JPH0633235A - Formation of protective film - Google Patents

Formation of protective film

Info

Publication number
JPH0633235A
JPH0633235A JP21560992A JP21560992A JPH0633235A JP H0633235 A JPH0633235 A JP H0633235A JP 21560992 A JP21560992 A JP 21560992A JP 21560992 A JP21560992 A JP 21560992A JP H0633235 A JPH0633235 A JP H0633235A
Authority
JP
Japan
Prior art keywords
protective film
film
substrate
treated surface
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21560992A
Other languages
Japanese (ja)
Inventor
Naoto Kuratani
直人 鞍谷
Kiyoshi Ogata
潔 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP21560992A priority Critical patent/JPH0633235A/en
Publication of JPH0633235A publication Critical patent/JPH0633235A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method for forming a protective film which is sufficiently provided with a function as a protective film excellent is resistance to oxidation. etc., and is easily removable while suppressing damage to the treated surface of a substrate to minimum. CONSTITUTION:First, the protective film 16 is formed on the treated surface of the substrate 14 by a vacuum deposition method using an evaporating source 6. Then, he ions 12 drawn from an ion source 10 are injected into the protective film so as to make the intruding depth thereof smaller than the film thickness of the protective thickness 16. Damage given to the treated surface of the substrate is thus suppressed to the minimum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、真空下で成膜等の処
理が施された基体の処理表面に、当該処理表面が大気に
曝されるのを防止する保護膜を形成する保護膜の形成方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a protective film for forming a protective film on a treated surface of a substrate which has been subjected to treatment such as film formation under vacuum, to prevent the treated surface from being exposed to the atmosphere. It relates to a forming method.

【0002】[0002]

【背景となる技術】基体上に膜を形成する方法には、典
型的には、CVD法(化学的気相法)とPVD法(物理
的気相法)とがあり、これらの方法にはそれぞれ特徴が
ある。
BACKGROUND ART As a method for forming a film on a substrate, there are typically a CVD method (chemical vapor phase method) and a PVD method (physical vapor phase method). Each has its own characteristics.

【0003】一般的に、CVD法は膜の堆積速度が速
く、付き回り性も良い。しかしながら、基体を加熱しな
がら成膜を行うので、基体の種類が限定される。また、
高温に曝されたとき、基体が損傷することは否めない。
Generally, the CVD method has a high film deposition rate and good throwing power. However, since the film is formed while heating the substrate, the type of substrate is limited. Also,
It is undeniable that the substrate will be damaged when exposed to high temperatures.

【0004】一方、PVD法の一種である真空蒸着法
は、基体を高温に曝すことなく成膜できるので基体の種
類の制限が少ないが、膜の密着力はCVD法に比べて劣
る。
On the other hand, the vacuum vapor deposition method, which is a type of PVD method, can form a film without exposing the substrate to a high temperature, so that the type of the substrate is not limited, but the adhesion of the film is inferior to the CVD method.

【0005】そのため、これらの成膜方法は、基体の種
類、付ける膜の目的等に応じて使い分けられている。
Therefore, these film forming methods are properly used according to the type of the substrate, the purpose of the film to be attached, and the like.

【0006】また、このような複数の成膜プロセスを組
み合わせて基体上に膜、例えば多層膜を形成しようとす
るとき、複数の膜形成装置を用いなければならない場合
がある。その場合、先の処理工程を終え、次の処理工程
に移る際に、処理した基体を大気中に曝露しなければな
らない。このとき、基体の処理表面(即ち、基体上に成
膜処理が施されている場合は当該膜の表面)が大気に曝
されて、酸化、汚染、腐食され、それによって、当該処
理表面あるいはその上に次の工程で形成される膜の特性
に悪影響を及ぼす危険性がある。
When a plurality of film forming processes are combined to form a film, for example, a multi-layer film on a substrate, it may be necessary to use a plurality of film forming apparatuses. In that case, the treated substrate must be exposed to the atmosphere when finishing the previous treatment step and moving to the next treatment step. At this time, the treated surface of the substrate (that is, the surface of the film if the substrate is subjected to a film-forming treatment) is exposed to the atmosphere and is oxidized, contaminated, or corroded, whereby the treated surface or its There is a risk of adversely affecting the properties of the film formed in the next step.

【0007】そこでこれを避けるために、複数の膜形成
装置を用いて基体上に例えば多層膜を形成する場合、先
の成膜工程から次の成膜工程に移るときに基体を大気中
に曝してもその処理表面が酸化、汚染、腐食されないよ
うに保護膜を形成しておく方法が、同一出願人によって
別途提案されている。
Therefore, in order to avoid this, when forming, for example, a multilayer film on a substrate using a plurality of film forming apparatuses, the substrate is exposed to the atmosphere when moving from the previous film forming step to the next film forming step. However, the same applicant has separately proposed a method of forming a protective film so that the treated surface is not oxidized, contaminated, or corroded.

【0008】即ち、先の工程で処理を終えた基体の(よ
り具体的にはその上に形成された膜の)表面上に、この
基体を大気に曝すことなく同一膜形成装置内で保護膜を
形成する。その後、次工程を行う膜形成装置内で、次の
膜成膜工程を行う前に、上記保護膜を取り除き、目的の
工程に入る。このような過程を経れば、基体を一旦大気
中に曝さしても基体の処理表面は酸化、汚染、腐食され
ない。
That is, the protective film is formed on the surface of the substrate (more specifically, the film formed thereon) which has been treated in the previous step without exposing the substrate to the atmosphere in the same film forming apparatus. To form. After that, in the film forming apparatus for performing the next step, before performing the next film forming step, the protective film is removed and the target step is started. Through such a process, even if the substrate is once exposed to the atmosphere, the treated surface of the substrate is not oxidized, contaminated or corroded.

【0009】[0009]

【発明が解決しようとする課題】上記保護膜は、これま
では主としてスパッタ法または真空蒸着法によって形成
されている。
The protective film has so far been formed mainly by the sputtering method or the vacuum deposition method.

【0010】しかしながら、上記保護膜をスパッタ法に
よって形成すると、スパッタ粒子のエネルギーが大き
く、しかもそのエネルギーの制御が困難であるため、基
体の処理表面に損傷を与えやすい。また、スパッタ粒子
のエネルギーが大きいために、基体の処理表面と保護膜
との密着力が大きく、そのため、基体の処理表面にでき
るだけ損傷をあたえずに保護膜を除去することは困難で
ある。
However, when the above-mentioned protective film is formed by the sputtering method, the energy of sputtered particles is large and it is difficult to control the energy, so that the treated surface of the substrate is easily damaged. Further, since the energy of the sputtered particles is large, the adhesion between the treated surface of the substrate and the protective film is large, and therefore it is difficult to remove the protective film without damaging the treated surface of the substrate as much as possible.

【0011】一方、真空蒸着法では、蒸着粒子のエネル
ギーが小さく、基体の処理表面の損傷は最小限に抑えら
れ、保護膜の除去も容易であるが、この方法では緻密な
保護膜ができにくく、そのため保護膜の耐酸化性能が劣
る。
On the other hand, in the vacuum vapor deposition method, the energy of vapor deposition particles is small, damage to the treated surface of the substrate is minimized, and the protective film can be easily removed. However, this method makes it difficult to form a dense protective film. Therefore, the oxidation resistance of the protective film is poor.

【0012】そこでこの発明は、基体の処理表面に与え
る損傷を最小限に抑えながら、耐酸化性能に優れる等の
保護膜としての機能を十分に備えており、しかも除去し
やすい保護膜を形成することができる方法を提供するこ
とを主たる目的とする。
Therefore, the present invention forms a protective film which has a sufficient function as a protective film such as excellent oxidation resistance while minimizing damage to the treated surface of the substrate, and which is easy to remove. The main purpose is to provide a method capable of doing so.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するた
め、この発明の保護膜の形成方法は、まず前述したよう
な保護膜を真空蒸着法によって形成し、ついでこの保護
膜中に、イオンの侵入深さが当該保護膜の膜厚より小さ
くなるようにしてイオン注入を行うことを特徴とする。
In order to achieve the above object, the method of forming a protective film according to the present invention is such that the protective film as described above is first formed by a vacuum vapor deposition method, and then an ion is added to the protective film. The feature is that the ion implantation is performed such that the penetration depth is smaller than the film thickness of the protective film.

【0014】[0014]

【作用】上記方法によれば、保護膜を真空蒸着法によっ
て形成するので、基体の処理表面に与えられる損傷が最
小限に抑えられる。
According to the above method, since the protective film is formed by the vacuum evaporation method, the damage given to the treated surface of the substrate can be minimized.

【0015】また、真空蒸着法で保護膜を形成した後、
当該保護膜中にイオン注入を行うので、イオンによる蒸
着原子の詰め込み作用によって保護膜が緻密になり、保
護膜の表層から内部への酸素の侵入・拡散が抑えられ、
保護膜としての機能が十分なものが得られる。
Further, after forming the protective film by the vacuum deposition method,
Since the ion implantation is performed in the protective film, the protective film becomes dense due to the packing action of the vapor deposition atoms by the ions, and the invasion / diffusion of oxygen from the surface layer of the protective film to the inside is suppressed,
A film having a sufficient function as a protective film can be obtained.

【0016】更に、イオンの侵入深さを保護膜の膜厚よ
り小さくするので、保護膜と基体の処理表面との界面で
イオンによるミキシングが起こるのを防ぐことができ、
従って保護膜の除去も容易である。
Further, since the penetration depth of ions is made smaller than the film thickness of the protective film, it is possible to prevent mixing due to ions at the interface between the protective film and the treated surface of the substrate,
Therefore, removal of the protective film is easy.

【0017】[0017]

【実施例】図1は、この発明に係る保護膜の形成方法を
実施する膜形成装置の一例を示す断面図である。この装
置は、図示しない真空排気装置によって真空排気される
真空容器2と、この真空容器2内に収納された基体14
に蒸発物質8を蒸着させて保護膜16を形成する蒸発源
6と、同基体14に向けてイオン12を照射するイオン
源10とを備えている。真空容器2内には、基体14を
保持するホルダ4が設けられている。
FIG. 1 is a sectional view showing an example of a film forming apparatus for carrying out the method of forming a protective film according to the present invention. This apparatus includes a vacuum container 2 that is evacuated by a vacuum exhaust device (not shown), and a substrate 14 housed in the vacuum container 2.
An evaporation source 6 that forms a protective film 16 by vapor-depositing an evaporation substance 8 on the substrate, and an ion source 10 that irradiates the substrate 14 with ions 12. Inside the vacuum container 2, a holder 4 that holds the base 14 is provided.

【0018】このような装置を用いて、次のようにして
基体14の処理表面に保護膜16を形成する。即ち、ま
ず、蒸発源6を働かせて、そこから保護膜を形成する所
望の蒸発物質(例えばシリコン、金属等)8を蒸発させ
てこれを基体14の処理表面に蒸着させ、このような真
空蒸着法によって、基体14の処理表面に所望の膜厚の
保護膜16を形成する。
Using such an apparatus, the protective film 16 is formed on the treated surface of the substrate 14 as follows. That is, first, the evaporation source 6 is operated to evaporate a desired evaporation substance (eg, silicon, metal, etc.) 8 for forming a protective film from the evaporation source 6, and this is evaporated on the treated surface of the substrate 14, and such a vacuum evaporation is performed. By the method, the protective film 16 having a desired film thickness is formed on the treated surface of the substrate 14.

【0019】次いで、イオン源10から所望のイオン
(例えばアルゴン等の不活性ガスイオン、窒素イオン、
酸素イオン等)12を引き出して、これを、上記のよう
にして形成された保護膜16中に注入してイオン注入を
行う。
Next, desired ions (for example, inert gas ions such as argon, nitrogen ions,
(Oxygen ions, etc.) 12 are extracted and injected into the protective film 16 formed as described above to perform ion injection.

【0020】上記イオン注入の際、図2を参照して、イ
オン12の侵入深さ(投影飛程とも言う)RP は、保護
膜16の膜厚dより小さくなるようにする。これは、イ
オン12の侵入深さRP がこれよりも大きくなると、イ
オン12が保護膜16を越えて基体14の処理表面まで
達するようになり、そうなると、イオン12によるミキ
シング作用で、保護膜16と基体14の処理表面との界
面に、保護膜16および基体14の処理表面を構成する
物質から成る混合層が形成され、これがあたかも楔のよ
うな作用をして保護膜16の密着強度が高まり、保護膜
16の除去が困難になるだけでなく、注入イオン12に
よって基体14の処理表面に損傷を与えるようになるか
らである。
At the time of the ion implantation, referring to FIG. 2, the penetration depth (also referred to as a projection range) R P of the ions 12 is made smaller than the film thickness d of the protective film 16. This is because when the penetration depth R P of the ions 12 becomes larger than this, the ions 12 reach the treated surface of the substrate 14 over the protective film 16, and then the mixing action of the ions 12 causes the protective film 16 to be processed. At the interface between the protective film 16 and the treated surface of the substrate 14, a mixed layer composed of the substances that form the treated surface of the protective film 16 and the substrate 14 is formed, and this acts like a wedge to increase the adhesion strength of the protective film 16. This is because not only the removal of the protective film 16 becomes difficult, but also the treated surface of the substrate 14 is damaged by the implanted ions 12.

【0021】次に、この発明に従ったより具体的な実施
例と、それと比較するための比較例とについて説明す
る。
Next, more specific examples according to the present invention and comparative examples for comparison therewith will be described.

【0022】(実施例)基体の表面に形成されたCu 膜
(これがこの場合の処理表面である)上に、保護膜とし
て、Si を真空蒸着法によって300Åの膜厚に形成
し、次いでこの保護膜中に、Ar イオンを2KeVのエ
ネルギーで1×1015個/cm2 注入した。このときの
イオンの侵入深さは150Å程度である。
(Example) On a Cu film (which is the treated surface in this case) formed on the surface of a substrate, Si was formed as a protective film by a vacuum deposition method to a film thickness of 300 Å, and then this protective film was formed. Ar ions were implanted into the film at an energy of 2 KeV at 1 × 10 15 ions / cm 2 . The ion penetration depth at this time is about 150 Å.

【0023】(比較例)上記と同じCu 膜上に、保護膜
として、Si を真空蒸着法によって300Åの膜厚に形
成したが、その後のイオン注入は行わなかった。
(Comparative Example) Si was formed as a protective film on the same Cu film as described above to a film thickness of 300 Å by a vacuum deposition method, but subsequent ion implantation was not performed.

【0024】(評価)上記実施例および比較例の試料を
共に一週間大気中に放置し、その後、オージェ電子分光
法で深さ方向の成分分析を行った。その結果を図3(実
施例)および図4(比較例)に示す。両図において横軸
のスパッタ時間は、表面からの深さ方向に相当する。
(Evaluation) The samples of the above-mentioned Examples and Comparative Examples were both left in the atmosphere for one week, and thereafter, component analysis in the depth direction was carried out by Auger electron spectroscopy. The results are shown in FIG. 3 (Example) and FIG. 4 (Comparative example). In both figures, the sputtering time on the horizontal axis corresponds to the depth direction from the surface.

【0025】図3から分かるように、実施例の試料は、
保護膜であるSi 膜の表面にのみ酸素(O)が検出さ
れ、Cu 膜中には拡散していない。これに対して、図4
から分かるように、比較例の試料は、保護膜であるSi
膜の表面のみならず膜中にも酸素が検出され、しかもC
u 膜との界面にまで達していることが分かる。このこと
から、実施例のSi 膜は保護膜として十分に機能してい
るが、比較例のものは保護膜として機能していないこと
が分かる。
As can be seen from FIG. 3, the samples of the examples are
Oxygen (O) was detected only on the surface of the Si film, which is a protective film, and was not diffused into the Cu film. On the other hand, FIG.
As can be seen from the above, the sample of the comparative example has a protective film of Si.
Oxygen is detected not only on the surface of the film but also in the film, and C
It can be seen that it reaches the interface with the u film. From this, it can be seen that the Si film of the example sufficiently functions as a protective film, but the Si film of the comparative example does not function as a protective film.

【0026】また、実施例の方がSi 膜をスパッタする
のに長時間かかっているのは、イオン注入によってSi
膜が緻密になっていることの現れである。
Further, in the embodiment, it takes a longer time to sputter the Si film because of the ion implantation.
This is an indication that the film is dense.

【0027】[0027]

【発明の効果】以上のようにこの発明によれば、保護膜
を真空蒸着法によって形成するので、基体の処理表面に
与える損傷を最小限に抑えることができる。
As described above, according to the present invention, since the protective film is formed by the vacuum vapor deposition method, it is possible to minimize damage to the treated surface of the substrate.

【0028】また、保護膜を形成した後、当該保護膜の
表面にイオン注入を行うので、保護膜が緻密になり、そ
の表層から内部への酸素の侵入・拡散が抑えられ、保護
膜としての機能が十分なものが得られる。
Further, after the protective film is formed, the surface of the protective film is ion-implanted, so that the protective film becomes dense, and the penetration and diffusion of oxygen from the surface layer to the inside is suppressed. The one with sufficient function is obtained.

【0029】更に、イオンの侵入深さを保護膜の膜厚よ
り小さくするので、保護膜と基体の処理表面との界面で
イオンによるミキシングが起こるのを防ぐことができ、
従って保護膜の除去も容易である。
Further, since the depth of penetration of ions is made smaller than the film thickness of the protective film, it is possible to prevent mixing by ions at the interface between the protective film and the treated surface of the substrate,
Therefore, removal of the protective film is easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る保護膜の形成方法を実施する膜
形成装置の一例を示す断面図である。
FIG. 1 is a sectional view showing an example of a film forming apparatus for carrying out a method of forming a protective film according to the present invention.

【図2】基体とその表面の保護膜の拡大断面図である。FIG. 2 is an enlarged cross-sectional view of a substrate and a protective film on its surface.

【図3】実施例の試料について、オージェ電子分光法で
深さ方向の成分分析を行った結果を示す図である。
FIG. 3 is a diagram showing the results of component analysis in the depth direction by Auger electron spectroscopy for samples of Examples.

【図4】比較例の試料について、オージェ電子分光法で
深さ方向の成分分析を行った結果を示す図である。
FIG. 4 is a diagram showing the results of component analysis in the depth direction by Auger electron spectroscopy for the sample of the comparative example.

【符号の説明】[Explanation of symbols]

2 真空容器 6 蒸発源 8 蒸発物質 10 イオン源 12 イオン 14 基体 16 保護膜 2 vacuum container 6 evaporation source 8 evaporation material 10 ion source 12 ions 14 substrate 16 protective film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 真空下で処理が施された基体の処理表面
に、当該処理表面が大気に曝されるのを防止する保護膜
を形成する方法において、まず前記保護膜を真空蒸着法
によって形成し、ついでこの保護膜中に、イオンの侵入
深さが当該保護膜の膜厚より小さくなるようにしてイオ
ン注入を行うことを特徴とする保護膜の形成方法。
1. A method of forming a protective film on a treated surface of a substrate that has been subjected to treatment under vacuum, which prevents the treated surface from being exposed to the atmosphere. First, the protective film is formed by a vacuum vapor deposition method. Then, a method for forming a protective film is characterized in that ion implantation is performed in the protective film such that the depth of penetration of ions is smaller than the film thickness of the protective film.
JP21560992A 1992-07-20 1992-07-20 Formation of protective film Pending JPH0633235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21560992A JPH0633235A (en) 1992-07-20 1992-07-20 Formation of protective film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21560992A JPH0633235A (en) 1992-07-20 1992-07-20 Formation of protective film

Publications (1)

Publication Number Publication Date
JPH0633235A true JPH0633235A (en) 1994-02-08

Family

ID=16675261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21560992A Pending JPH0633235A (en) 1992-07-20 1992-07-20 Formation of protective film

Country Status (1)

Country Link
JP (1) JPH0633235A (en)

Similar Documents

Publication Publication Date Title
US4248688A (en) Ion milling of thin metal films
US5605724A (en) Method of forming a metal conductor and diffusion layer
JPS58177469A (en) Method and device for formation of thin film
JPH08246152A (en) Improved titanium nitride layer built up by chemical vapor phase buildup and production thereof
JPH0677216A (en) Plasma annealing method for enhancement of barrier characteristic of vapor-deposited thin film
Thuillard et al. Al3Ti formation by diffusion of aluminum through titanium
Harris et al. Studies on the Al2O3− Ti− Mo− Au metallization system
JPH0633235A (en) Formation of protective film
EP1028173A2 (en) Titanium nitride barrier layers
Oura et al. Surface structure of epitaxial Pd2Si thin films
JPH0784642B2 (en) Method for forming a film on the surface of an object to be treated
JPH0633233A (en) Formation of protective film
JPH0633234A (en) Formation of protective film
Young et al. XPS study of thallium oxidation states in precursor TlBaCaCuO HTSC thin films
JP3275360B2 (en) Film formation method
JPS6326349A (en) Formation of cubic boron nitride film
JP3727693B2 (en) TiN film manufacturing method
JPH05295522A (en) Formation of thin film
JPS61201772A (en) Method and device for forming thin film
Behner Reoxidation of silicon substrates during the sputter deposition of oxidic thin films
KR100510917B1 (en) Barrier layer formation method
JPH05209262A (en) Manufacture of film coating
JPH04337445A (en) Manufacture of microsection
JPH05311438A (en) Formation of film and surface-treated substrate for film formation
JP2507963B2 (en) Method of manufacturing oxide thin film