JPH06333552A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JPH06333552A
JPH06333552A JP5142723A JP14272393A JPH06333552A JP H06333552 A JPH06333552 A JP H06333552A JP 5142723 A JP5142723 A JP 5142723A JP 14272393 A JP14272393 A JP 14272393A JP H06333552 A JPH06333552 A JP H06333552A
Authority
JP
Japan
Prior art keywords
welded
electrode
negative electrode
spot
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5142723A
Other languages
Japanese (ja)
Inventor
Shigeharu Osumi
重治 大角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP5142723A priority Critical patent/JPH06333552A/en
Publication of JPH06333552A publication Critical patent/JPH06333552A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To facilitate manufacture and enhance capacity by welding a plurality of electrode plates of the same polarity protruded from a separator, and rewelding them. CONSTITUTION:In an nonaqueous secondary battery formed of a positive electrode 4, a negative electrode 2, and a separator 3, a plurality of electrode plates of the same polarity protruded from the separator 3 are welded together, and their welding parts 12, 13 are then plurally rewelded. Namely, positive electrode lugs 11 are spot-welded two by two, and the welded lugs 11 are welded to an aluminum plate by use of a comb shaped jig. Negative electrode lugs 10 are welded in the same manner. In the welding of the lugs 10, after three lugs 10 from the end are first spot-welded, the remaining lugs 10 are spot-welded two by two, and then rewelding is carried out by use of the comb jig. Thus, an nonaqueous secondary battery with high capacity having a number of electrode plates can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非水電解液二次電池の改
良に関するもので、製造法が簡便で、高容量の非水電解
液二次電池を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of a non-aqueous electrolyte secondary battery, and provides a high-capacity non-aqueous electrolyte secondary battery with a simple manufacturing method.

【0002】[0002]

【従来の技術】近年の各種電子機器の小型化やポータブ
ル化により、小型軽量の高エネルギー密度二次電池の開
発が要望され、また、大気汚染や二酸化炭素等の環境問
題により、電気自動車の早期実用化が望まれており、高
出力、高効率、高エネルギー密度等の特徴を有する新規
な二次電池の開発が要望されている。特に非水電解液を
使用した二次電池は、従来の水溶液電解液を使用した電
池の数倍のエネルギー密度を有することから、その実用
化が待たれている。
2. Description of the Related Art Due to the recent miniaturization and portability of various electronic devices, development of compact and lightweight high energy density secondary batteries has been demanded, and due to environmental problems such as air pollution and carbon dioxide, electric vehicles have become early stages. Practical application is desired, and development of a new secondary battery having features such as high output, high efficiency, and high energy density is desired. In particular, a secondary battery using a non-aqueous electrolytic solution has an energy density several times higher than that of a battery using a conventional aqueous electrolytic solution, and therefore its practical application is awaited.

【0003】非水電解液二次電池の正極活物質には、二
硫化チタンをはじめとして、リチウムコバルト複合酸化
物、リチウムマンガン酸化物、五酸化バナジウム、二硫
化モリブデン等、種々のものが検討されている。
Various positive electrode active materials for non-aqueous electrolyte secondary batteries such as titanium disulfide, lithium cobalt composite oxide, lithium manganese oxide, vanadium pentoxide, molybdenum disulfide and the like have been investigated. ing.

【0004】非水電解液は、非プロトン性の有機溶媒に
電解質となる金属塩を溶解させたものが用いられてい
る。例えば、リチウム塩に関しては、LiCl O4 、LiP
F6 、LiBF4 、LiAs F6 、LiCF3 SO3 等をプロピレンカ
ーボネート、エチレンカーボネート、1,2-ジメトキシエ
タン、γ- ブチロラクトン、ジオキソラン、2-メチルテ
トラヒドロフラン、ジエチルカーボネート、ジメチルカ
ーボネート、スルホラン等の単独溶媒あるいは混合溶媒
に溶解させたものが使用されている。これらの非水電解
液は、電池容器に注入されて使用されるが、多孔質のセ
パレータに含浸したり、高分子量の樹脂を添加して高粘
性にしたり、ゲル化させて流動性をなくした状態で使用
されることもある。
As the non-aqueous electrolyte, a solution in which a metal salt serving as an electrolyte is dissolved in an aprotic organic solvent is used. For example, for lithium salts, LiCl O 4 , LiP
F 6, LiBF 4, LiAs F 6, propylene carbonate LiCF 3 SO 3 or the like, ethylene carbonate, 1,2-dimethoxyethane, .gamma.-butyrolactone, dioxolane, 2-methyltetrahydrofuran, diethyl carbonate, dimethyl carbonate, alone sulfolane What is dissolved in a solvent or a mixed solvent is used. These non-aqueous electrolytes are used by injecting them into a battery container, but impregnating them into a porous separator, adding a high molecular weight resin to make them highly viscous, and gelating them to lose fluidity. It is sometimes used in the state.

【0005】非水電解液電池の負極活物質として、従来
より様々な物質が検討されてきたが、高エネルギー密度
が期待されるものとして、リチウム系の負極が注目を浴
びている。特に非水電解液二次電池の負極として、リチ
ウム金属、リチウム合金、リチウムイオンを保持させた
炭素等が検討されている。
Various materials have been studied as a negative electrode active material for non-aqueous electrolyte batteries, but a lithium-based negative electrode has been attracting attention as a material expected to have a high energy density. Particularly, as a negative electrode of a non-aqueous electrolyte secondary battery, lithium metal, lithium alloy, carbon having lithium ions retained, and the like have been studied.

【0006】リチウム金属は高い起電力を有し、高エネ
ルギー密度が期待できるが、その高い反応性のために電
池の安全性に問題があり、充電反応において微粒子状の
金属リチウムが発生しやすく、内部短絡や充放電効率の
低下等が起こるという大きな問題を抱えている。
Lithium metal has a high electromotive force and can be expected to have a high energy density, but due to its high reactivity, there is a problem in battery safety, and particulate lithium metal is likely to be generated in the charging reaction. It has a big problem that internal short circuit and charge / discharge efficiency decrease.

【0007】リチウム合金は、このような放電反応に関
与しない金属リチウムの発生を防止することができる
が、特性上合金の電位がリチウム電位に対して貴方向に
シフトし、放電電圧が低下するという欠点があった。ま
た成分に金属リチウムを含有しているために、安全性に
は問題を残していた。
Lithium alloys can prevent the generation of metallic lithium that is not involved in the discharge reaction, but due to the characteristics, the potential of the alloy shifts to the noble direction relative to the lithium potential, and the discharge voltage decreases. There was a flaw. Further, since the component contains metallic lithium, there was a problem in safety.

【0008】安全性の問題を改善するために、リチウム
イオンを保持するホスト物質として、炭素負極が検討さ
れている。充電された炭素負極は、結晶格子の層間にリ
チウムイオンを保持しており、放電反応により容易にリ
チウムイオンを放出する。炭素負極は、金属リチウムを
使用しないので安全性が高く、充放電による劣化も少な
く、長寿命の非水電解液二次電池が可能となった。
In order to improve the safety problem, a carbon negative electrode has been studied as a host material that holds lithium ions. The charged carbon negative electrode holds lithium ions between the layers of the crystal lattice, and easily discharges lithium ions by the discharge reaction. The carbon negative electrode is highly safe because it does not use metallic lithium, and is less prone to deterioration due to charge and discharge, making it possible to provide a long-life non-aqueous electrolyte secondary battery.

【0009】ホスト物質として炭素を使用することによ
り、リチウム以外のアルカリ金属のイオンも使用するこ
とが可能となった。カリウムやナトリウムはリチウムよ
り安価であり、イオン状態で使用するかぎり安定であ
り、危険性はない。
The use of carbon as the host material has enabled the use of alkali metal ions other than lithium. Potassium and sodium are cheaper than lithium, are stable as long as they are used in the ionic state, and are not dangerous.

【0010】負極に用いる炭素については、各種熱分解
炭素や天然および合成のグラファイトがよく知られてい
る。ポリアクリロニトリル系やピッチ系、あるいはレー
ヨン系等の炭素繊維や、ベンゼンやプロパン等を原料と
する気相成長炭素、フェノール樹脂のような高分子化合
物の熱分解による炭素、ピッチやタールを原料とする炭
素等、種々の炭素が使用可能である。
As the carbon used for the negative electrode, various pyrolytic carbons and natural and synthetic graphite are well known. Polyacrylonitrile-based, pitch-based, or rayon-based carbon fibers, vapor-grown carbon from benzene, propane, etc. as raw materials, carbon by thermal decomposition of polymer compounds such as phenolic resins, pitch or tar as raw materials Various carbons such as carbon can be used.

【0011】炭素はそれ自体で電導性があり、充放電に
ともなう電導性の変化が少ないために、電極からの集電
方法に関してはあまり考慮されなかった。また、電導性
の低い非水電解液中での使用が前提であったため、炭素
を使用した負極は、一般に低電流用、小容量の電極に限
られており、大容量や大型の電極は作成されなかった。
Carbon itself has electrical conductivity, and since the change in electrical conductivity due to charge / discharge is small, the method of collecting current from the electrodes has not been considered so much. Also, since it was premised on use in a non-aqueous electrolyte with low electrical conductivity, carbon-based negative electrodes are generally limited to low current, small capacity electrodes, and large capacity or large size electrodes can be created. Was not done.

【0012】しかしながら、地球の環境保全やエネルギ
ーの有効利用の観点から、夜間電力の貯蔵や電気自動車
用として、高容量、高出力の電池の要望が高まり、安全
性の高い炭素負極を使用した高容量の非水電解液二次電
池の開発が望まれるようになった。
However, from the viewpoints of environmental protection of the earth and effective use of energy, there is an increasing demand for high capacity, high output batteries for storage of nighttime electric power and for electric vehicles, and a high safety carbon negative electrode is used. Development of a non-aqueous electrolyte secondary battery having a large capacity has been desired.

【0013】さらに、高容量電池では極板枚数が多くな
るが、その場合の端子接続法も充分確立されておらず、
簡便で確実な端子接続法が望まれていた。
Further, in a high capacity battery, the number of electrode plates increases, but the terminal connection method in that case is not well established.
A simple and reliable terminal connection method has been desired.

【0014】[0014]

【発明が解決しようとする課題】従来、極板枚数が少な
い非水電解液二次電池内の複数枚の同極性の極板は図5
に示すように、セパレータから突出した同極性の極板ど
うしを重ね合わせた後、スポット溶接等によって一体と
していた。しかしながら、小容量の電池のように極板枚
数の少ない場合ならともかく、大容量の電池のように極
板枚数が多い場合には、このようなスポット溶接方法で
は溶接が困難である。そのため、極板を図6に示すよう
な櫛状治具の凹部に極板を設置し(図7)、櫛状治具の
上部に突き出た同極性の極板を溶接することも考えられ
るが、極板基体が薄いこと、極板と極板との間隔が狭い
こと、さらに極板枚数が多いこと等によって極板を櫛状
治具にセットする作業が非常に困難となる。
Conventionally, a plurality of polar plates having the same polarity in a non-aqueous electrolyte secondary battery having a small number of polar plates are shown in FIG.
As shown in (3), after the polar plates of the same polarity protruding from the separator were superposed on each other, they were integrated by spot welding or the like. However, when the number of electrode plates is large as in the case of a large capacity battery as well as in the case of a small capacity battery as in the case of a small number of electrode plates, it is difficult to perform welding by such a spot welding method. Therefore, it is conceivable to install the electrode plate in the recess of the comb-shaped jig as shown in FIG. 6 (FIG. 7) and weld the electrode plate of the same polarity protruding above the comb-shaped jig. The work of setting the electrode plates on the comb-shaped jig becomes very difficult because the electrode plate base is thin, the distance between the electrode plates is narrow, and the number of electrode plates is large.

【0015】[0015]

【課題を解決するための手段】本発明は、高容量の非水
電解液二次電池を提供するもので、充電可能な正極と、
アルカリ金属イオンを含む非水電解液を含浸せしめたセ
パレータと、負極とを具備する非水電解液二次電池にお
いて、セパレータから突出した複数枚の同極性の極板を
溶接し、さらにこれら溶接部を複数溶接することを特徴
とするものである。
The present invention provides a high-capacity non-aqueous electrolyte secondary battery, which comprises a rechargeable positive electrode,
In a non-aqueous electrolyte secondary battery comprising a separator impregnated with a non-aqueous electrolyte containing an alkali metal ion, and a negative electrode, a plurality of same-polarity electrode plates protruding from the separator are welded, and further these welded parts It is characterized by welding a plurality of.

【0016】[0016]

【作用】複数枚の同極性の極板を溶接し、次にこれらを
再度溶接するため製造が容易で、高容量の電池を提供す
ることが可能になる。
Since a plurality of polar plates of the same polarity are welded and then these are re-welded, it is possible to provide a high capacity battery which is easy to manufacture.

【0017】[0017]

【実施例】図1は本発明の一実施例である角形電池の要
部断面図である。
1 is a cross-sectional view of a main part of a prismatic battery according to an embodiment of the present invention.

【0018】1はステンレス鋼製の角形容器であり、そ
の内部に負極2と、セパレータ3、正極4を収納してい
る。負極2は発泡ニッケルに球状の炭素粉末を保持させ
たものであり、非水電解液を含浸したポリプロピレン製
の多孔質セパレータ3を介して、LiCo O2 正極と交互に
挿入されている。5は容器蓋であり、容器1の開口部に
周縁部で溶接されている。容器蓋5の中央部にはガスケ
ット6を介して、はとめ7が固定されており、安全弁8
が、はとめ7の開口部を封止している。9は電池の異常
時に内部圧力が上昇し、安全弁8が作動したときの排気
口である。
Reference numeral 1 denotes a square container made of stainless steel, in which a negative electrode 2, a separator 3 and a positive electrode 4 are housed. The negative electrode 2 is formed by holding spherical carbon powder in foamed nickel, and is alternately inserted with the LiCoO 2 positive electrode through the porous separator 3 made of polypropylene impregnated with the nonaqueous electrolytic solution. Reference numeral 5 denotes a container lid, which is welded to the opening of the container 1 at the peripheral edge. A stopper 7 is fixed to the center of the container lid 5 via a gasket 6, and a safety valve 8
However, the opening of the eyelet 7 is sealed. Reference numeral 9 denotes an exhaust port when the internal pressure rises when the battery is abnormal and the safety valve 8 operates.

【0019】10は負極2の上部に設けた負極耳であ
り、11は正極4の上部に設けた正極耳である。負極耳
10および正極耳11は後述のようにそれぞれ複数枚の
耳をスポット溶接した後、櫛状治具を用いて再度溶接さ
れ、再溶接部12、13の上方にそれぞれ負極ポール1
6、正極ポール17を溶接してある。
Reference numeral 10 is a negative electrode ear provided on the negative electrode 2, and 11 is a positive electrode ear provided on the positive electrode 4. Negative electrode ears 10 and positive electrode ears 11 are spot-welded on a plurality of ears, respectively, as described later, and then re-welded using a comb-shaped jig so that the negative pole 1 is provided above the re-welded portions 12 and 13, respectively.
6, the positive pole 17 is welded.

【0020】更に、これらのポールはガスケット6を介
して容器蓋5に固定されている負極ブッシング14およ
び正極ブッシング15とに溶接され、負極端子18およ
び正極端子19を構成している。
Further, these poles are welded to a negative electrode bushing 14 and a positive electrode bushing 15 which are fixed to the container lid 5 via a gasket 6 to form a negative electrode terminal 18 and a positive electrode terminal 19.

【0021】本発明実施例電池に使用した負極2は次の
ようにして製作した。重量比で、平均粒径30μm の球状
炭素98部と、結着剤のポリフッ化ビニリデン2部と溶剤
のN-メチル-2- ピロリドン30部とを混練してペースト状
にした。このペーストを、負極板支持体2’である厚さ
1.0mm 、平均セル開孔径300 μm 、多孔度98%のニッケ
ル発泡体に塗布した後、乾燥、圧延し、電極基板を作成
した。なお、後の打ち抜き工程で耳となる部分にはペー
ストは塗布しなかった。
The negative electrode 2 used in the batteries of the examples of the present invention was manufactured as follows. In a weight ratio, 98 parts of spherical carbon having an average particle size of 30 μm, 2 parts of polyvinylidene fluoride as a binder and 30 parts of N-methyl-2-pyrrolidone as a solvent were kneaded to form a paste. The thickness of this paste is the negative electrode plate support 2 '.
An electrode substrate was prepared by applying a nickel foam having a diameter of 1.0 mm, an average cell opening diameter of 300 μm and a porosity of 98%, followed by drying and rolling. Note that the paste was not applied to the portion that would become the ear in the subsequent punching process.

【0022】この電極基板を打ち抜いて、厚さ0.48mm、
幅100mm 、高さ100mm の平板状の負極板を得た。負極1
枚当りの活物質炭素合剤の重量は6.3gであった。ここで
用いた球状炭素は、球状のフェノール樹脂を熱分解して
得たものである。X線回折法により求めた物性値は、結
晶層間距離( d002 )が3.36オングストローム、結晶子
の長さ(Lc)が39オングストロームである。
This electrode substrate is punched out to a thickness of 0.48 mm,
A flat negative electrode plate having a width of 100 mm and a height of 100 mm was obtained. Negative electrode 1
The weight of the active material carbon mixture per sheet was 6.3 g. The spherical carbon used here is obtained by thermally decomposing a spherical phenol resin. The physical property values determined by X-ray diffractometry are a crystal interlayer distance (d 002 ) of 3.36 Å and a crystallite length (Lc) of 39 Å.

【0023】上記負極板の単極特性を測定した。対極と
してリチウムを使用し、1モル濃度のLiPF6 を溶解した
エチレンカーボネートとジエチルカーボネートの等量混
合液中で充放電試験を行った。電流250mA で、リチウム
電位に対して0Vまで充電した後、同じ250mA の電流で放
電した。リチウム電位に対して1.0Vを示すまで、4.2時
間の放電が可能であった。この負極板の放電容量は1,05
0mAhであった。
The unipolar characteristics of the negative electrode plate were measured. Using lithium as a counter electrode, a charge / discharge test was carried out in an equal volume mixture of ethylene carbonate and diethyl carbonate in which 1 molar concentration of LiPF 6 was dissolved. The battery was charged to 0 V at a lithium potential of 250 mA and then discharged at the same 250 mA. It was possible to discharge for 4.2 hours until it showed 1.0 V against the lithium potential. The discharge capacity of this negative plate is 1,05
It was 0 mAh.

【0024】正極4は次のようにして作製した。正極活
物質であるLiCo O2 を85部と、導電剤のアセチレンブラ
ック8部と結着剤のPTFEディスパージョン水溶液(ポリ
四フッ化エチレン樹脂15%含有)34部を混練し、これを
一対のロール間に通してシート状にした後、正極板支持
体4’であるアルミニウム製のエキスパンドメタルの芯
材の両面に圧着して、厚さ0.62mmの正極基板を作製し
た。この基板を打ち抜いて、幅100mm 、高さ100mm の平
板状正極を得た。なお、打ち抜き時に耳となる部分には
活物質は圧着させていない。正極1枚中の活物質の重量
は19.2g で、1,500mAhの放電容量に設計されている。
The positive electrode 4 was manufactured as follows. 85 parts of LiCoO 2 which is the positive electrode active material, 8 parts of acetylene black which is a conductive agent and 34 parts of a PTFE dispersion aqueous solution (containing 15% of polytetrafluoroethylene resin) which is a binder are kneaded, and a pair of these is mixed. After passing between rolls to form a sheet, the positive electrode plate support 4 ′ was pressure-bonded to both sides of an aluminum expanded metal core material to prepare a positive electrode substrate having a thickness of 0.62 mm. This substrate was punched out to obtain a flat positive electrode having a width of 100 mm and a height of 100 mm. The active material was not pressure-bonded to the ears during punching. The weight of the active material in one positive electrode is 19.2g, and the discharge capacity is 1,500mAh.

【0025】セパレータ3として、厚さ0.18mm、目付け
50 g/m2 のポリプロピレン不織布を用いた。
The separator 3 has a thickness of 0.18 mm and a basis weight
A polypropylene non-woven fabric of 50 g / m 2 was used.

【0026】上記のポリプロピレン不織布からなるセパ
レータを正極板と負極板との間に挿入しながら正極板5
0枚と負極板51枚とを交互に積層した後、この積層し
た極板群の周囲をポリプロピレンフィルム(図1には図
示せず。)で覆うとともに固定した。図2は積層途中の
状態を示す模式図である。
While inserting the separator made of the above polypropylene nonwoven fabric between the positive electrode plate and the negative electrode plate, the positive electrode plate 5
After stacking 0 sheets and 51 sheets of negative electrodes alternately, the periphery of this stacked electrode group was covered with a polypropylene film (not shown in FIG. 1) and fixed. FIG. 2 is a schematic view showing a state in the middle of stacking.

【0027】次に図3に示すように正極耳を2枚ずつス
ポット溶接した。その後、スポット溶接した耳を、図6
に示す櫛状治具を用い、図4に示すようにアルミニウム
板に溶接した。また、このアルミニウム板には正極ポー
ルが溶接されている。正極板支持体は厚さが約0.6m
mと非常に薄いため機械的強度が弱く、1枚ずつでは櫛
状治具にセットするのが大変困難であるが、今回は2枚
ずつスポット溶接しておいたため、櫛状治具にセットす
るのが容易であった。
Next, as shown in FIG. 3, two positive electrode ears were spot-welded. After that, the spot-welded ears are shown in FIG.
It was welded to an aluminum plate as shown in FIG. A positive pole is welded to this aluminum plate. The positive electrode plate support has a thickness of about 0.6 m.
Since it is very thin, the mechanical strength is weak and it is very difficult to set it on the comb jig one by one, but this time, two pieces were spot welded, so set it on the comb jig. Was easy.

【0028】同様に、負極耳を溶接した。ただし、負極
耳の溶接の場合には、まず、端から3枚の負極耳をスポ
ット溶接した後、残りの負極耳を2枚ずつスポット溶接
した。次に図6に示す櫛状治具を用いて再度溶接した。
また、負極耳はニッケル板に溶接した。負極耳の溶接
も、正極の場合と同様に、あらかじめ2枚または3枚が
スポット溶接されているため、櫛状治具に耳をセットす
るのが容易であった。
Similarly, the negative electrode ear was welded. However, in the case of welding the negative electrode ears, first, three negative electrode ears from the end were spot-welded, and then the remaining negative electrode ears were spot-welded two by two. Next, they were welded again using the comb jig shown in FIG.
The negative electrode ear was welded to a nickel plate. Similarly to the case of the positive electrode, the welding of the negative electrode ear was performed by spot welding two or three pieces in advance, so that it was easy to set the ear on the comb jig.

【0029】なお、これだけの枚数の極板を一度にスポ
ット溶接することはできず、また、1枚ずつ櫛状治具に
セットし溶接することは非常に困難で、量産時にはもち
ろん、試験用電池の製作にも適用できるものではなかっ
た。
It is impossible to spot-weld such a number of electrode plates at a time, and it is very difficult to set and weld them one by one in a comb-shaped jig. It was not applicable to the production of.

【0030】その後、容器に挿入し、蓋を載せ、蓋と容
器とをレーザ溶接した。
After that, the container was inserted into the container, a lid was placed thereon, and the lid and the container were laser-welded.

【0031】電解質には、エチレンカーボネートとジエ
チルカーボネートの1:1混合溶媒にLiPF6 を1モル/
リットルの割合で溶解したものを非水電解質として使用
し、蓋に設けておいた電解質注入口から所定量を注入し
た。注入口はその後レーザ溶接で完全に密閉した。
As the electrolyte, 1 mol / liter of LiPF 6 was added to a 1: 1 mixed solvent of ethylene carbonate and diethyl carbonate.
What was melt | dissolved in the ratio of liter was used as a non-aqueous electrolyte, and the predetermined amount was inject | poured from the electrolyte injection port provided in the lid. The inlet was then completely sealed by laser welding.

【0032】実施例電池は、12.75 Aの電流で端子電圧
が4.1Vを示すまで充電した後、同じく12.75A の電流で
放電したところ、端子電圧が2.8Vに低下するまで4.1 時
間の放電が可能であり、この電池の放電容量は53Ahであ
った。
The battery of Example was charged at a current of 12.75 A until the terminal voltage showed 4.1 V, and then discharged at a current of 12.75 A, and the battery could be discharged for 4.1 hours until the terminal voltage dropped to 2.8 V. And the discharge capacity of this battery was 53 Ah.

【0033】なお、上の実施例では、まず最初に2枚ま
たは3枚の同極性の極板耳をスポット溶接したが、電池
を構成する極板枚数がさらに多い場合には、最初にスポ
ット溶接する耳の枚数を5〜6枚に増やすこともでき
る。また、最初にスポット溶接する耳の枚数は、当然極
板支持体の厚みやスポット溶接する機械の能力などによ
っても変わり得る。
In the above embodiment, two or three electrode plate ears having the same polarity were first spot-welded. However, when the number of electrode plates constituting the battery is larger, spot-welding is first performed. It is also possible to increase the number of ears to be used to 5 to 6. Further, the number of ears to be spot-welded first may naturally vary depending on the thickness of the electrode plate support and the capability of the machine for spot-welding.

【0034】さらに、再溶接時に用いたアルミニウム板
やニッケル板は、それぞれの極において耐食性を有して
いるものであれば、これら以外の材料も使用できる。
Further, the aluminum plate and the nickel plate used for the re-welding may be made of materials other than these as long as they have corrosion resistance at each electrode.

【0035】[0035]

【発明の効果】本発明によれば、充電可能な正極と、ア
ルカリ金属イオンを含む非水電解液を含浸せしめたセパ
レータと、負極とを具備する非水電解液二次電池におい
て、セパレータから突出した複数枚の同極性の極板を溶
接し,次にこれらを再度溶接することを特徴とするもの
で、従来困難であった多数の極板を有する高容量の非水
電解液二次電池を提供することが可能となり、工業的価
値極めて大である。
According to the present invention, a non-aqueous electrolyte secondary battery comprising a rechargeable positive electrode, a separator impregnated with a non-aqueous electrolyte containing an alkali metal ion, and a negative electrode protrudes from the separator. It is characterized by welding a plurality of polar plates of the same polarity, and then re-welding these plates. It is possible to provide, and the industrial value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における電池の構造を示す断
面の模式図
FIG. 1 is a schematic cross-sectional view showing the structure of a battery according to an embodiment of the present invention.

【図2】積層途中の状態を示す模式図FIG. 2 is a schematic diagram showing a state during stacking

【図3】正極耳を2枚ずつスポット溶接した状態(一
部)を示す模式図
FIG. 3 is a schematic view showing a state (a part) in which two positive electrode ears are spot-welded together.

【図4】スポット溶接した正極耳を再度溶接した状態
(ポール付近の一部)を示す断面の模式図
FIG. 4 is a schematic cross-sectional view showing a state (a part near the pole) where the spot-welded positive electrode ear is welded again.

【図5】スポット溶接するために同極性の極板を重ね合
せた図
FIG. 5 is a diagram in which polar plates of the same polarity are overlapped for spot welding.

【図6】櫛状治具の上面図FIG. 6 is a top view of the comb jig.

【図7】櫛状治具の凹部に極板を設置した図FIG. 7 is a diagram in which an electrode plate is installed in the recess of the comb-shaped jig.

【符号の説明】[Explanation of symbols]

1 容器 2 負極 3 セパレータ 4 正極 5 容器蓋 10 負極耳 11 正極耳 12 溶接部(負極) 13 溶接部(正極) 20 櫛状治具 1 Container 2 Negative Electrode 3 Separator 4 Positive Electrode 5 Container Lid 10 Negative Electrode Ear 11 Positive Electrode Ear 12 Welding Part (Negative Electrode) 13 Welding Part (Positive Electrode) 20 Comb Jig

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 充電可能な正極と、アルカリ金属イオン
を含む非水電解液を含浸せしめたセパレータと、負極と
を具備する非水電解液二次電池において、セパレータか
ら突出した複数枚の同極性の極板を溶接し、さらにこれ
ら溶接部を複数溶接することを特徴とする非水電解液二
次電池。
1. A non-aqueous electrolyte secondary battery comprising a rechargeable positive electrode, a separator impregnated with a non-aqueous electrolyte containing an alkali metal ion, and a negative electrode, and a plurality of same polarities protruding from the separator. A non-aqueous electrolyte secondary battery, characterized in that the electrode plate of (1) is welded, and a plurality of these welded portions are welded.
JP5142723A 1993-05-21 1993-05-21 Nonaqueous secondary battery Pending JPH06333552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5142723A JPH06333552A (en) 1993-05-21 1993-05-21 Nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5142723A JPH06333552A (en) 1993-05-21 1993-05-21 Nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JPH06333552A true JPH06333552A (en) 1994-12-02

Family

ID=15322089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5142723A Pending JPH06333552A (en) 1993-05-21 1993-05-21 Nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JPH06333552A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6835501B2 (en) 2001-05-11 2004-12-28 Matsushita Electric Industrial Co., Ltd. Alkaline rechargeable battery
JP2008066170A (en) * 2006-09-08 2008-03-21 Nec Tokin Corp Method of manufacturing laminated battery
JP2009087611A (en) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd Laminate type battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6835501B2 (en) 2001-05-11 2004-12-28 Matsushita Electric Industrial Co., Ltd. Alkaline rechargeable battery
JP2008066170A (en) * 2006-09-08 2008-03-21 Nec Tokin Corp Method of manufacturing laminated battery
JP2009087611A (en) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd Laminate type battery

Similar Documents

Publication Publication Date Title
JP5002927B2 (en) Non-aqueous electrolyte secondary battery and battery pack using the same
JP5257700B2 (en) Lithium secondary battery
US20110250485A1 (en) Secondary battery
WO2013137272A1 (en) Non-aqueous electrolyte secondary battery and battery pack
JP5279567B2 (en) Nonaqueous electrolyte secondary battery
JP2011070932A (en) Lithium secondary battery
JP5141940B2 (en) Secondary battery
JP2014179248A (en) Nonaqueous electrolyte secondary battery
JPH117962A (en) Nonaqueous electrolyte secondary battery
KR20210098314A (en) Non-aqueous electrolytic power storage device and method for manufacturing non-aqueous electrolytic power storage device
JP2002015774A (en) Nonaqueous electrolyte lithium secondary cell
JP2000090932A (en) Lithium secondary battery
JP2001357874A (en) Nonaqueous electrolyte secondary battery
JP2001102051A (en) Electrode and lithium secondary cell
JPH06333553A (en) Nonaqueous secondary battery
JPH06333552A (en) Nonaqueous secondary battery
JP3322321B2 (en) Cylindrical non-aqueous electrolyte secondary battery
JP2005116321A (en) Lithium secondary battery and its low-temperature characteristic evaluation method
JP2004234994A (en) Lithium secondary battery, battery pack of same, and electrode of same
JPH11238500A (en) Roll type cylindrical battery
JP5165875B2 (en) Non-aqueous electrolyte battery
JP2007335308A (en) Nonaqueous electrolyte secondary battery
JP2006344395A (en) Cathode for lithium secondary battery and utilization and manufacturing method of the same
JP2020113487A (en) Lithium ion secondary battery
JP2004288405A (en) Lithium secondary battery