JPH0633233A - Formation of protective film - Google Patents
Formation of protective filmInfo
- Publication number
- JPH0633233A JPH0633233A JP4215607A JP21560792A JPH0633233A JP H0633233 A JPH0633233 A JP H0633233A JP 4215607 A JP4215607 A JP 4215607A JP 21560792 A JP21560792 A JP 21560792A JP H0633233 A JPH0633233 A JP H0633233A
- Authority
- JP
- Japan
- Prior art keywords
- protective film
- film
- substrate
- treated surface
- ions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000001681 protective effect Effects 0.000 title claims abstract description 81
- 230000015572 biosynthetic process Effects 0.000 title description 2
- 239000000758 substrate Substances 0.000 claims abstract description 47
- 150000002500 ions Chemical class 0.000 claims abstract description 46
- 238000000034 method Methods 0.000 claims abstract description 31
- 239000011261 inert gas Substances 0.000 claims abstract description 26
- 230000035515 penetration Effects 0.000 claims description 10
- 238000007740 vapor deposition Methods 0.000 claims description 7
- 238000005468 ion implantation Methods 0.000 claims description 5
- 238000001771 vacuum deposition Methods 0.000 abstract description 9
- 238000001704 evaporation Methods 0.000 abstract description 8
- 230000003647 oxidation Effects 0.000 abstract description 3
- 238000007254 oxidation reaction Methods 0.000 abstract description 3
- 238000002347 injection Methods 0.000 abstract description 2
- 239000007924 injection Substances 0.000 abstract description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 230000008020 evaporation Effects 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 6
- 239000002344 surface layer Substances 0.000 description 6
- -1 helium ions Chemical class 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 230000009545 invasion Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、真空下で成膜等の処
理が施された基体の処理表面に、当該処理表面が大気に
曝されるのを防止する保護膜を形成する保護膜の形成方
法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a protective film for forming a protective film on a treated surface of a substrate which has been subjected to treatment such as film formation under vacuum, to prevent the treated surface from being exposed to the atmosphere. It relates to a forming method.
【0002】[0002]
【背景となる技術】基体上に膜を形成する方法には、典
型的には、CVD法(化学的気相法)とPVD法(物理
的気相法)とがあり、これらの方法にはそれぞれ特徴が
ある。BACKGROUND ART As a method for forming a film on a substrate, there are typically a CVD method (chemical vapor phase method) and a PVD method (physical vapor phase method). Each has its own characteristics.
【0003】一般的に、CVD法は膜の堆積速度が速
く、付き回り性も良い。しかしながら、基体を加熱しな
がら成膜を行うので、基体の種類が限定される。また、
高温に曝されたとき、基体が損傷することは否めない。Generally, the CVD method has a high film deposition rate and good throwing power. However, since the film is formed while heating the substrate, the type of substrate is limited. Also,
It is undeniable that the substrate will be damaged when exposed to high temperatures.
【0004】一方、PVD法の一種である真空蒸着法
は、基体を高温に曝すことなく成膜できるので基体の種
類の制限が少ないが、膜の密着力はCVD法に比べて劣
る。On the other hand, the vacuum vapor deposition method, which is a type of PVD method, can form a film without exposing the substrate to a high temperature, so that the type of the substrate is not limited, but the adhesion of the film is inferior to the CVD method.
【0005】そのため、これらの成膜方法は、基体の種
類、付ける膜の目的等に応じて使い分けられている。Therefore, these film forming methods are properly used according to the type of the substrate, the purpose of the film to be attached, and the like.
【0006】また、このような複数の成膜プロセスを組
み合わせて基体上に膜、例えば多層膜を形成しようとす
るとき、複数の膜形成装置を用いなければならない場合
がある。その場合、先の処理工程を終え、次の処理工程
に移る際に、処理した基体を大気中に曝露しなければな
らない。このとき、基体の処理表面(即ち、基体上に成
膜処理が施されている場合は当該膜の表面)が大気に曝
されて、酸化、汚染、腐食され、それによって、当該処
理表面あるいはその上に次の工程で形成される膜の特性
に悪影響を及ぼす危険性がある。When a plurality of film forming processes are combined to form a film, for example, a multi-layer film on a substrate, it may be necessary to use a plurality of film forming apparatuses. In that case, the treated substrate must be exposed to the atmosphere when finishing the previous treatment step and moving to the next treatment step. At this time, the treated surface of the substrate (that is, the surface of the film if the substrate is subjected to a film-forming treatment) is exposed to the atmosphere and is oxidized, contaminated, or corroded, whereby the treated surface or its There is a risk of adversely affecting the properties of the film formed in the next step.
【0007】そこでこれを避けるために、複数の膜形成
装置を用いて基体上に例えば多層膜を形成する場合、先
の成膜工程から次の成膜工程に移るときに基体を大気中
に曝してもその処理表面が酸化、汚染、腐食されないよ
うに保護膜を形成しておく方法が、同一出願人によって
別途提案されている。Therefore, in order to avoid this, when forming, for example, a multilayer film on a substrate using a plurality of film forming apparatuses, the substrate is exposed to the atmosphere when moving from the previous film forming step to the next film forming step. However, the same applicant has separately proposed a method of forming a protective film so that the treated surface is not oxidized, contaminated, or corroded.
【0008】即ち、先の工程で処理を終えた基体の(よ
り具体的にはその上に形成された膜の)表面上に、この
基体を大気に曝すことなく同一膜形成装置内で保護膜を
形成する。その後、次工程を行う膜形成装置内で、次の
膜成膜工程を行う前に、上記保護膜を取り除き、目的の
工程に入る。このような過程を経れば、基体を一旦大気
中に曝さしても基体の処理表面は酸化、汚染、腐食され
ない。That is, the protective film is formed on the surface of the substrate (more specifically, the film formed thereon) which has been treated in the previous step without exposing the substrate to the atmosphere in the same film forming apparatus. To form. After that, in the film forming apparatus for performing the next step, before performing the next film forming step, the protective film is removed and the target step is started. Through such a process, even if the substrate is once exposed to the atmosphere, the treated surface of the substrate is not oxidized, contaminated or corroded.
【0009】[0009]
【発明が解決しようとする課題】上記保護膜は、これま
では主としてスパッタ法または真空蒸着法によって形成
されている。The protective film has so far been formed mainly by the sputtering method or the vacuum deposition method.
【0010】しかしながら、上記保護膜をスパッタ法に
よって形成すると、スパッタ粒子のエネルギーが大き
く、しかもそのエネルギーの制御が困難であるため、基
体の処理表面に損傷を与えやすい。また、スパッタ粒子
のエネルギーが大きいために、基体の処理表面と保護膜
との密着力が大きく、そのため、基体の処理表面にでき
るだけ損傷をあたえずに保護膜を除去することは困難で
ある。However, when the above-mentioned protective film is formed by the sputtering method, the energy of sputtered particles is large and it is difficult to control the energy, so that the treated surface of the substrate is easily damaged. Further, since the energy of the sputtered particles is large, the adhesion between the treated surface of the substrate and the protective film is large, and therefore it is difficult to remove the protective film without damaging the treated surface of the substrate as much as possible.
【0011】一方、真空蒸着法では、蒸着粒子のエネル
ギーが小さく、基体の処理表面の損傷は最小限に抑えら
れ、保護膜の除去も容易であるが、この方法では緻密な
保護膜ができにくく、そのため保護膜の耐酸化性能が劣
る。On the other hand, in the vacuum vapor deposition method, the energy of vapor deposition particles is small, damage to the treated surface of the substrate is minimized, and the protective film can be easily removed. However, this method makes it difficult to form a dense protective film. Therefore, the oxidation resistance of the protective film is poor.
【0012】そこでこの発明は、基体の処理表面に与え
る損傷を最小限に抑えながら、耐酸化性能に優れる等の
保護膜としての機能を十分に備えており、しかも除去し
やすい保護膜を形成することができる方法を提供するこ
とを主たる目的とする。Therefore, the present invention forms a protective film which has a sufficient function as a protective film such as excellent oxidation resistance while minimizing damage to the treated surface of the substrate, and which is easy to remove. The main purpose is to provide a method capable of doing so.
【0013】[0013]
【課題を解決するための手段】上記目的を達成するた
め、この発明の保護膜の形成方法は、まず前述したよう
な保護膜を真空蒸着法によって形成し、ついで、この保
護膜中に、不活性ガスイオンを、当該イオンの侵入深さ
をRP 、保護膜の膜厚をdとした場合、d/4≦RP <
dなる条件で、かつ当該イオンの注入量が1×1016個
/cm2 以下(0を含まない)の条件で注入することを
特徴とする。In order to achieve the above object, the method of forming a protective film according to the present invention is such that the protective film as described above is first formed by a vacuum evaporation method, and then the protective film When the penetration depth of the active gas ions is R P and the film thickness of the protective film is d, d / 4 ≦ R P <
It is characterized in that the ions are implanted under the condition of d and the ion implantation amount is 1 × 10 16 ions / cm 2 or less (not including 0).
【0014】[0014]
【作用】上記方法によれば、保護膜を真空蒸着法によっ
て形成するので、基体の処理表面に与えられる損傷が最
小限に抑えられる。According to the above method, since the protective film is formed by the vacuum evaporation method, the damage given to the treated surface of the substrate can be minimized.
【0015】また、真空蒸着法で保護膜を形成した後、
当該保護膜中に不活性ガスイオンを注入するので、イオ
ンによる蒸着原子の詰め込み作用によって保護膜が緻密
になり、これによって保護膜の表層から内部への酸素の
侵入・拡散が抑えられ、保護膜としての機能が十分なも
のが得られる。Further, after forming the protective film by the vacuum deposition method,
Since the inert gas ions are injected into the protective film, the protective film becomes dense due to the packing action of the vapor deposition atoms by the ions, which suppresses the invasion and diffusion of oxygen from the surface layer of the protective film to the inside. It is possible to obtain the one with sufficient function.
【0016】不活性ガスイオンの侵入深さRP をd/4
以上にするのは、それよりも小さいと保護膜の最表層し
か緻密化されず、表層から内部への酸素の拡散が抑えら
れないからである。The penetration depth R P of the inert gas ion is d / 4
The reason for the above is that if it is smaller than that, only the outermost layer of the protective film is densified, and diffusion of oxygen from the surface layer to the inside cannot be suppressed.
【0017】不活性ガスイオンの侵入深さRP を膜厚d
よりも小さくするのは、それよりも大きくすると、不活
性ガスイオンが保護膜を越えて基体の処理表面まで達し
てしまい、この不活性ガスイオンの作用によって保護膜
と基体の処理表面との界面でミキシングが起こって保護
膜の除去が困難になるだけでなく、注入イオンによって
基体の処理表面に損傷を与えるようになるからである。The penetration depth R P of the inert gas ions is set to the film thickness d
If the value is made larger than that, the inert gas ions reach the treated surface of the substrate beyond the protective film, and the interface between the protective film and the treated surface of the substrate is caused by the action of the inert gas ions. This is because not only mixing of the protective film becomes difficult to remove the protective film, but also the treated surface of the substrate is damaged by the implanted ions.
【0018】不活性ガスイオンの注入量を1×1016個
/cm2 以下にするのは、それよりも多くなると、注入
イオンによる保護膜中の損傷、欠陥等が過大になり、保
護膜としての機能が劣化するからである。If the amount of the inert gas ions implanted is set to 1 × 10 16 ions / cm 2 or less, if the amount is larger than that, damages and defects in the protective film due to the implanted ions become excessive, and as a protective film. This is because the function of is deteriorated.
【0019】[0019]
【実施例】図1は、この発明に係る保護膜の形成方法を
実施する膜形成装置の一例を示す断面図である。この装
置は、図示しない真空排気装置によって真空排気される
真空容器2と、この真空容器2内に収納された基体14
に蒸発物質8を蒸着させて保護膜16を形成する蒸発源
6と、同基体14に向けて不活性ガスイオン12を照射
するイオン源10とを備えている。真空容器2内には、
基体14を保持するホルダ4が設けられている。FIG. 1 is a sectional view showing an example of a film forming apparatus for carrying out the method of forming a protective film according to the present invention. This apparatus includes a vacuum container 2 that is evacuated by a vacuum exhaust device (not shown), and a substrate 14 housed in the vacuum container 2.
An evaporation source 6 for forming a protective film 16 by vapor-depositing an evaporation substance 8 on the substrate, and an ion source 10 for irradiating the substrate 14 with inert gas ions 12 are provided. In the vacuum container 2,
A holder 4 that holds the base 14 is provided.
【0020】このような装置を用いて、次のようにして
基体14の処理表面に保護膜16を形成する。即ち、ま
ず、蒸発源6を働かせて、そこから保護膜を形成する所
望の蒸発物質(例えばシリコン、金属等)8を蒸発させ
てこれを基体14の処理表面に蒸着させ、このような真
空蒸着法によって、基体14の処理表面に所望の膜厚の
保護膜16を形成する。Using such an apparatus, the protective film 16 is formed on the treated surface of the substrate 14 as follows. That is, first, the evaporation source 6 is operated to evaporate a desired evaporation substance (eg, silicon, metal, etc.) 8 for forming a protective film from the evaporation source 6, and this is evaporated on the treated surface of the substrate 14, and such a vacuum evaporation is performed. By the method, the protective film 16 having a desired film thickness is formed on the treated surface of the substrate 14.
【0021】次いで、イオン源10から所望の不活性ガ
スイオン(例えば、ヘリウムイオン、ネオンイオン、ア
ルゴンイオン、キセノンイオン等)12を引き出して、
これを、上記のようにして形成された保護膜16中に注
入してイオン注入を行う。Next, desired inert gas ions (eg, helium ions, neon ions, argon ions, xenon ions, etc.) 12 are extracted from the ion source 10,
This is implanted into the protective film 16 formed as described above to perform ion implantation.
【0022】このときの不活性ガスイオン12のエネル
ギーは、図2を参照して、保護膜16の膜厚をd、不活
性ガスイオン12の侵入深さ(投影飛程とも言う)をR
P とした場合、 d/4≦RP<d ・・・(1) なる条件を満たすようなものにする。かつ、注入する不
活性ガスイオン12の量は、1×1016個/cm2 以下
にする。As for the energy of the inert gas ions 12 at this time, referring to FIG. 2, the thickness of the protective film 16 is d, and the penetration depth of the inert gas ions 12 (also referred to as projection range) is R.
When P is set, the condition of d / 4 ≦ RP <d (1) is satisfied. Moreover, the amount of the inert gas ions 12 to be injected is set to 1 × 10 16 ions / cm 2 or less.
【0023】上記方法によれば、保護膜16を真空蒸着
法によって形成するので、基体14の処理表面に与えら
れる損傷が最小限に抑えられる。According to the above method, since the protective film 16 is formed by the vacuum evaporation method, the damage given to the treated surface of the substrate 14 can be minimized.
【0024】また、前述したように、真空蒸着法単独で
は緻密な保護膜ができにくく、その表面が酸化されると
拡散によって長時間放置しておくと酸素が基体の処理表
面まで到達する危険性があるのに対して、上記のように
保護膜16中に不活性ガスイオン12を注入すると、こ
の不活性ガスイオン12による蒸着原子の詰め込み作用
によって保護膜16の表層部で膜が緻密になり、これに
よって保護膜16の表層から内部への酸素の侵入・拡散
が抑えられる。その結果、保護膜としての機能が十分な
ものが得られる。Further, as described above, it is difficult to form a dense protective film by the vacuum deposition method alone, and if the surface is oxidized, there is a risk that oxygen will reach the treated surface of the substrate if left for a long time due to diffusion. On the other hand, when the inert gas ions 12 are injected into the protective film 16 as described above, the film becomes dense in the surface layer portion of the protective film 16 due to the packing action of the vapor deposition atoms by the inert gas ions 12. As a result, invasion and diffusion of oxygen from the surface layer of the protective film 16 to the inside can be suppressed. As a result, a film having a sufficient function as a protective film can be obtained.
【0025】不活性ガスイオン12の侵入深さRP をd
/4以上にするのは、それよりも小さいと保護膜16の
最表層しか緻密化されず、表層から内部への酸素の拡散
が抑えられないからである。The penetration depth R P of the inert gas ions 12 is d
/ 4 or more is because if it is smaller than that, only the outermost layer of the protective film 16 is densified, and diffusion of oxygen from the surface layer to the inside cannot be suppressed.
【0026】不活性ガスイオン12の侵入深さRP を膜
厚dよりも小さくするのは、それよりも大きくすると、
不活性ガスイオン12が保護膜16を越えて基体14の
処理表面まで達してしまい、この不活性ガスイオン12
の作用によっ保護膜16と基体14の処理表面との界面
でミキシングが起こって、当該界面に保護膜16および
基体14の処理表面を構成する物質から成る混合層が形
成され、これがあたかも楔のような作用をして保護膜1
6の密着強度が高まり、保護膜16の除去が困難になる
だけでなく、注入イオンによって基体14の処理表面に
損傷を与えるようになるからである。The penetration depth R P of the inert gas ions 12 is made smaller than the film thickness d by making it larger than that.
The inert gas ions 12 reach the treated surface of the substrate 14 beyond the protective film 16, and the inert gas ions 12
By the action of, the mixing occurs at the interface between the protective film 16 and the treated surface of the substrate 14, and a mixed layer composed of the substances forming the treated surface of the protective film 16 and the substrate 14 is formed at the interface, which is as if the wedge Acts as a protective film 1
This is because the adhesion strength of 6 is increased, and it becomes difficult to remove the protective film 16, and the treated surface of the substrate 14 is damaged by the implanted ions.
【0027】不活性ガスイオン12の注入量を1×10
16個/cm2 以下にするのは、それよりも多くなると、
注入イオンによる保護膜16中の損傷、欠陥等が過大に
なり、保護膜としての機能が劣化するからである。The amount of the inert gas ions 12 injected is 1 × 10.
If it is more than 16 pieces / cm 2 ,
This is because the damage, defects, etc. in the protective film 16 due to the implanted ions become excessive and the function as the protective film deteriorates.
【0028】次に、この発明に従ったより具体的な実施
例と、それと比較するための比較例とについて説明す
る。Next, more specific examples according to the present invention and comparative examples for comparison therewith will be described.
【0029】(実施例)基体の表面に形成されたCu 膜
(これがこの場合の処理表面である)上に、保護膜とし
て、Si を真空蒸着法によって300Åの膜厚に形成
し、次いでこの保護膜中に、Ar イオンを2KeVのエ
ネルギーで1×1015個/cm2 注入した。このときの
イオンの侵入深さは150Å程度である。(Example) On a Cu film (this is the treated surface in this case) formed on the surface of a substrate, Si was formed as a protective film by a vacuum deposition method to a film thickness of 300Å, and then this protective film was formed. Ar ions were implanted into the film at an energy of 2 KeV at 1 × 10 15 ions / cm 2 . The ion penetration depth at this time is about 150 Å.
【0030】(比較例)上記と同じCu 膜上に、保護膜
として、Si を真空蒸着法によって300Åの膜厚に形
成したが、その後のイオン注入は行わなかった。Comparative Example Si was formed as a protective film on the same Cu film as described above to a film thickness of 300 Å by a vacuum deposition method, but no subsequent ion implantation was performed.
【0031】(評価)上記実施例および比較例の試料を
共に一週間大気中に放置し、その後、オージェ電子分光
法で深さ方向の成分分析を行った。その結果を図3(実
施例)および図4(比較例)について示す。両図におい
て横軸のスパッタ時間は、表面からの深さ方向に相当す
る。(Evaluation) The samples of the above-mentioned Examples and Comparative Examples were both left in the atmosphere for one week, and thereafter, component analysis in the depth direction was carried out by Auger electron spectroscopy. The results are shown in FIG. 3 (Example) and FIG. 4 (Comparative example). In both figures, the sputtering time on the horizontal axis corresponds to the depth direction from the surface.
【0032】図3から分かるように、実施例の試料は、
保護膜であるSi 膜の表面にのみ酸素(O)が検出さ
れ、Cu 膜中には拡散していない。これに対して、図4
から分かるように、比較例の試料は、保護膜であるSi
膜の表面のみならず膜中にも酸素が検出され、しかもC
u 膜との界面にまで達していることが分かる。このこと
から、実施例のSi 膜は保護膜として十分に機能してい
るが、比較例のものは保護膜として機能していないこと
が分かる。As can be seen from FIG. 3, the samples of the examples are
Oxygen (O) was detected only on the surface of the Si film, which is a protective film, and was not diffused into the Cu film. On the other hand, FIG.
As can be seen from the above, the sample of the comparative example has a protective film of Si.
Oxygen is detected not only on the surface of the film but also in the film, and C
It can be seen that it reaches the interface with the u film. From this, it can be seen that the Si film of the example sufficiently functions as a protective film, but the Si film of the comparative example does not function as a protective film.
【0033】また、実施例の方がSi 膜をスパッタする
のに長時間かかっているのは、イオン注入によってSi
膜が緻密になっていることの現れである。In the embodiment, it takes a longer time to sputter the Si film because the ion implantation causes Si
This is an indication that the film is dense.
【0034】[0034]
【発明の効果】以上のようにこの発明によれば、保護膜
を真空蒸着法によって形成するので、基体の処理表面に
与える損傷を最小限に抑えることができる。As described above, according to the present invention, since the protective film is formed by the vacuum vapor deposition method, it is possible to minimize damage to the treated surface of the substrate.
【0035】また、保護膜を形成した後、当該保護膜中
に不活性ガスイオンを注入するので、保護膜が緻密にな
り、これによって保護膜の表層から内部への酸素の侵入
・拡散が抑えられ、保護膜としての機能が十分なものが
得られる。このような効果は、前述したように、不活性
ガスイオンの侵入深さをd/4以上にし、かつ不活性ガ
スイオンの注入量を1×1016個/cm2 以下にするこ
とによって確かなものとなる。Further, after the protective film is formed, inert gas ions are injected into the protective film, so that the protective film becomes dense, which suppresses invasion and diffusion of oxygen from the surface layer of the protective film to the inside. As a result, a film having a sufficient function as a protective film can be obtained. As described above, such an effect is confirmed by setting the penetration depth of the inert gas ions to be d / 4 or more and the injection amount of the inert gas ions to be 1 × 10 16 ions / cm 2 or less. Will be things.
【0036】更に、不活性ガスイオンの侵入深さを保護
膜の膜厚dより小さくするので、保護膜と基体の処理表
面との界面で不活性ガスイオンによるミキシングが起こ
るのを防ぐことができ、従って保護膜の除去も容易であ
る。Further, since the penetration depth of the inert gas ions is made smaller than the film thickness d of the protective film, it is possible to prevent mixing due to the inert gas ions at the interface between the protective film and the treated surface of the substrate. Therefore, the removal of the protective film is easy.
【図1】この発明に係る保護膜の形成方法を実施する膜
形成装置の一例を示す断面図である。FIG. 1 is a sectional view showing an example of a film forming apparatus for carrying out a method of forming a protective film according to the present invention.
【図2】基体とその表面の保護膜の拡大断面図である。FIG. 2 is an enlarged cross-sectional view of a substrate and a protective film on its surface.
【図3】実施例の試料について、オージェ電子分光法で
深さ方向の成分分析を行った結果を示す図である。FIG. 3 is a diagram showing the results of component analysis in the depth direction by Auger electron spectroscopy for samples of Examples.
【図4】比較例の試料について、オージェ電子分光法で
深さ方向の成分分析を行った結果を示す図である。FIG. 4 is a diagram showing the results of component analysis in the depth direction by Auger electron spectroscopy for the sample of the comparative example.
2 真空容器 6 蒸発源 8 蒸発物質 10 イオン源 12 不活性ガスイオン 14 基体 16 保護膜 2 Vacuum container 6 Evaporation source 8 Evaporation material 10 Ion source 12 Inert gas ion 14 Substrate 16 Protective film
Claims (1)
に、当該処理表面が大気に曝されるのを防止する保護膜
を形成する方法において、まず前記保護膜を真空蒸着法
によって形成し、ついで、この保護膜中に、不活性ガス
イオンを、当該イオンの侵入深さをRP 、保護膜の膜厚
をdとした場合、 d/4≦RP <d なる条件で、かつ当該イオンの注入量が1×1016個/
cm2 以下(0を含まない)の条件で注入することを特
徴とする保護膜の形成方法。1. A method of forming a protective film on a treated surface of a substrate that has been subjected to treatment under vacuum, which prevents the treated surface from being exposed to the atmosphere. First, the protective film is formed by a vacuum vapor deposition method. and, then, in this protective film, the inert gas ions, the penetration depth of the ions R P, the thickness of the protective film when the d, with d / 4 ≦ R P <d following condition, and The ion implantation amount is 1 × 10 16 /
A method of forming a protective film, which comprises implanting under a condition of not more than cm 2 (not including 0).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4215607A JPH0633233A (en) | 1992-07-20 | 1992-07-20 | Formation of protective film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4215607A JPH0633233A (en) | 1992-07-20 | 1992-07-20 | Formation of protective film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0633233A true JPH0633233A (en) | 1994-02-08 |
Family
ID=16675232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4215607A Pending JPH0633233A (en) | 1992-07-20 | 1992-07-20 | Formation of protective film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0633233A (en) |
-
1992
- 1992-07-20 JP JP4215607A patent/JPH0633233A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Standaert et al. | High density fluorocarbon etching of silicon in an inductively coupled plasma: Mechanism of etching through a thick steady state fluorocarbon layer | |
US5605724A (en) | Method of forming a metal conductor and diffusion layer | |
JPH08246152A (en) | Improved titanium nitride layer built up by chemical vapor phase buildup and production thereof | |
JPH0677216A (en) | Plasma annealing method for enhancement of barrier characteristic of vapor-deposited thin film | |
Thuillard et al. | Al3Ti formation by diffusion of aluminum through titanium | |
Harris et al. | Studies on the Al, O,-Ti-Mo-Au metallization system | |
EP1028173A2 (en) | Titanium nitride barrier layers | |
JPH0633233A (en) | Formation of protective film | |
JPH0784642B2 (en) | Method for forming a film on the surface of an object to be treated | |
JPH0633235A (en) | Formation of protective film | |
Lim et al. | Effect of substrate bias voltage on the thermal stability of Cu/Ta/Si structures deposited by ion beam deposition | |
JPH0633234A (en) | Formation of protective film | |
Kwak et al. | Improvement of Ta diffusion barrier performance in Cu metallization by insertion of a thin Zr layer into Ta film | |
Young et al. | XPS study of thallium oxidation states in precursor TlBaCaCuO HTSC thin films | |
JP3727693B2 (en) | TiN film manufacturing method | |
JPS6326349A (en) | Formation of cubic boron nitride film | |
JPH05295522A (en) | Formation of thin film | |
JP3275360B2 (en) | Film formation method | |
JPS6376321A (en) | Manufacture of semiconductor device | |
JPS61201772A (en) | Method and device for forming thin film | |
Behner | Reoxidation of silicon substrates during the sputter deposition of oxidic thin films | |
JPH0524959A (en) | Manufacture of ceramic circuit board | |
Kleinsasser | Relationship between beam and junction parameters in ion beam processed Josephson devices | |
JPH0978226A (en) | Treatment of substrate surface | |
JPH05311438A (en) | Formation of film and surface-treated substrate for film formation |