JPS62202893A - Liquid phase epitaxy - Google Patents

Liquid phase epitaxy

Info

Publication number
JPS62202893A
JPS62202893A JP4137986A JP4137986A JPS62202893A JP S62202893 A JPS62202893 A JP S62202893A JP 4137986 A JP4137986 A JP 4137986A JP 4137986 A JP4137986 A JP 4137986A JP S62202893 A JPS62202893 A JP S62202893A
Authority
JP
Japan
Prior art keywords
solution
substrate
holder
solution reservoir
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4137986A
Other languages
Japanese (ja)
Inventor
Tsunehiro Unno
恒弘 海野
Mineo Wajima
峰生 和島
Hisafumi Tate
尚史 楯
Taiichiro Konno
泰一郎 今野
Hiroshi Sugimoto
洋 杉本
Shoji Kuma
隈 彰二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP4137986A priority Critical patent/JPS62202893A/en
Publication of JPS62202893A publication Critical patent/JPS62202893A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to grow an epitaxial layer having improved uniformity and reproducibility even for a film thickness of <=1mu, by setting the length of an opening part of a solution reservoir in the sliding direction of a substrate holder according to the film thickness of the epitaxial layer to be grown. CONSTITUTION:The length of an opening part of a solution reservoir in the sliding direction of a substrate holder can be set according to the film thickness of an epitaxial layer to be grown. The solution reservoir having such an opening part may be provided in a solution holder to control the contact time of a solution for growth in the solution reservoir with a substrate even by sliding the substrate holder at a constant speed. For example, the solution reservoir having a short opening part in the sliding direction of the substrate holder may be provided in the solution holder for forming a thin-walled epitaxial layer. Thereby the contact time of the solution for growth with the substrate can be shortened and the aimed thin epitaxial layer is gown on the substrate.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は液相エピタキシャル成長方法に係り、特にスラ
イドボート法によりエピタキシャル成長させる方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a liquid phase epitaxial growth method, and particularly to a method for epitaxial growth using a slide boat method.

〔従来の技術] GaAS等の化合物半導体のエピタキシシル成長法には
液相成長法、気相成長法(VPE法)有機金属熱分解気
相成長法(MOCVD法)1分子線エピタキシャル法(
MBE法)等があるが、良質の結晶相を得るためには液
相成長法が最も適し、発光ダイオードや半導体レーザの
生産レベルで広く用いられている。この液相成長法は成
分元素を含んだ溶液に直接基板を接触させて結晶成長さ
せる方法であり、さらに基板と溶液との接触のさせ方に
よって各種の方法に分けることができる。その中で第3
図に示すスライドボート法が一般に用いられている。
[Prior art] Epitaxial growth methods for compound semiconductors such as GaAS include liquid phase epitaxy, vapor phase epitaxy (VPE), metal organic pyrolysis vapor phase epitaxy (MOCVD), and single molecule beam epitaxy (
MBE method), etc., but the liquid phase growth method is most suitable for obtaining a high-quality crystalline phase, and is widely used at the production level of light emitting diodes and semiconductor lasers. This liquid phase growth method is a method of growing crystals by bringing a substrate into direct contact with a solution containing component elements, and can be further divided into various methods depending on how the substrate is brought into contact with the solution. The third among them
The slide boat method shown in the figure is commonly used.

すなわち、基板ホルダ31の表面に形成されている基板
保持用の凹部内に基板32を嵌入し、この基板32を基
板ホルダ31と共に台座33とメルトホルダ34との間
をスライドさせて、基板32をメルトホルダ34の溶液
溜35内に収容されている成長用溶液36の真下に位置
させる。なお、溶液溜35は基板32の寸法dとほぼ等
しい寸法りを有している。このようにして、基板32と
成長用溶液36との接触がなされ、基板32上に良質の
結晶層が形成される。
That is, the substrate 32 is fitted into a substrate holding recess formed on the surface of the substrate holder 31, and the substrate 32 is slid together with the substrate holder 31 between the pedestal 33 and the melt holder 34, and the substrate 32 is inserted into the melt holder. It is located directly below the growth solution 36 contained in the solution reservoir 35 of 34. Note that the solution reservoir 35 has a dimension approximately equal to the dimension d of the substrate 32. In this way, contact is made between the substrate 32 and the growth solution 36, and a high quality crystal layer is formed on the substrate 32.

[発明が解決しようとする問題点] ところで、例えばGaAsのショットキーダイオードの
場合にはGaAs1板上に2〜10Im厚のバッファ層
を成長させた侵、さらにその上に0.2〜0.3層厚の
能動層を成長させる必要があり、この能動層の厚さが直
接ダイオードの特性に影響してくるために0.2〜0.
3−という厚さを均−性及び再現性よく成長させなけれ
ばならない。
[Problems to be Solved by the Invention] For example, in the case of a GaAs Schottky diode, a buffer layer with a thickness of 2 to 10 μm is grown on a single GaAs plate, and a layer of 0.2 to 0.3 μm is grown on the buffer layer. It is necessary to grow an active layer with a thickness of 0.2 to 0.2 to 0.0, since the thickness of this active layer directly affects the characteristics of the diode.
It is necessary to grow a thickness of 3-mm thick with good uniformity and reproducibility.

また、半導体レーザの場合にはクラッド居に挟まれた活
性層の厚さは0.054と極薄く、この厚さをいかに均
−性及び再現性よく成長させることができるかによって
半導体レーザの歩留りが決定される。
In addition, in the case of semiconductor lasers, the thickness of the active layer sandwiched between the cladding layers is as thin as 0.054 mm, and the yield of semiconductor lasers depends on how uniformly and reproducibly this thickness can be grown. is determined.

従来、これらのショットキーダイオードの能動層や半導
体レーザの活性層のように薄い層を液相エピタキシャル
法により成長させる場合には、第3図において基板32
を高速度で溶液溜35の下をスライドさせたり、成長用
溶液36の過飽和度を複雑に制御する方法が採られてい
た。しかしながら、この液相エピタキシャル法ではMB
E法やMOCVD法等に比べて成長速度が速く、厚さ1
p以下のエピタキシャル層を均一に再現性よく成長させ
ることは困難であった。
Conventionally, when growing thin layers such as the active layer of these Schottky diodes or the active layer of semiconductor lasers by the liquid phase epitaxial method, the substrate 32 in FIG.
Methods such as sliding the growth solution under the solution reservoir 35 at high speed and controlling the degree of supersaturation of the growth solution 36 in a complicated manner have been adopted. However, in this liquid phase epitaxial method, MB
The growth rate is faster than the E method or MOCVD method, and the thickness is 1.
It has been difficult to uniformly grow an epitaxial layer of p or less with good reproducibility.

また、液相エピタキシャル法では通常徐冷法が用いられ
ているが、この徐冷法で厚いエピタキシャル層を成長さ
せた後にその上に薄いエピタキシャル層を成長させるこ
とが困難であった。すなわち、厚いエピタキシャル層を
成長させている間に炉内の温度が降下し、続いて成長さ
せる薄いエピタキシャル層用の成長用溶液の過飽和度が
大きくなってしまう。その結果、成長速度が速くなり、
薄い層の膜厚制御を行なうことができなくなる。
Furthermore, although a slow cooling method is usually used in the liquid phase epitaxial method, it is difficult to grow a thin epitaxial layer on top of a thick epitaxial layer grown using this slow cooling method. That is, while growing a thick epitaxial layer, the temperature inside the furnace decreases, and the degree of supersaturation of the growth solution for the subsequently grown thin epitaxial layer increases. As a result, the growth rate increases,
It becomes impossible to control the thickness of thin layers.

かくして、本発明の目的は上記従来技術の問題点を解消
し、11JIR程度以下の膜厚でも均−性及び再現性に
優れたエピタキシャル層を成長させることができる液相
エピタキシャル成長方法を提供することにある。
Thus, an object of the present invention is to provide a liquid phase epitaxial growth method that solves the problems of the prior art described above and can grow an epitaxial layer with excellent uniformity and reproducibility even with a film thickness of about 11 JIR or less. be.

[問題点を解決するための手段] 本発明の液相エピタキシャル成長方法は上記目的を達成
するために、成長させようとするエピタキシャル層の層
厚に応じて基板ホルダのスライド方向における溶液溜の
開口部の長さを設定するようにしたものである。
[Means for Solving the Problems] In order to achieve the above object, the liquid phase epitaxial growth method of the present invention adjusts the opening of the solution reservoir in the sliding direction of the substrate holder depending on the layer thickness of the epitaxial layer to be grown. This allows you to set the length of .

[作 用] 以上のような開口部を有する溶液溜を溶液ホルダに設け
ることにより、基板ホルダを一定速度でスライドさせて
も溶液溜内の成長用溶液と基板との接触時間を制御する
ことができる。例えば、肉薄のエピタキシャル層を形成
しようとする場合には基板ホルダのスライド方向におけ
る長さの短い開口部を有する溶液溜を溶液ホルダに設け
ればよい。このようにずれば成長用溶液と基板との接触
時間を短くすることができ、基板上に薄いエピタキシャ
ル層が成長される。
[Function] By providing a solution reservoir with an opening as described above in the solution holder, it is possible to control the contact time between the growth solution in the solution reservoir and the substrate even if the substrate holder is slid at a constant speed. can. For example, when a thin epitaxial layer is to be formed, a solution reservoir having a short opening in the sliding direction of the substrate holder may be provided in the solution holder. With this shift, the contact time between the growth solution and the substrate can be shortened, and a thin epitaxial layer can be grown on the substrate.

従って、溶液ホルダに所望の大きさの開口部を有する複
数個の溶液溜を設けておけば、基板上に薄膜の多層成長
あるいは厚膜と弁膜との多層成長等を行なわせることが
できる。
Therefore, by providing a plurality of solution reservoirs having openings of desired sizes in the solution holder, it is possible to perform multilayer growth of thin films or multilayer growth of thick films and valve membranes on the substrate.

[実施例コ 以下、本発明の実施例を添付図面に従って説明する。[Example code] Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明の一実施例に係る液相エピタキシャル成
長方法において用いられるダブルへテロ型半導体レーザ
用スライドボートの椙成図である。
FIG. 1 is a diagram of a slide boat for a double hetero type semiconductor laser used in a liquid phase epitaxial growth method according to an embodiment of the present invention.

溶液ホルダ1にはクラッド層用溶液溜2.活性層用溶液
溜3.クラッド層用溶液溜4及びキレツブ居用溶液溜5
が設けられており、この溶液ホルダ1と台座6との間を
基板ホルダ7がスライドできるように構成されている。
The solution holder 1 has a cladding layer solution reservoir 2. Active layer solution reservoir 3. Cladding layer solution reservoir 4 and kill tube solution reservoir 5
is provided, and the substrate holder 7 is configured to be able to slide between the solution holder 1 and the pedestal 6.

基板ホルダ7にはスライド方向の長さが20III11
1それと直角方向の長さが35、の矩形の基板保持用凹
部が設(プられている。
The length of the board holder 7 in the sliding direction is 20III11.
1. A rectangular board holding recess with a length of 35 mm in the direction perpendicular to the board is provided.

また、溶液ホルダ1のクラッド層用溶液KII2及び4
とキャップ層用溶液溜5は基板ホルダ7に面してそれぞ
れ基板ホルダ7のスライド方向にはD1= ZOS、そ
れと直角方向には35allの長さの矩形状開口部を有
している。一方、活性層用溶液溜3は基板ホルダ7に面
して基板ホルダ7のスライド方向にはD2=21111
11.それと直角方向には35InIRの長さの溝形状
間口部を有している。
In addition, solutions KII2 and 4 for the cladding layer of the solution holder 1
The cap layer solution reservoir 5 faces the substrate holder 7 and has a rectangular opening having a length of D1=ZOS in the sliding direction of the substrate holder 7 and 35all in the direction perpendicular thereto. On the other hand, the active layer solution reservoir 3 faces the substrate holder 7 in the sliding direction of the substrate holder 7 with D2=21111.
11. In the direction perpendicular to this, there is a groove-shaped frontage having a length of 35 InIR.

このような構成のスライドボートを用いてエピタキシャ
ル成長を行なった。
Epitaxial growth was performed using a slide boat with such a configuration.

まず、成長用溶液として溶液ホルダ1の溶液溜2にクラ
ッド層用のGa40g 、 GaAs 3g 、 Af
137tq、溶液溜3に活性層用のGa 8g 、 G
aAs O,6g、 A11、ll1g、溶液溜4にク
ラッド層用のGa40g 、 GaAs39、Afl、
371R9、溶液溜5にキ17’/ブ層用のGa409
 。
First, 40 g of Ga, 3 g of GaAs, and Af for the cladding layer were placed in the solution reservoir 2 of the solution holder 1 as a growth solution.
137tq, 8g of Ga for active layer in solution reservoir 3, G
aAs O, 6g, A11, ll1g, Ga40g for cladding layer in solution reservoir 4, GaAs39, Afl,
371R9, Ga409 for Ki 17'/B layer in solution reservoir 5
.

GaAs 3gをそれぞれ収容し、基板ホルダアの基板
保持用凹部には20X 35ffiの基板8を嵌入保持
させた。
3 g of GaAs was accommodated in each, and a 20×35ffi substrate 8 was fitted and held in the substrate holding recess of the substrate holder.

次に、このスライドボートを反応管(図示せず)内に配
置し、反応管内の水素ガス置換を行なった後、外部の電
気炉(図示せず)により800℃まで昇温した。炉内温
度が800℃に安定してから0.5”C/minの冷却
速度で炉内を降温し、796℃の温度となったところす
なわち成長用溶液に4℃の過飽和度を持たせたところで
基板ホルダ7をスライドさせ、基板8を溶液ホルダ1の
溶液溜2の直下に位置させて基板ホルダ7のスライドを
停止した。
Next, this slide boat was placed in a reaction tube (not shown), and after replacing the inside of the reaction tube with hydrogen gas, the temperature was raised to 800° C. using an external electric furnace (not shown). After the temperature inside the furnace stabilized at 800°C, the temperature inside the furnace was lowered at a cooling rate of 0.5"C/min, and when the temperature reached 796°C, that is, the growth solution was made to have a degree of supersaturation of 4°C. By the way, the substrate holder 7 was slid, the substrate 8 was positioned directly below the solution reservoir 2 of the solution holder 1, and the sliding of the substrate holder 7 was stopped.

このようにして基板8と溶液溜2内の成長用溶液との接
触を行ない、基板8上にM混晶比0.35のクラッド層
(GaM 八5ffl >を成長させた。続いて、基板
ホルダアを5cm7secの速度でスライドさせて基板
8を溶液溜3の下を通過させ、クラッド層の表面上にM
混晶比0.05の活性層(08M63層)を形成した。
In this way, the substrate 8 was brought into contact with the growth solution in the solution reservoir 2, and a cladding layer (GaM 85ffl) with an M mixed crystal ratio of 0.35 was grown on the substrate 8. The substrate 8 is passed under the solution reservoir 3 by sliding it at a speed of 5 cm and 7 seconds, and M is deposited on the surface of the cladding layer.
An active layer (08M63 layers) with a mixed crystal ratio of 0.05 was formed.

さらに、基板ホルダ7をスライドさせて基板8が溶液溜
4の直下に位置したところで基板ホルダアを停止させ、
活性層の表面上にM混晶比0.35の第2のクラッドl
id (08M63層)を形成した。同様にして基板ホ
ルダ7をスライドさせて基板8を溶液溜5の直下に位置
させ、第2のクラッド層の表面上にキャップ層(GaA
S層〉を積層成長させた。
Further, slide the substrate holder 7 and stop the substrate holder when the substrate 8 is located directly below the solution reservoir 4,
A second cladding with an M mixed crystal ratio of 0.35 is formed on the surface of the active layer.
id (08M63 layers) was formed. Similarly, the substrate holder 7 is slid to position the substrate 8 directly below the solution reservoir 5, and a cap layer (GaA
S layer> was grown in layers.

以上のようにして形成されたダブルへテロ型半導体レー
ザ用のエピタキシ1!ルウエバを片に開開し、角度5°
で斜研磨を行なった後、エツチングを施し、エピタキシ
ャル層界面をSEMで測定して膜厚の均一性を調べた。
Epitaxy 1 for the double hetero type semiconductor laser formed as described above! Open the Leweba in half and open it at an angle of 5°.
After performing oblique polishing, etching was performed, and the epitaxial layer interface was measured with a SEM to examine the uniformity of the film thickness.

その結果、活性層の膜厚は0.062℃m±0.007
−と測定され、極めて簿い層をその面内で均一性よく成
長させることができた。
As a result, the thickness of the active layer was 0.062℃m±0.007
-, and it was possible to grow an extremely thin layer with good uniformity within the plane.

なお、上記実施例では開口部を溝形状とした溶液溜を唯
一つ設けて極薄いかとしては活性層のみを形成したが、
第2図のように溝形状の開口部を有する溶液溜21を複
数個溶液ホルダ22に設けることにより基板23上に薄
膜エピタキシャル層の多層構造を形成することが可能と
なる。すなわち、液相エピタキシャル成長方法による超
格子構造の形成が実現される。
In addition, in the above example, only one solution reservoir with a groove-shaped opening was provided, and only an extremely thin active layer was formed.
By providing a plurality of solution reservoirs 21 having groove-shaped openings in the solution holder 22 as shown in FIG. 2, it becomes possible to form a multilayer structure of thin film epitaxial layers on the substrate 23. That is, formation of a superlattice structure by the liquid phase epitaxial growth method is realized.

なお、本発明の方法はGaAsを含む■−v族化合物半
導体、 GaMAs等の混晶化合物半導体、I[−IV
族化合物半導体とその混晶なとの液相エピタキシャル成
長に適用することができる。
Note that the method of the present invention is applicable to compound semiconductors of the ■-V group containing GaAs, mixed crystal compound semiconductors such as GaMAs, and I[-IV
It can be applied to liquid phase epitaxial growth of group compound semiconductors and their mixed crystals.

[発明の効果] 以上説明したように本発明によれば、次のごとき優れた
効果を発揮する。
[Effects of the Invention] As explained above, according to the present invention, the following excellent effects are exhibited.

(1)  成長させようとするエピタキシャル層の層厚
に応じて基板ホルダのスライド方向における溶液溜の間
口部の長さを設定することにより、1JJM程度以下の
層厚のエピタキシャル層でも均−性及び再現性よく成長
させることができる。
(1) By setting the length of the opening of the solution reservoir in the sliding direction of the substrate holder according to the thickness of the epitaxial layer to be grown, even epitaxial layers with a thickness of about 1JJM or less can be improved. It can be grown with good reproducibility.

(2)  従って、本発明は特にショットキーダイオー
ドや半導体レーザ等、良質で且つ均一性に浸れた薄膜を
必要とする素子の製造に有効であり、素子歩留を向上さ
せることができる。
(2) Therefore, the present invention is particularly effective in manufacturing devices such as Schottky diodes and semiconductor lasers that require high quality and highly uniform thin films, and can improve device yield.

(3)  また、薄膜を多層成長させることにより超格
子構造の形成が可能となる。
(3) Furthermore, by growing multiple layers of thin films, a superlattice structure can be formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る液相エピタキシャル成
長方法で使用されるスライドボートの構成図、第2図は
他の実施例で使用されるスライドボー]−の構成図、第
3図は従来例で使用されるスライドボートの構成図であ
る。 図中、1は溶液ホルダ、2ないし5は溶液溜、7は基板
ホルダ、8は基板である。
FIG. 1 is a block diagram of a slide boat used in a liquid phase epitaxial growth method according to one embodiment of the present invention, FIG. 2 is a block diagram of a slide boat used in another embodiment, and FIG. FIG. 2 is a configuration diagram of a slide boat used in a conventional example. In the figure, 1 is a solution holder, 2 to 5 are solution reservoirs, 7 is a substrate holder, and 8 is a substrate.

Claims (2)

【特許請求の範囲】[Claims] (1)溶液ホルダの溶液溜内に成長用溶液を収容すると
共に基板ホルダに基板を保持させた後、基板ホルダを溶
液ホルダに対してスライドさせて溶液溜の開口部にて基
板と成長用溶液との接触を行ないエピタキシャル成長さ
せる方法において、成長させようとするエピタキシャル
層の層厚に応じて上記基板ホルダのスライド方向におけ
る上記溶液溜の開口部の長さを設定することを特徴とす
る液相エピタキシャル成長方法。
(1) After storing the growth solution in the solution reservoir of the solution holder and holding the substrate in the substrate holder, slide the substrate holder against the solution holder and place the substrate and the growth solution at the opening of the solution reservoir. A liquid phase epitaxial growth method characterized in that the length of the opening of the solution reservoir in the sliding direction of the substrate holder is set depending on the layer thickness of the epitaxial layer to be grown. Method.
(2)上記溶液溜が上記溶液ホルダに複数個設けられ、
上記基板ホルダのスライド操作に伴つて上記基板上にエ
ピタキシャル層を多層成長させることを特徴とする特許
請求の範囲第1項記載の液相エピタキシャル成長方法。
(2) a plurality of the solution reservoirs are provided in the solution holder;
2. The liquid phase epitaxial growth method according to claim 1, wherein multiple epitaxial layers are grown on the substrate as the substrate holder is slid.
JP4137986A 1986-02-28 1986-02-28 Liquid phase epitaxy Pending JPS62202893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4137986A JPS62202893A (en) 1986-02-28 1986-02-28 Liquid phase epitaxy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4137986A JPS62202893A (en) 1986-02-28 1986-02-28 Liquid phase epitaxy

Publications (1)

Publication Number Publication Date
JPS62202893A true JPS62202893A (en) 1987-09-07

Family

ID=12606763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4137986A Pending JPS62202893A (en) 1986-02-28 1986-02-28 Liquid phase epitaxy

Country Status (1)

Country Link
JP (1) JPS62202893A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196090A (en) * 1987-10-09 1989-04-14 Stanley Electric Co Ltd Liquid phase epitaxial growth process of semiconductor crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196090A (en) * 1987-10-09 1989-04-14 Stanley Electric Co Ltd Liquid phase epitaxial growth process of semiconductor crystal

Similar Documents

Publication Publication Date Title
US3966513A (en) Method of growing by epitaxy from the vapor phase a material on substrate of a material which is not stable in air
JPS62202893A (en) Liquid phase epitaxy
US5865888A (en) Semiconductor device epitaxial layer lateral growth rate control method using CBr4
JPS62128522A (en) Liquid growth method
JPH10256151A (en) Manufacture of very small semiconductor structure
Cheng et al. Material Technologies
JPS6377112A (en) Vapor growth method
JP2538009B2 (en) Liquid phase epitaxial growth method
JPH04254321A (en) Liquid phase epitaxial growth method
JPS628518A (en) Liquid phase growth method
JPH0697098A (en) Growing method for semiconductor crystal
JPS61178492A (en) Method for liquid-phase epitaxial growth
JPS6110099A (en) Method for continuous growth of thin film crystal
JPS61176111A (en) Manufacture of compound semiconductor thin film
JP3151277B2 (en) Liquid phase epitaxial growth method
JPH0279422A (en) Liquid phase epitaxial growth device and growth method
JPS60166297A (en) Apparatus and method for liquid-phase epitaxial growth
JPS58190895A (en) Liquid phase epitaxial growth method
JPS60133720A (en) Molecular beam epitaxial growth method
JPS63190795A (en) Liquid phase epitaxy
JPS62292693A (en) Liquid epitaxy device
JPS6230694A (en) Liquid-phase epitaxial growth
JPH01246889A (en) Manufacture of semiconductor laser element
JPS63112494A (en) Growth method by liquid epitaxy
JPH0521360A (en) Manufacture of semiconductor thin film for light emitting element