gas from the furnace main body 25 of the combustion treatment furnace 23. In the middle of the exhaust duct 35, an exhaust gas temperature sensor 36 for detecting the temperature of the exhaust gas and a heat exchanger 37 are installed. I have. Reference numeral 38 in the figure denotes a preheated air supply duct for supplying preheated combustion air to the burner 28. The preheated air supply duct 38 is equipped with a blower 39 at its base end. is connected to the heat exchanger 37 in the middle, and the normal temperature combustion air (outside air) supplied from the blower 39 is heated by the heat exchanger 37 with the high temperature exhaust gas discharged from the furnace main body 25. It is configured to be replaced and preheated.

なお、本実施例では、前記バーナ28へ供給する燃焼用空気を予熱するにあたり、前記燃焼処理炉23の炉本体25から導出される排ガスと熱交換させて予熱するようにしたが、これに限定されるものではなく、例えば、ヒータ等で予熱したり、近傍の前記木質バイオマス発電施設13での発電時に発生する高温の排ガスと熱交換させて予熱するようにしてもよい。 In this embodiment, the combustion air supplied to the burner 28 is preheated by heat exchange with the exhaust gas discharged from the furnace main body 25 of the combustion treatment furnace 23, but the present invention is limited to this. For example, it may be preheated by a heater or the like, or may be preheated by exchanging heat with high-temperature exhaust gas generated during power generation in the woody biomass power generation facility 13 nearby.

また、前記予熱空気供給ダクト38には、前記熱交換器37にて予熱した予熱空気の温度を検出する予熱空気温度センサ40と、予熱空気の風量を検出する風量センサ41と、前記バーナ28に供給する予熱空気量を調整する予熱空気量調整ダンパー42とを備えている。 Further, the preheated air supply duct 38 is provided with a preheated air temperature sensor 40 for detecting the temperature of the preheated air preheated by the heat exchanger 37, an air volume sensor 41 for detecting the air volume of the preheated air, and the burner 28. A preheated air amount adjustment damper 42 for adjusting the amount of preheated air to be supplied is provided.

予熱空気は予熱温度が高くなるにつれて熱膨張により酸素濃度が低下するため、前記予熱空気温度センサ40、風量センサ41の検出値、及びバーナ28の燃焼量に基づいて前記予熱空気量調整ダンパー42の開度を調整制御し、バーナ28に十分な空気量(酸素量)を供給して安定燃焼可能とする構成としている。なお、前記予熱空気量調整ダンパー42に代えて、前記送風機39をインバータ式として送風機39の送風量を直接調整する構成としても良い。 As the preheating temperature increases, the oxygen concentration of the preheated air decreases due to thermal expansion. The opening is adjusted and controlled to supply a sufficient amount of air (oxygen) to the burner 28 to enable stable combustion. Instead of using the preheated air amount adjusting damper 42, the air blower 39 may be of an inverter type, and the blowing amount of the air blower 39 may be directly adjusted.

また、前記重質タール貯蔵タンク21からバーナ28の噴射ノズル27へと重質タールを供給する重質タール供給配管43の途中には、供給ポンプ44と、バーナ燃焼量に応じて重質タールの供給量を調整する重質タール供給量調整バルブ45とを備えている。 In the middle of the heavy tar supply pipe 43 for supplying the heavy tar from the heavy tar storage tank 21 to the injection nozzle 27 of the burner 28, a supply pump 44 and a heavy tar supply pump 44 according to the burner combustion amount are installed. A heavy tar supply amount adjustment valve 45 for adjusting the supply amount is provided.

前記重質タール貯蔵タンク21には温水ヒータ46を備えており、該温水ヒータ46にて重質タール温度を略70~90℃程度に加熱維持し、常温付近では高粘度の重質タールの粘度を下げて、前記バーナ28の噴射ノズル27へと円滑に流動でき、かつ噴射時に微粒化しやすいように図っている。 The heavy tar storage tank 21 is equipped with a hot water heater 46. The hot water heater 46 heats and maintains the heavy tar temperature at about 70 to 90° C., and the viscosity of the heavy tar, which is highly viscous at room temperature, is increased. is lowered so that the powder can smoothly flow to the injection nozzle 27 of the burner 28 and be easily atomized at the time of injection.

また、図中の47は予熱バーナ29に燃料として供給するプロパンガスを貯蔵するガスボンベであって、該ガスボンベ47と前記予熱バーナ29とはガス供給配管48にて連結していると共に、該ガス供給配管48の途中には開閉バルブ49を備えている。なお、前記予熱バーナ29の燃料としては、前記プロパンガスに代えてLNGや重油、灯油等も採用できる。 Reference numeral 47 in the figure denotes a gas cylinder for storing propane gas to be supplied to the preheating burner 29 as fuel. An on-off valve 49 is provided in the middle of the pipe 48 . As the fuel for the preheating burner 29, LNG, heavy oil, kerosene, etc. can be used in place of the propane gas.

また、前記含水軽質タール貯蔵タンク22にも温水ヒータ50を備えており、該温水ヒータ50にて含水軽質タール貯蔵タンク22内の含水軽質タールを加熱して含有水分を蒸発させ、若干のタール揮発成分を含む水蒸気と軽質タールとに分離する構成としている。水分を多く含む含水軽質タールは重質タール以上に難燃性でバーナ燃料としては不適であり、またそのままでは燃焼させることも容易ではないものの、加熱してタール揮発成分を含む水蒸気と軽質タールとに分離した上で、高温雰囲気下の炉本体25内のバーナ火炎付近に(火炎に直接晒すように)個別に導入させることで前記タール分を十分に燃焼処理可能となる。 The water-containing light tar storage tank 22 is also provided with a hot water heater 50, and the water-containing light tar storage tank 22 is heated by the water heater 50 to evaporate the contained moisture and volatilize some tar. It is configured to separate into steam containing components and light tar. Water-containing light tar, which contains a large amount of water, is more flame-retardant than heavy tar, making it unsuitable as burner fuel. After the tar is separated into 2 parts, it is introduced individually near the burner flame in the furnace main body 25 in a high-temperature atmosphere (so as to be directly exposed to the flame), so that the tar can be sufficiently burned.

図中の51は前記含水軽質タール貯蔵タンク22内で加熱分離した軽質タールを、炉本体25中間部の軽質タール導入管33の噴射ノズル32へと供給する軽質タール供給配管であって、該軽質タール供給配管51の途中には供給ポンプ52と、軽質タールの温度を検出する軽質タール温度センサ53とを備えている。 51 in the figure is a light tar supply pipe that supplies the light tar separated by heating in the water-containing light tar storage tank 22 to the injection nozzle 32 of the light tar introduction pipe 33 in the middle of the furnace body 25. A supply pump 52 and a light tar temperature sensor 53 for detecting the temperature of the light tar are provided in the middle of the tar supply pipe 51 .

なお、軽質タールの温度が100℃以上になると、軽質タール内に若干残留している水分が前記軽質タール供給配管51内で蒸発し、タール成分が濃縮して配管内で閉塞する可能性があるため、前記温水ヒータ50へ供給する温水量調整用の流量調整バルブ54を前記軽質タール供給配管51の軽質タール温度センサ53の検出温度に基づき、例えば検出温度が略70~90℃を維持するように開閉制御する構成としている。 When the temperature of the light tar reaches 100° C. or higher, some water remaining in the light tar evaporates in the light tar supply pipe 51, condensing the tar component and possibly clogging the pipe. Therefore, based on the temperature detected by the light tar temperature sensor 53 of the light tar supply pipe 51, the flow rate adjustment valve 54 for adjusting the amount of hot water supplied to the hot water heater 50 is adjusted so that the detected temperature is maintained at, for example, approximately 70 to 90°C. It is configured to control opening and closing at the same time.

図中の55は含水軽質タール貯蔵タンク22内で加熱分離した若干の揮発タール成分を含む水蒸気を、炉本体25基端部の水蒸気導入管30へと供給する水蒸気供給配管であって、該水蒸気供給配管55の途中には送風機56と、三方弁等の流路切替弁57とを備えている。また、図中の58は前記木質バイオマス発電施設13にて生成した熱分解ガスを貯蔵する熱分解ガス貯蔵タンク16と、前記水蒸気供給配管55途中の前記流路切替弁57とを連結する熱分解ガス供給配管である。 In the figure, 55 is a steam supply pipe that supplies steam containing some volatile tar components heated and separated in the water-containing light tar storage tank 22 to the steam introduction pipe 30 at the base end of the furnace body 25. A blower 56 and a channel switching valve 57 such as a three-way valve are provided in the middle of the supply pipe 55 . Further, 58 in the figure is a pyrolysis gas storage tank 16 that stores the pyrolysis gas generated in the woody biomass power generation facility 13 and the flow path switching valve 57 on the way of the steam supply pipe 55. This is the gas supply pipe.

前記流路切替弁57は、前記燃焼処理炉23の定常運転時には前記含水軽質タール貯蔵タンク22上端部側と連通させるように流路を切り替え、タール揮発成分を含む水蒸気を高温雰囲気下の炉本体25内へと供給して水蒸気中のタール揮発成分を燃焼処理可能とする。一方、燃焼処理炉23の起動時(予熱運転時)には近傍の前記木質バイオマス発電施設13の熱分解ガス貯蔵タンク16と、前記熱分解ガス供給配管58を介して連通させるように流路を切り替え、木質バイオマス発電施設13にて生成した発電用の熱分解ガスの一部を炉本体25内へと供給して予熱バーナ29の火炎に吹き込んで混焼させ、予熱運転時の補助燃料として利用することにより、前記予熱バーナ29の燃料であるプロパンガスの使用量を抑えながらも、早期に予熱運転を完了して定常運転へと切り替え可能としている。 The flow path switching valve 57 switches the flow path so as to communicate with the upper end side of the water-containing light tar storage tank 22 during steady operation of the combustion treatment furnace 23, and the steam containing the volatile components of tar is transferred to the furnace body under a high-temperature atmosphere. 25 so that the volatile tar components in the steam can be burned. On the other hand, when the combustion treatment furnace 23 is started (during preheating operation), the flow path is made to communicate with the pyrolysis gas storage tank 16 of the nearby woody biomass power generation facility 13 via the pyrolysis gas supply pipe 58 . By switching, part of the pyrolysis gas for power generation generated in the woody biomass power generation facility 13 is supplied into the furnace body 25 and blown into the flame of the preheating burner 29 for co-firing, and is used as an auxiliary fuel during the preheating operation. As a result, it is possible to quickly complete the preheating operation and switch to the steady operation while suppressing the amount of propane gas used as fuel for the preheating burner 29 .

なお、図2に示すように、前記熱分解ガス貯蔵タンク16には、貯蔵する熱分解ガスを発電用にガスエンジン17へと供給するメインの熱分解ガス供給配管18と、予熱運転用に燃焼処理炉23へと供給するサブの熱分解ガス供給配管58とを併設しており、前記熱分解ガス貯蔵タンク16にある程度余裕を持って熱分解ガスを貯蔵しておけば、ガスエンジン17と燃焼処理炉23の両方に同時に熱分解ガスを供給可能としており、例えば、発電を行いながら燃焼処理炉23の予熱運転にも利用できる構成としている。 As shown in FIG. 2, the pyrolysis gas storage tank 16 includes a main pyrolysis gas supply pipe 18 for supplying the stored pyrolysis gas to the gas engine 17 for power generation, and a combustion gas for preheating operation. A sub pyrolysis gas supply pipe 58 for supplying to the processing furnace 23 is also provided. The pyrolysis gas can be supplied to both of the processing furnaces 23 at the same time, and can be used for preheating the combustion processing furnace 23 while generating power.

また、本実施例では、前記熱分解ガス供給配管58を水蒸気供給配管55途中の流路切替弁57に連結し、熱分解ガス貯蔵タンク16から供給される熱分解ガスを一旦水蒸気供給配管55を経由させて燃焼処理炉23の炉本体25内に供給する構成としたが、例えば、前記熱分解ガス供給配管58を前記炉本体25に直結し、熱分解ガス貯蔵タンク16から供給される熱分解ガスを炉本体25内に直接供給する構成とすることもできる。 Further, in this embodiment, the pyrolysis gas supply pipe 58 is connected to a channel switching valve 57 in the middle of the steam supply pipe 55, and the pyrolysis gas supplied from the pyrolysis gas storage tank 16 is temporarily switched to the steam supply pipe 55. The pyrolysis gas supply pipe 58 is directly connected to the furnace body 25, and the pyrolysis gas is supplied from the pyrolysis gas storage tank 16. A configuration in which the gas is directly supplied into the furnace body 25 can also be used.

図中の59は前記燃焼処理炉23やその付帯装置の運転制御用のタール燃焼制御器であって、前記各種センサ類からの検出値及び各機器への制御信号等を入出力する入出力部や、各種設定値を登録する設定記憶部、及びこれら各種の検出値や設定値等を基に各種制御を実行する制御部等を具備している。 Reference numeral 59 in the figure is a tar combustion controller for controlling the operation of the combustion treatment furnace 23 and its accessory devices, and is an input/output unit for inputting/outputting detected values from the various sensors and control signals to each device. , a setting storage unit for registering various setting values, and a control unit for executing various controls based on these various detection values and setting values.

そして、木質バイオマス発電施設13にて発生する木質系のタール含有廃水を処理するにあたっては、発生したタール含有廃水を木質バイオマス発電施設13近傍の廃水貯蔵タンク19に随時投入して貯蔵しておく。そして、前記廃水貯蔵タンク19がタール含有廃水で略一杯になれば、隣接する比重分離機20にて比較的軽量な含水軽質タールと比較的重量な重質タールとに比重分離し、分離した含水軽質タールは含水軽質タール貯蔵タンク22に、重質タールは重質タール貯蔵タンク21にそれぞれ投入して個別に貯蔵する。 When treating woody tar-containing wastewater generated in the woody biomass power generation facility 13, the generated tar-containing wastewater is put into the wastewater storage tank 19 near the woody biomass power generation facility 13 as needed and stored. When the wastewater storage tank 19 is substantially filled with tar-containing wastewater, the adjacent specific gravity separator 20 separates the relatively light water-containing light tar and the relatively heavy heavy tar by specific gravity. The light tar and the heavy tar are put into the water-containing light tar storage tank 22 and the heavy tar storage tank 21, respectively, and stored separately.

そして、前記含水軽質タール貯蔵タンク22、重質タール貯蔵タンク21に貯蔵した含水軽質タール、重質タールを前記燃焼処理炉23にて処理するときには、先ず、前記含水軽質タール貯蔵タンク22の温水ヒータ50に温水を供給し、貯蔵した含水軽質タールを略70~90℃に加熱して含有水分を蒸発させ、若干のタール揮発成分を含む水蒸気と軽質タールとに加熱分離する。また、前記重質タール貯蔵タンク21の温水ヒータ46にも温水を供給し、重質タールを略70~90℃に加熱維持し、常温では高粘度で難燃性の重質タールを円滑に供給可能でかつ微粒化しやすい程度まで粘度を低下させる。 When the wet light tar and heavy tar stored in the wet light tar storage tank 22 and the heavy tar storage tank 21 are to be treated in the combustion treatment furnace 23, the hot water heater of the wet light tar storage tank 22 is first used. Hot water is supplied to 50, and the stored water-containing light tar is heated to about 70 to 90°C to evaporate the contained water, and the water vapor containing some tar volatile components and light tar are separated by heating. Hot water is also supplied to the hot water heater 46 of the heavy tar storage tank 21 to heat and maintain the heavy tar at approximately 70 to 90° C., thereby smoothly supplying the heavy tar, which is highly viscous and flame-retardant at room temperature. Reduce the viscosity to the extent possible and easy to atomize.

次いで、前記予熱バーナ29にプロパンガスを供給して着火燃焼して予熱運転を開始すると共に、前記水蒸気供給配管55途中の流路切替弁57を前記木質バイオマス発電施設13の熱分解ガス貯蔵タンク16と連通させるように流路を切り替え、木質バイオマス由来の熱分解ガスを炉本体25内へと供給して予熱バーナ29のバーナ火炎中に吹き込んで混焼させ、予熱運転時の補助燃料として利用することにより、前記予熱バーナ29のプロパンガスの使用量を抑えながらも、早期に予熱運転を完了可能とする。 Next, propane gas is supplied to the preheating burner 29 and ignited for combustion to start the preheating operation. and supply pyrolysis gas derived from woody biomass into the furnace main body 25 and blowing it into the burner flame of the preheating burner 29 for co-firing and using it as an auxiliary fuel during the preheating operation. As a result, the preheating operation can be completed early while suppressing the amount of propane gas used by the preheating burner 29 .

そして、前記炉本体25内がある程度予熱され、例えば排気ダクト35から導出される排ガス温度が略500℃以上となれば、前記送風機39を駆動させて燃焼用空気(外気)を供給し、途中の熱交換器37にて前記高温の排ガスと熱交換させて重質タールを霧化しやすい略200~300℃程度に予熱した上で、前記予熱空気供給ダクト38を介してバーナ28へと供給する。なお、本発明者らが実施した実験データによれば、排ガス温度が略500℃以上となれば、常温の燃焼用空気を熱交換後に略200~300℃程度に予熱できることを確認している。 Then, when the inside of the furnace body 25 is preheated to some extent and the temperature of the exhaust gas discharged from the exhaust duct 35 reaches approximately 500° C. or higher, the blower 39 is driven to supply combustion air (outside air). The heavy tar is preheated to about 200 to 300° C. by exchanging heat with the high-temperature exhaust gas in the heat exchanger 37 and then supplied to the burner 28 through the preheated air supply duct 38 . According to experimental data conducted by the present inventors, it has been confirmed that if the exhaust gas temperature is approximately 500° C. or higher, the room temperature combustion air can be preheated to approximately 200 to 300° C. after heat exchange.

次いで、前記重質タール供給配管43の供給ポンプ44、及びコンプレッサ26を駆動し、二流体方式の噴射ノズル27から圧縮空気と共に重質タールを微粒化しながら噴射すると共に、前記予熱空気供給ダクト38の予熱空気温度センサ40、風量センサ41の検出値、及びバーナ28の燃焼量に基づき、予熱空気の予熱温度に応じた熱膨張の影響を加味した上で前記予熱空気量調整ダンパー42の開度を調整制御しながらバーナ28を着火燃焼させ、前記予熱バーナ29は消火する。 Next, the supply pump 44 of the heavy tar supply pipe 43 and the compressor 26 are driven to inject the heavy tar together with the compressed air from the two-fluid injection nozzle 27 while atomizing it. Based on the detected values of the preheated air temperature sensor 40 and the air volume sensor 41, and the combustion amount of the burner 28, the opening degree of the preheated air amount adjustment damper 42 is adjusted after considering the effect of thermal expansion according to the preheated air temperature. The burner 28 is ignited and burned while being adjusted and controlled, and the preheating burner 29 is extinguished.

なお、前記木質バイオマス発電施設13の熱分解ガス貯蔵タンク16からの熱分解ガスの供給は、予熱バーナ29の消火のタイミングに合わせて停止しても良いが、炉本体25内をより迅速に昇温させて予熱運転を早期に完了しようとするのであれば、予熱バーナ29の消火後も前記熱分解ガスを継続して炉本体25内に供給し、前記予熱バーナ29の近傍に位置するバーナ28の火炎中に吹き込んで混焼させると良い。 The supply of pyrolysis gas from the pyrolysis gas storage tank 16 of the woody biomass power generation facility 13 may be stopped in accordance with the extinguishing timing of the preheating burner 29. If the preheating operation is to be completed early by heating, the pyrolysis gas is continuously supplied into the furnace main body 25 even after the preheating burner 29 is extinguished, and the burner 28 located near the preheating burner 29 is used. It is good to blow it into the flame of the flame and co-fire it.

そして、前記排ガス温度センサ36にて検出される排ガス温度が、タール揮発成分や軽質タール微粒分を完全燃焼可能な略850℃となれば予熱運転を終了して定常運転に移行する。 Then, when the exhaust gas temperature detected by the exhaust gas temperature sensor 36 reaches approximately 850° C. at which the volatile tar components and light tar fine particles can be completely combusted, the preheating operation is terminated and the steady operation is started.

定常運転に移行すると、前記流路切替弁57の流路を含水軽質タール貯蔵タンク22上端部と連通する側に切り替え、該含水軽質タール貯蔵タンク22にて加熱分離した若干のタール揮発成分を含む水蒸気を水蒸気供給配管55、水蒸気導入管30を介して燃焼処理炉23の炉本体25の基端部よりその接線方向から炉本体25内へと導入すると共に、前記含水軽質タール貯蔵タンク22底部側と連結した軽質タール供給配管51の供給ポンプ52、及びコンプレッサ31を駆動し、二流体方式の噴射ノズル32から圧縮空気と共に軽質タールを微粒化しながら炉本体25の中間部より炉本体25内へと導入する。 When it shifts to steady operation, the flow path of the flow path switching valve 57 is switched to the side communicating with the upper end of the water-containing light tar storage tank 22, and some tar volatile components separated by heating in the water-containing light tar storage tank 22 are included. Steam is introduced from the base end of the furnace body 25 of the combustion treatment furnace 23 into the furnace body 25 from the tangential direction through the steam supply pipe 55 and the steam introduction pipe 30, and the water-containing light tar storage tank 22 bottom side. By driving the supply pump 52 of the light tar supply pipe 51 and the compressor 31, and atomizing the light tar together with the compressed air from the two-fluid system injection nozzle 32, the light tar is atomized into the furnace main body 25 from the middle part of the furnace main body 25. Introduce.

そして、略850℃以上の高温雰囲気下の炉本体25基端部より導入した水蒸気は炉本体25の内壁である蓄熱性のキャスター24表面に沿って旋回しながら下流方向へと流下していき、その間に前記バーナ28からの燃焼ガスと密に接触し、これにより水蒸気中に少量しか含まれていないことで燃焼させることの困難なタール揮発成分は効率よく燃焼処理される。また、炉本体25の中間部から噴射・導入される軽質タール微粒分は高温の炉本体25内で容易に霧化し、その状態で、前記同様にバーナ28からの燃焼ガスと接触することで効率よく燃焼処理される。 Then, the steam introduced from the base end of the furnace body 25 in a high temperature atmosphere of approximately 850° C. or higher flows down in the downstream direction while swirling along the surface of the heat storage casters 24 that are the inner walls of the furnace body 25. During this time, the tar volatile components are brought into close contact with the combustion gas from the burner 28, so that the tar volatile components, which are difficult to combust due to the small amount contained in the water vapor, are efficiently combusted. Further, the light tar fine particles injected/introduced from the intermediate portion of the furnace body 25 are easily atomized in the high-temperature furnace body 25, and in that state, come into contact with the combustion gas from the burner 28 in the same manner as described above. Well combusted.

このように、本発明は、従来、木質バイオマス発電施設で副産物として発生し、あまり有効な用途もなくて多量に余っており、そのまま燃焼処理しようとしても多くの化石燃料を要していたタール含有廃水が、バーナ燃料として有効利用可能な重質タールを含んでいる点に着目したものであり、タール含有廃水を重質タールと含水軽質タールとに比重分離した上で、前記重質タールは化石燃料に代えて燃焼処理炉23のバーナ28用の燃料として有効利用する一方、残りの難燃性でバーナ燃料としては不適な含水軽質タールはタール揮発成分を含む水蒸気と軽質タールとに更に加熱分離した上で前記燃焼処理炉23の炉本体25内に個別に導入することで前記タール分を効率よく燃焼処理可能としている。これにより、木質バイオマス発電施設を操業する上でネックとなっていたタール含有廃水を化石燃料の使用量を抑えながら好適に処理でき、環境負荷低減施設である木質バイオマス発電施設の普及にも寄与できるものとなる。 As described above, the present invention has been developed in the past as a by-product of woody biomass power generation facilities, and there is not much effective use and there is a large amount of surplus tar-containing tar that requires a large amount of fossil fuel even if it is to be incinerated as it is. Focusing on the fact that the wastewater contains heavy tar that can be effectively used as burner fuel, the tar-containing wastewater is gravity-separated into heavy tar and water-containing light tar, and the heavy tar is converted into fossils. It is effectively used as fuel for the burner 28 of the combustion treatment furnace 23 in place of the fuel, while the remaining flame-retardant water-containing light tar, which is unsuitable as burner fuel, is further heated and separated into steam containing tar volatile components and light tar. After that, by introducing them individually into the furnace body 25 of the combustion treatment furnace 23, the tar component can be efficiently burned. As a result, tar-containing wastewater, which has been a bottleneck in the operation of woody biomass power generation facilities, can be appropriately treated while reducing the amount of fossil fuels used, contributing to the spread of woody biomass power generation facilities, which are facilities that reduce environmental impact. become a thing.

また、前記燃焼処理炉23を木質バイオマス発電施設13の近傍に設置し、該木質バイオマス発電施設13にて生成される発電用の熱分解ガスの一部を前記燃焼処理炉23に供給してその予熱運転用の補助燃料として活用するようにすれば、予熱運転時の化石燃料の使用量を抑えながらも予熱運転を早期に完了できて定常運転に切り替えられるといった効果も期待できてより好適なものとなる。 Further, the combustion treatment furnace 23 is installed in the vicinity of the woody biomass power generation facility 13, and part of the pyrolysis gas for power generation generated in the woody biomass power generation facility 13 is supplied to the combustion treatment furnace 23 to If it is used as an auxiliary fuel for preheating operation, the preheating operation can be completed early while suppressing the amount of fossil fuel used during preheating operation, and the effect of switching to steady operation can be expected, which is more preferable. becomes.

本発明は、木質バイオマス発電施設にて副産物として発生する木質系のタール含有廃水の処理方法として広く利用できる。 INDUSTRIAL APPLICABILITY The present invention can be widely used as a method for treating woody tar-containing wastewater generated as a by-product in a woody biomass power generation facility.

2…ガス化工程 3…ガス精製工程
4…発電工程 5…廃水貯蔵工程
6…比重分離工程 7…タール貯蔵工程
8…重質タール貯蔵工程(タール貯蔵工程)
9…含水軽質タール貯蔵工程(タール貯蔵工程)
10…加熱分離工程 11…タール燃焼処理工程
12…燃焼用空気予熱工程
13…木質バイオマス発電施設
14…ガス化炉(木質バイオマス発電施設)
15…ガス精製機(木質バイオマス発電施設)
16…熱分解ガス貯蔵タンク(木質バイオマス発電施設)
17…ガスエンジン(木質バイオマス発電施設)
18、58…熱分解ガス供給配管 19…廃水貯蔵タンク
20…比重分離機 21…重質タール貯蔵タンク
22…軽質タール貯蔵タンク 23…燃焼処理炉
24…キャスター 25…炉本体
26、31…コンプレッサ 27、32…噴射ノズル
28…バーナ 29…予熱バーナ
30…水蒸気導入管 33…軽質タール導入管
34…縮径部 35…排気ダクト
37…熱交換器 38…予熱空気供給ダクト
39…送風機 40…予熱空気温度センサ
41…風量センサ 42…予熱空気量調整ダンパー
43…重質タール供給配管 46、50…温水ヒータ
51…軽質タール供給配管 55…水蒸気供給配管
57…流路切替弁 59…タール燃焼制御器
2 Gasification process 3 Gas refining process 4 Power generation process 5 Wastewater storage process 6 Gravity separation process 7 Tar storage process 8 Heavy tar storage process (tar storage process)
9 … Water-containing light tar storage step (tar storage step)
DESCRIPTION OF SYMBOLS 10... Heating separation process 11... Tar combustion process 12... Combustion air preheating process 13... Woody biomass power generation facility 14... Gasification furnace (woody biomass power generation facility)
15... Gas purifier (woody biomass power generation facility)
16 Pyrolysis gas storage tank (woody biomass power generation facility)
17 … Gas engine (Woody biomass power generation facility)
Reference Signs List 18, 58 Pyrolysis gas supply pipe 19 Waste water storage tank 20 Specific gravity separator 21 Heavy tar storage tank 22 Light tar storage tank 23 Combustion treatment furnace 24 Caster 25 Furnace body 26, 31 Compressor 27 , 32... injection nozzle 28... burner 29... preheating burner 30... water vapor introduction pipe 33... light tar introduction pipe 34... reduced diameter portion 35... exhaust duct 37... heat exchanger 38... preheated air supply duct 39... blower 40... preheated air Temperature sensor 41 Air volume sensor 42 Preheated air volume adjustment damper 43 Heavy tar supply pipe 46, 50 Hot water heater 51 Light tar supply pipe 55 Water vapor supply pipe 57 Flow path switching valve 59 Tar combustion controller

Claims (4)

木質バイオマス発電施設にて発生する木質系のタール含有廃水の処理方法であって、前記タール含有廃水をタンクに貯蔵する廃水貯蔵工程と、貯蔵したタール含有廃水を比重差によって重質タールと含水軽質タールとに分離する比重分離工程と、該比重分離した重質タールと含水軽質タールとを個別のタンクに貯蔵するタール貯蔵工程と、前記含水軽質タールを加熱して水分を蒸発させて軽質タールとタール揮発成分を含んだ水蒸気とに分離する加熱分離工程と、前記重質タールを燃焼させるバーナを備えた燃焼処理炉の炉本体内に前記軽質タールと水蒸気とを個別に導入して燃焼処理するタール燃焼処理工程と、前記バーナに供給する燃焼用空気を所定温度に予熱する燃焼用空気予熱工程とを有し、タール含有廃水から分離した重質タールを所定温度まで加熱し、予熱した燃焼用空気を前記燃焼処理炉のバーナに供給しながら重質タールをバーナの燃料として燃焼しつつ、含水軽質タールから分離した軽質タールと水蒸気とを前記炉本体内に導入して燃焼処理することを特徴とする木質バイオマス発電施設にて発生する木質系のタール含有廃水の処理方法。 A method for treating woody tar-containing wastewater generated in a woody biomass power generation facility, comprising: a wastewater storage step of storing the tar-containing wastewater in a tank; A tar storage step of storing the gravity-separated heavy tar and water-containing light tar in separate tanks, and heating the water-containing light tar to evaporate the water to form light tar. A heat separation step for separating the tar into water vapor containing volatile components, and the light tar and the water vapor are individually introduced into a furnace body of a combustion treatment furnace equipped with a burner for burning the heavy tar, and the light tar and the water vapor are burned. A tar combustion treatment step and a combustion air preheating step of preheating combustion air supplied to the burner to a predetermined temperature, wherein heavy tar separated from tar-containing wastewater is heated to a predetermined temperature and preheated for combustion While supplying air to the burner of the combustion treatment furnace, the heavy tar is burned as fuel for the burner, and the light tar separated from the water-containing light tar and steam are introduced into the furnace body for combustion treatment. A method for treating woody tar-containing wastewater generated at a woody biomass power generation facility. 前記燃焼処理炉の予熱運転時には、前記木質バイオマス発電施設にて生成した発電用の熱分解ガスを前記燃焼処理炉の炉本体内に吹き込んで補助燃料として燃焼させることを特徴とする請求項1記載の木質バイオマス発電施設にて発生する木質系のタール含有廃水の処理方法。 2. The method according to claim 1, wherein during preheating operation of said combustion treatment furnace, pyrolysis gas for power generation generated in said woody biomass power generation facility is blown into a furnace body of said combustion treatment furnace and burned as auxiliary fuel. A method of treating woody tar-containing wastewater generated at a woody biomass power generation facility in Japan. 前記バーナの燃焼用空気を燃焼処理炉から導出される排ガスと熱交換させて予熱することを特徴とする請求項1または2記載の木質バイオマス発電施設にて発生する木質系のタール含有廃水の処理方法。 3. The treatment of woody tar-containing wastewater generated in a woody biomass power generation facility according to claim 1 or 2, characterized in that the combustion air of said burner is preheated by exchanging heat with the exhaust gas discharged from the combustion treatment furnace. Method. 含水軽質タールから加熱分離した水蒸気を前記燃焼処理炉の炉本体の接線方向から導入することを特徴とする請求項1乃至3の何れかに記載の木質バイオマス発電施設にて発生する木質系のタール含有廃水の処理方法。 4. Woody tar generated in a woody biomass power generation facility according to any one of claims 1 to 3, characterized in that steam separated by heating from water-containing light tar is introduced in the tangential direction of the furnace body of the combustion treatment furnace. Methods for treating contaminated wastewater.
JP2019099891A 2019-05-29 2019-05-29 Method for treating woody tar-containing wastewater generated at a woody biomass power generation facility Active JP7240254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019099891A JP7240254B2 (en) 2019-05-29 2019-05-29 Method for treating woody tar-containing wastewater generated at a woody biomass power generation facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019099891A JP7240254B2 (en) 2019-05-29 2019-05-29 Method for treating woody tar-containing wastewater generated at a woody biomass power generation facility

Publications (2)

Publication Number Publication Date
JP2020193764A JP2020193764A (en) 2020-12-03
JP7240254B2 true JP7240254B2 (en) 2023-03-15

Family

ID=73546035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019099891A Active JP7240254B2 (en) 2019-05-29 2019-05-29 Method for treating woody tar-containing wastewater generated at a woody biomass power generation facility

Country Status (1)

Country Link
JP (1) JP7240254B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004270642A (en) 2003-03-11 2004-09-30 Meidensha Corp Gas turbine power generation facility and method for operating the same
JP2004277647A (en) 2003-03-18 2004-10-07 Nippon Steel Corp Process for gasification of waste product and installation therefor
JP2005146185A (en) 2003-11-19 2005-06-09 Hitachi Eng Co Ltd Equipment for utilizing plant-derived biomass resources
JP2008025876A (en) 2006-07-19 2008-02-07 Babcock & Wilcox Volund Aps Combustion treatment method for waste liquid
JP2009229333A (en) 2008-03-25 2009-10-08 Jfe Engineering Corp Interface level detection method and interface level detecting device of two-layer liquid
JP2010229206A (en) 2009-03-26 2010-10-14 Jfe Engineering Corp Apparatus and process for removing tar from gas produced from biomass
JP2015209459A (en) 2014-04-24 2015-11-24 大谷開発株式会社 Liquefaction apparatus and dry distillation type liquefaction incineration system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710017A (en) * 1980-06-16 1982-01-19 Showa Denko Kk Combustion device for waste tar
JPH0633373B2 (en) * 1986-05-13 1994-05-02 三菱重工業株式会社 Iron oxide for fuel additive and method of using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004270642A (en) 2003-03-11 2004-09-30 Meidensha Corp Gas turbine power generation facility and method for operating the same
JP2004277647A (en) 2003-03-18 2004-10-07 Nippon Steel Corp Process for gasification of waste product and installation therefor
JP2005146185A (en) 2003-11-19 2005-06-09 Hitachi Eng Co Ltd Equipment for utilizing plant-derived biomass resources
JP2008025876A (en) 2006-07-19 2008-02-07 Babcock & Wilcox Volund Aps Combustion treatment method for waste liquid
JP2009229333A (en) 2008-03-25 2009-10-08 Jfe Engineering Corp Interface level detection method and interface level detecting device of two-layer liquid
JP2010229206A (en) 2009-03-26 2010-10-14 Jfe Engineering Corp Apparatus and process for removing tar from gas produced from biomass
JP2015209459A (en) 2014-04-24 2015-11-24 大谷開発株式会社 Liquefaction apparatus and dry distillation type liquefaction incineration system

Also Published As

Publication number Publication date
JP2020193764A (en) 2020-12-03

Similar Documents

Publication Publication Date Title
JP6813249B2 (en) Carbonization equipment and carbonization method for woody biomass
JP4378360B2 (en) Power generation method and apparatus using waste
JP7240254B2 (en) Method for treating woody tar-containing wastewater generated at a woody biomass power generation facility
KR101103000B1 (en) solid fuel combustion apparatus of multilevel combustion type
JP2015087047A (en) Hot air generator furnace with solid fuel used as main fuel
JP2013253720A (en) Staircase type incinerator
EP2675755A1 (en) Ammonia stripper
KR101613968B1 (en) steam generating system having ultra high temperature sludge drying apparatus
KR102609636B1 (en) Dry gasification incineration treatment method for waste
KR20220100807A (en) Industrial burner device equipped with an air curtain that generates clean, high-efficiency thermal power by phase transitioning oil substances to plasma ionized with water (H2O), and an industrial burner system equipped with an air curtain that generates clean, high-efficiency thermal power
KR100777616B1 (en) Low-temperature pyrolysis system of industrial waste having a high carbon content
JP2013117336A (en) Combustion method and combustion device of stoker-type incinerator
JP2019132438A (en) Drier and drying method of disposable diaper, and fuel production apparatus and fuel production method
KR20090119780A (en) System concept with low energy requirement and improved energy yield
KR20110016307A (en) Waste water treatment system using brown gas
JP4039467B2 (en) Method and apparatus for heat treating garbage
CN220582427U (en) Small-size domestic waste gasification burns device
RU2678150C1 (en) Burner device
KR200313803Y1 (en) Incinerator with heating device capable of saving energy
JP2004138373A (en) Waste oil combustion furnace
JP3015266B2 (en) Waste melting equipment
KR100502108B1 (en) High Temperature Pyrolysis Melting Incinerator using a Brown Gas
JP2022021001A (en) Boiler sewage treatment method
JP2004161844A (en) Recycling apparatus
KR200318787Y1 (en) High Temperature Pyrolysis Incinerator using a Brown Gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230303

R150 Certificate of patent or registration of utility model

Ref document number: 7240254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150