JPH0633225B2 - Liquid phase epitaxial growth method - Google Patents

Liquid phase epitaxial growth method

Info

Publication number
JPH0633225B2
JPH0633225B2 JP8017886A JP8017886A JPH0633225B2 JP H0633225 B2 JPH0633225 B2 JP H0633225B2 JP 8017886 A JP8017886 A JP 8017886A JP 8017886 A JP8017886 A JP 8017886A JP H0633225 B2 JPH0633225 B2 JP H0633225B2
Authority
JP
Japan
Prior art keywords
solution
growth
holder
substrate
liquid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8017886A
Other languages
Japanese (ja)
Other versions
JPS62241893A (en
Inventor
恒弘 海野
峰生 和島
尚史 楯
泰一郎 今野
洋 杉本
彰二 隈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP8017886A priority Critical patent/JPH0633225B2/en
Publication of JPS62241893A publication Critical patent/JPS62241893A/en
Publication of JPH0633225B2 publication Critical patent/JPH0633225B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は液相エピタキシャル成長方法に係り、特に室温
付近で固体となる金属Inを溶媒とするエピタキシャル成
長方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a liquid phase epitaxial growth method, and more particularly to an epitaxial growth method using metal In, which becomes a solid at around room temperature, as a solvent.

[従来の技術] GaAs等の化合物半導体のエピタキシャル成長法には液相
成長法,気相成長法(VPE法),有機金属熱分解気相
成長法(MOCVD法),分子線エピタキシャル法(M
BE法)等があるが、良質の結晶相を得るためには液相
成長法が最も適し、発光ダイオードや半導体レーザの生
産レベルで広く用いられている。この液相成長法は成分
元素を含んだ溶液に直接基板を接触させて結晶成長させ
る方法であり、さらに基板と溶液との接触のさせ方によ
って各種の方法に分けることができる。その中で例えば
第10図に示すようなスライドボート法が一般に用いら
れている。
[Prior Art] Liquid phase epitaxy, vapor phase epitaxy (VPE), metalorganic pyrolysis vapor phase epitaxy (MOCVD), molecular beam epitaxy (M) is used for epitaxial growth of compound semiconductors such as GaAs.
BE method), etc., but the liquid phase growth method is most suitable for obtaining a high quality crystal phase and is widely used at the production level of light emitting diodes and semiconductor lasers. The liquid phase growth method is a method of directly contacting a substrate with a solution containing a component element to grow crystals, and can be classified into various methods depending on how the substrate is brought into contact with the solution. Among them, the slide boat method as shown in FIG. 10 is generally used.

すなわち、原料ホルダ101をスライドさせて成長用溶
液溜102内の成長用溶液103を溶液ホルダ104の
溶液溜105に分配した後、基板ホルダ106をスライ
ドさせることにより基板107と溶液溜105内の成長
用溶液とを接触させ、基板107上に結晶層を形成す
る。
That is, the material holder 101 is slid to distribute the growth solution 103 in the growth solution reservoir 102 to the solution reservoir 105 of the solution holder 104, and then the substrate holder 106 is slid to grow the growth in the substrate 107 and the solution reservoir 105. A crystal layer is formed on the substrate 107 by bringing the crystal layer into contact therewith.

このように、成長用溶液103を薄い溶液溜105に分
配してからこれを基板107に接触させるので、接触時
の成長用溶液103の温度分布が容易に均一化され、そ
の結果膜厚の均一なエピタキシャル層を成長させること
ができる。例えば、GaAsやGaAlAs等金属ガリウムを溶媒
とする液相エピタキシャル法では膜厚のばらつきが±5
%以下と極めて均一性の優れた成長を行なうことが可能
である。
In this way, since the growth solution 103 is distributed to the thin solution reservoir 105 and then brought into contact with the substrate 107, the temperature distribution of the growth solution 103 at the time of contact can be easily made uniform, and as a result, the film thickness can be made uniform. An epitaxial layer can be grown. For example, in the liquid phase epitaxial method using metallic gallium such as GaAs or GaAlAs as a solvent, the variation in film thickness is ± 5.
% Or less, it is possible to perform growth with extremely excellent uniformity.

しかしながら、InPやInAs等を成長させる際の溶媒とな
る金属Inは156.4℃の融点を有し室温付近では固体とな
るために、これらの化合物半導体をスライドボートによ
り成長させた場合には、成長終了後のボート分解時に残
留した成長用溶液が固体となってスライドボートから取
り出すことが困難となる。
However, since metal In, which serves as a solvent when growing InP, InAs, etc., has a melting point of 156.4 ° C. and becomes a solid near room temperature, the growth ends when these compound semiconductors are grown by a slide boat. The growth solution remaining during the subsequent boat decomposition becomes solid, and it becomes difficult to remove it from the slide boat.

このスライドボートは主としてグラファイトから構成さ
れているが、成長終了後に固体となったInを取り出すた
めに力を加えても破損しないように肉厚のボートを用い
る必要があり、薄く且つ細かい加工を施したものを使用
することができない。すなわち、InPやInAs等の成長に
は第10図に示す成長用溶液分配式のスライドボートを
用いることができず、第11図のように基板ホルダ10
6のすぐ上に原料ホルダ101が配置される単純な構造
のスライドボートを用いざるを得ない。
This slide boat is mainly composed of graphite, but it is necessary to use a thick boat so that it will not be damaged even if a force is applied in order to take out solid In after the growth is completed. You cannot use what you have done. That is, the growth solution distribution type slide boat shown in FIG. 10 cannot be used for the growth of InP, InAs, etc., and the substrate holder 10 as shown in FIG.
The slide boat having a simple structure in which the raw material holder 101 is arranged immediately above 6 has to be used.

その結果、InPやInAsでは膜厚の均一性に優れたエピタ
キシャル層を成長させることが難しく、例えば1μm厚
のInPエピタキシャル層を成長させた場合、その膜厚に
±20〜30%のばらつきを生じていた。
As a result, it is difficult to grow an epitaxial layer having excellent film thickness uniformity with InP or InAs. For example, when an InP epitaxial layer having a thickness of 1 μm is grown, the film thickness varies ± 20 to 30%. Was there.

[発明が解決しようとする問題点] 以上述べたように、従来のスライドボートを用いた液相
エピタキシャル法ではInPやInAs等室温付近で固体とな
る金属(In)を溶媒とするエピタキシャル層を均一な膜
厚で成長させることができないという問題があった。
[Problems to be Solved by the Invention] As described above, in the liquid phase epitaxial method using the conventional slide boat, a uniform epitaxial layer using InP or InAs, which becomes a solid near room temperature as a solvent (In), is formed. There was a problem that it could not be grown with a uniform film thickness.

かくして本発明の目的は上記従来技術の問題点を解消
し、室温付近で固定となる金属Inを溶媒としても膜厚の
均一性に優れたエピタキシャル層を成長させることがで
きる液相エピタキシャル成長方法を提供することにあ
る。
Thus, the object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a liquid phase epitaxial growth method capable of growing an epitaxial layer excellent in film thickness uniformity even when metal In, which is fixed at around room temperature, is used as a solvent. To do.

[問題点を解決するための手段] 本発明の液相エピタキシャル成長方法は上記目的を達成
するために、スライドボート法により室温付近で固体と
なる金属Inを溶媒とする成長用溶液と基板との接触を行
なってエピタキシャル成長させた後、溶液溜に残留して
いる成長用溶液に金属Gaを添加する方法である。
[Means for Solving Problems] In order to achieve the above-mentioned object, the liquid phase epitaxial growth method of the present invention involves contacting a substrate with a growth solution using metal In, which becomes solid at room temperature, as a solvent by the slide boat method. Is performed to perform epitaxial growth, and then metallic Ga is added to the growth solution remaining in the solution pool.

[作用] 金属Gaは29.78℃と金属としては極めて低い融点を有し
ているので、成長終了後の残留成長用溶液に金属Gaを添
加することにより室温付近において成長用溶液を液相と
することができる。そのため、例えば第1図に示すよう
な成長用溶液分配式のスライドボートを用いてInを溶媒
とするエピタキシャル成長を行なうことが可能となる。
[Function] Since metallic Ga has a melting point of 29.78 ° C., which is extremely low as a metal, by adding metallic Ga to the residual growth solution after completion of growth, the growth solution becomes a liquid phase at around room temperature. You can Therefore, it becomes possible to perform epitaxial growth using In as a solvent, for example, using a growth solution distribution type slide boat as shown in FIG.

第1図において、基板1が基板ホルダ2に、成長用溶液
3が原料ホルダ4に、金属Ga5がGaホルダ6にそれぞれ
収容されており、原料ホルダ4をスライドさせて成長用
溶液3の一部を溶液ホルダ7の溶液溜8内に分配した
後、基板ホルダ2をスライドすることにより基板1上に
エピタキシャル成長させる。そして成長終了後、シャッ
タ9及び原料ホルダ4を共にスライドさせて金属Ga5を
原料ホルダ4及び溶液ホルダ7に残留している成長用溶
液3に添加する。
In FIG. 1, the substrate 1 is accommodated in the substrate holder 2, the growth solution 3 is accommodated in the raw material holder 4, and the metal Ga 5 is accommodated in the Ga holder 6, respectively. After being distributed in the solution reservoir 8 of the solution holder 7, the substrate holder 2 is slid to grow epitaxially on the substrate 1. After the growth is completed, the shutter 9 and the raw material holder 4 are slid together to add the metallic Ga 5 to the growth solution 3 remaining in the raw material holder 4 and the solution holder 7.

このようにして、膜厚の均一なエピタキシャル成長がな
されると共に成長用溶液への金属Gaの添加がなされる。
In this way, epitaxial growth with a uniform film thickness is performed, and metal Ga is added to the growth solution.

[実施例] 以下、本発明の実施例を添付図面に従って説明する。EXAMPLES Examples of the present invention will be described below with reference to the accompanying drawings.

第2図は本発明の一実施例に係る液相エピタキシャル成
長方法で用いられるスライドボートの断面構成図であ
る。基板ホルダ11には2インチ(約5.1cm)サイズのI
nP基板12が保持され、原料ホルダ13の原料溶液溜1
4内にはIn100gとInP結晶1.5gが、メルトバック用原
料溶液溜15にはIn100gがそれぞれ収容されている。
また、最上部に位置するGaホルダ16の2つのGaメルト
溜17及び18にはそれぞれ金属Ga100gが収容されて
いる。基板ホルダ11と原料ホルダ13との間には2つ
の溶液溜19及び20を有する厚さ3mmの溶液ホルダ2
1が介在し、原料ホルダ13とGaホルダ16との間には
2つの開口部を有するシャッタ22が介在している。
FIG. 2 is a cross-sectional configuration diagram of a slide boat used in the liquid phase epitaxial growth method according to one embodiment of the present invention. The substrate holder 11 has a 2-inch (about 5.1 cm) size I
The nP substrate 12 is held, and the raw material solution reservoir 1 of the raw material holder 13 is held.
In, 100 g of In and 1.5 g of InP crystal are stored in the No. 4, and In100 g is stored in the meltback raw material solution reservoir 15.
Moreover, 100 Ga of metal Ga is accommodated in each of the two Ga melt reservoirs 17 and 18 of the Ga holder 16 located at the top. A solution holder 2 having a thickness of 3 mm, which has two solution reservoirs 19 and 20 between the substrate holder 11 and the raw material holder 13.
1, a shutter 22 having two openings is interposed between the raw material holder 13 and the Ga holder 16.

このスライドボートを反応管(図示せず)内に配置し、
反応管内の水素ガス置換を行なった後、外部の加熱炉
(図示せず)により660℃まで昇温した。炉内温度が660
℃に達してから2時間経過後、原料ホルダ13をスライ
ドさせて原料溶液溜14及びメルトバック用原料溶液溜
15内に収容されている成長用溶液及びメルトバック用
溶液をそれぞれ溶液ホルダ21の溶液溜19及び20内
に分配し(第3図参照)、その後原料ホルダ13を元の
位置に戻す(第4図参照)。
Place this slide boat in a reaction tube (not shown),
After replacing the inside of the reaction tube with hydrogen gas, the temperature was raised to 660 ° C. by an external heating furnace (not shown). Furnace temperature is 660
After 2 hours have passed since the temperature reached to 0 ° C., the raw material holder 13 is slid so that the growth solution and the meltback solution stored in the raw material solution reservoir 14 and the meltback raw material solution reservoir 15 are respectively stored in the solution holder 21. It is distributed into the reservoirs 19 and 20 (see FIG. 3), and then the raw material holder 13 is returned to its original position (see FIG. 4).

次に、0.5℃/minの冷却速度で炉内を降温し、降温開始
から12分間経過後すなわち炉内温度が654℃となった
ところで基板ホルダ11をスライドさせ、基板12を溶
液ホルダ21の溶液溜20の直下に位置させて約5秒間
基板12にメルトバック用溶液を接触させた。このよう
にしてメルトバックを行ない基板12表面の熱劣化層を
除去した後、再び基板ホルダ11をスライドさせること
により基板12を溶液ホルダ21の溶液溜19の直下に
位置させて、20分間基板12と成長用溶液との接触を
行なった(第5図参照)。これにより基板12上にInP
のエピタキシャル層が成長される。
Next, the inside of the furnace is cooled at a cooling rate of 0.5 ° C./min, and 12 minutes after the start of the temperature decrease, that is, when the temperature inside the furnace reaches 654 ° C., the substrate holder 11 is slid to move the substrate 12 to the solution in the solution holder 21. The meltback solution was brought into contact with the substrate 12 for about 5 seconds while being positioned directly below the reservoir 20. After the melt-back is performed in this way to remove the heat-deteriorated layer on the surface of the substrate 12, the substrate holder 11 is slid again to position the substrate 12 directly below the solution reservoir 19 of the solution holder 21, and the substrate 12 is kept for 20 minutes. Was contacted with the growth solution (see FIG. 5). As a result, InP on the substrate 12
Epitaxial layers are grown.

その後、基板ホルダ11を元の位置に戻してメルトオフ
を行なった(第6図参照)。さらに、シャッタ22と原
料ホルダ13とを共にスライドさせて溶液ホルダ21の
溶液溜19及び20に残留している成長用溶液及びメル
トバック用溶液と原料ホルダ13の原料溶液溜14及び
メルトバック用原料溶液溜15内に各溶液とをそれぞれ
混合すると共にこれらの溶液中にGaホルダ16のGaメル
ト溜17及び18内に収容されていた金属Gaを添加した
(第7図参照)。
After that, the substrate holder 11 was returned to the original position to perform melt-off (see FIG. 6). Further, the shutter 22 and the raw material holder 13 are slid together and the growth solution and the meltback solution remaining in the solution reservoirs 19 and 20 of the solution holder 21, the raw material solution reservoir 14 of the raw material holder 13 and the meltback raw material. The respective solutions were mixed in the solution reservoir 15 and the metallic Ga contained in the Ga melt reservoirs 17 and 18 of the Ga holder 16 was added to these solutions (see FIG. 7).

この状態で炉内を冷却し、炉内温度が室温付近となった
ところで、スライドボートを反応管から取り出し分解し
た。このとき、Inを溶媒とする成長用溶液とメルトバッ
ク用溶液は金属Gaが添加されているので液体状態を保持
しており、容易にボートの掃除を行なうことができた。
In this state, the inside of the furnace was cooled, and when the temperature inside the furnace was around room temperature, the slide boat was taken out from the reaction tube and disassembled. At this time, the growth solution and the meltback solution using In as a solvent kept the liquid state because the metallic Ga was added, and the boat could be easily cleaned.

また、基板12上に成長されたInPエピタキシャル層の
膜厚を測定したところ、平均3.8μmでそのばらつきは
±5%以下であった。
Further, when the film thickness of the InP epitaxial layer grown on the substrate 12 was measured, the average was 3.8 μm, and the variation was ± 5% or less.

なお、上記実施例では金属Gaをスライドボートの最上部
すなわち成長用溶液の上部に位置させたがこれに限るも
のではなく、成長終了後に成長用溶液中の金属Gaを添加
することができればよい。そこで、例えば第8図のよう
に原料ホルダ31と溶液ホルダ32のそれぞれにGaメル
ト溜33及び34を設けて金属Gaを収容しておき、成長
終了後に原料ホルダ31をスライドさせて第9図の如く
残留した成長用溶液に金属Gaを添加するように構成して
もよい。
Although the metal Ga is positioned at the top of the slide boat, that is, at the top of the growth solution in the above embodiment, the present invention is not limited to this. It is sufficient that the metal Ga in the growth solution can be added after the growth is completed. Therefore, for example, as shown in FIG. 8, the raw material holder 31 and the solution holder 32 are provided with Ga melt reservoirs 33 and 34 to accommodate metallic Ga, and after the growth is completed, the raw material holder 31 is slid to move the same as shown in FIG. The metallic Ga may be added to the remaining growth solution.

[発明の効果] 以上説明したように本発明によれば、次の如き優れた効
果を発揮する。
[Effects of the Invention] As described above, according to the present invention, the following excellent effects are exhibited.

(1)成長終了後、残留した成長用溶液に金属Gaを添加す
ることにより、室温付近で固体となる金属Inを溶媒とす
る液相エピタキシャル法でも残留した成長用溶液を液体
状態のまま取り出すことが可能となる。従って、細かく
加工された、あるいは薄い板材からなるスライドボート
を用いることができるようになった。
(1) After the growth is completed, by adding metallic Ga to the remaining growth solution, the remaining growth solution can be taken out in the liquid state even in the liquid phase epitaxial method using metal In as a solvent that becomes a solid at room temperature as a solvent. Is possible. Therefore, it has become possible to use a slide boat made of finely worked or thin plate material.

(2)その結果、Inを溶媒とする液相エピタキシャル法で
あっても膜厚の均一性に優れたエピタキシャル層を成長
させることが可能となった。
(2) As a result, it became possible to grow an epitaxial layer with excellent film thickness uniformity even by a liquid phase epitaxial method using In as a solvent.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の液相エピタキシャル成長方法で使用し
得るスライドボートの構成図、第2図ないし第7図はそ
れぞれ本発明の一実施例に係る方法を示す工程図、第8
図及び第9図はそれぞれ他の実施例を示す工程図、第1
0図及び第11図はそれぞれ従来例で使用されたスライ
ドボートの構成図である。 図中、1は基板、2は基板ホルダ、3は成長用溶液、5
は金属Ga、7は溶液ホルダ、8は溶液溜である。
FIG. 1 is a block diagram of a slide boat that can be used in the liquid phase epitaxial growth method of the present invention, FIGS. 2 to 7 are process drawings showing the method according to one embodiment of the present invention, and FIG.
FIG. 9 and FIG. 9 are process drawings showing another embodiment, respectively.
FIG. 0 and FIG. 11 are configuration diagrams of slide boats used in the conventional example. In the figure, 1 is a substrate, 2 is a substrate holder, 3 is a growth solution, 5
Is metal Ga, 7 is a solution holder, and 8 is a solution reservoir.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今野 泰一郎 茨城県日立市日高町5丁目1番1号 日立 電線株式会社電線研究所内 (72)発明者 杉本 洋 茨城県日立市日高町5丁目1番1号 日立 電線株式会社電線研究所内 (72)発明者 隈 彰二 茨城県日立市日高町5丁目1番1号 日立 電線株式会社電線研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Taiichiro Konno 5-1-1 Hidaka-cho, Hitachi-shi, Ibaraki Hitachi Cable, Ltd. Electric Wire Laboratory (72) Inventor Hiroshi Sugimoto 5-chome, Hidaka-cho, Hitachi-shi, Ibaraki 1-1 Electric Cable Research Institute, Hitachi Cable (72) Inventor Shoji Kuma 5-1-1 Hidakacho, Hitachi City, Ibaraki Hitachi Cable Research Laboratory, Hitachi Cable

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】溶液ホルダの溶液溜内に金属Inを溶媒とす
る成長用溶液を収容すると共に基板ホルダに基板を保持
させ、上記溶液ホルダと上記基板ホルダとを相対的にス
ライドさせて上記基板と上記成長用溶液との接触を行な
いエピタキシャル成長させた後、上記溶液溜内に残留し
ている成長用溶液に金属Gaを添加することを特徴とする
液相エピタキシャル成長方法。
1. A substrate containing a growth solution containing metal In as a solvent in a solution reservoir of the solution holder and holding the substrate on the substrate holder, and sliding the solution holder and the substrate holder relative to each other. And the growth solution are brought into contact with each other for epitaxial growth, and then metallic Ga is added to the growth solution remaining in the solution reservoir.
JP8017886A 1986-04-09 1986-04-09 Liquid phase epitaxial growth method Expired - Lifetime JPH0633225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8017886A JPH0633225B2 (en) 1986-04-09 1986-04-09 Liquid phase epitaxial growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8017886A JPH0633225B2 (en) 1986-04-09 1986-04-09 Liquid phase epitaxial growth method

Publications (2)

Publication Number Publication Date
JPS62241893A JPS62241893A (en) 1987-10-22
JPH0633225B2 true JPH0633225B2 (en) 1994-05-02

Family

ID=13711099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8017886A Expired - Lifetime JPH0633225B2 (en) 1986-04-09 1986-04-09 Liquid phase epitaxial growth method

Country Status (1)

Country Link
JP (1) JPH0633225B2 (en)

Also Published As

Publication number Publication date
JPS62241893A (en) 1987-10-22

Similar Documents

Publication Publication Date Title
CA1086431A (en) Etching of iii-v semiconductor materials in the preparation of heterodiodes
US4488914A (en) Process for the epitaxial deposition of III-V compounds utilizing a continuous in-situ hydrogen chloride etch
Saul Reduced dislocation densities in liquid phase epitaxy layers by intermittent growth
JPH0633225B2 (en) Liquid phase epitaxial growth method
EP0160701B1 (en) Lpe growth on group iii-v compound semiconductor substrates containing phosphorus
US3891478A (en) Deposition of epitaxial layer from the liquid phase
USRE28140E (en) Bergh ctal
JP4211897B2 (en) Liquid phase epitaxial growth method
JPS5853826A (en) Liquid epitaxial growing method
EP0525617B1 (en) Liquid-phase growth process of compound semiconductor
JPH0279422A (en) Liquid phase epitaxial growth device and growth method
JPH0218576B2 (en)
JP3151277B2 (en) Liquid phase epitaxial growth method
JPS60161397A (en) Liquid phase epitaxial growth method
JP3202405B2 (en) Epitaxial growth method
JPS62128522A (en) Liquid growth method
JPS6047237B2 (en) Method for manufacturing optical semiconductor devices
JPS6230694A (en) Liquid-phase epitaxial growth
JPH0694398B2 (en) Liquid phase epitaxial growth method
JPH0330288B2 (en)
JPH01153592A (en) Boat for epitaxial growth
JPS62202893A (en) Liquid phase epitaxy
JPS62292693A (en) Liquid epitaxy device
JPH0322052B2 (en)
JPH0399425A (en) Liquid phase epitaxial growth system