JPH0633183A - Fine-grained sintered hard alloy - Google Patents

Fine-grained sintered hard alloy

Info

Publication number
JPH0633183A
JPH0633183A JP21210892A JP21210892A JPH0633183A JP H0633183 A JPH0633183 A JP H0633183A JP 21210892 A JP21210892 A JP 21210892A JP 21210892 A JP21210892 A JP 21210892A JP H0633183 A JPH0633183 A JP H0633183A
Authority
JP
Japan
Prior art keywords
fine
grain
hard alloy
cemented carbide
sintered hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21210892A
Other languages
Japanese (ja)
Other versions
JP3206972B2 (en
Inventor
Nobuhiko Shima
順彦 島
Yusuke Iyori
裕介 井寄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP21210892A priority Critical patent/JP3206972B2/en
Publication of JPH0633183A publication Critical patent/JPH0633183A/en
Application granted granted Critical
Publication of JP3206972B2 publication Critical patent/JP3206972B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a fine-grained sintered hard alloy used for solid end mill- drill, etc. CONSTITUTION:The hard phase of WC-base sintered hard alloy is composed of 80-95wt.% WC and 0.05-2.5wt.% of one or >=2 kinds among TaC, VC and Cr3C2, and the binding phase as the balance is composed of one or >=2 kinds among iron group metals, the average grain size of the hard phase is regulated to 0.7-1.0mum. Further, if necessary, the grain inhibitors are also controlled to 0.5-2.5% in the case of TaC and Cr3C2 and to about 0.05-0.1% in the case of VC because the extent of inhibiting effect and the extent of deterioration in strength are different according to the additive quantities of the inhibitors.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はソリッドエンドミル・ド
リル等に使用される超硬合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cemented carbide used for solid end mills, drills and the like.

【0002】[0002]

【従来の技術】ソリッドエンドミル・ドリルのように、
鋭利な切り刃の切削工具は、超硬合金自体の強度を向上
させるとともに、切り刃をシャープエッジとするため硬
質相となるWC粒子は微細なほど多く利用されている。
また、より微細化を計るため、超硬合金中に粒抑制材を
ドープし、微細化にともなう焼結時における粒成長を抑
える効果をもたせた材料が通常使用されている。
[Prior Art] Like solid end mills and drills,
A cutting tool with a sharp cutting edge improves the strength of the cemented carbide itself, and in order to make the cutting edge a sharp edge, the finer the WC particles that form a hard phase, the more the WC particles are used.
Further, in order to achieve further miniaturization, a material in which a grain suppressor is doped into a cemented carbide to suppress grain growth during sintering accompanying miniaturization is usually used.

【0003】粒抑制材としては、特公昭62−5694
4号などに示されているV、Crを複合添加し、さらに
TaCを追加したものが知られ、それらに使用されるW
Cの平均の粒径は0.4〜0.5μm前後と細かいもの
が使用されている。微細な粒子により超硬合金の硬さは
結合相の平均粒子間距離に依存するため、平均粒子間距
離が小さいほど硬くなる。よって、超硬合金の硬さを同
一結合相量で比較すると炭化物の粒度が細かくなるほど
炭化物間の距離は小さくなり、これに伴い結合相の平均
粒子間距離も小さくなり硬くなる。
As a grain suppressor, Japanese Patent Publication No. 62-5694 is available.
It is known that V and Cr shown in No. 4 and the like are added in combination, and TaC is further added, and W used for them is known.
The average particle size of C is about 0.4 to 0.5 μm, which is fine. Since the hardness of the cemented carbide depends on the average interparticle distance of the binder phase due to the fine particles, the smaller the average interparticle distance, the harder it becomes. Therefore, when comparing the hardnesses of cemented carbides with the same amount of binder phase, the finer the grain size of the carbide, the smaller the distance between the carbides, and accordingly the average distance between the grains of the binder phase also becomes smaller and becomes harder.

【0004】従って、炭化物粒度を微細にすると同一硬
さレベルにするため結合相の量を増加させることが可能
であり、これに伴い合金の靱性は著しく向上し得る。こ
のように微粒にしたことにより結合相量の増加が可能に
なり靱性が大巾に改善されている。
Therefore, if the carbide grain size is made finer, the amount of binder phase can be increased in order to obtain the same hardness level, and the toughness of the alloy can be remarkably improved accordingly. By making fine particles in this way, the amount of binder phase can be increased and the toughness is greatly improved.

【0005】[0005]

【発明が解決しようとする問題点】しかし、粒抑制材は
添加することは、特にVCの場合には粒界に偏析しやす
い傾向が大きく、結合相であるCoの強度を劣化させ、
また、微細化とともに硬質相の平均粒子間距離がより小
さくなるため結合金属の総量を増やして補っているが、
結合金属量が増加すると、工具寿命は安定するが、その
反面、耐溶着性、切削速度、剛性(特にたおれ)等に対
してはCo量をよりすくなめるほうが効果的である。
However, the addition of the grain suppressor tends to cause segregation at grain boundaries, particularly in the case of VC, and deteriorates the strength of Co as a binder phase.
Also, since the average interparticle distance of the hard phase becomes smaller with the miniaturization, the total amount of the binding metal is increased to compensate.
When the amount of the bound metal increases, the tool life becomes stable, but on the other hand, it is more effective to reduce the amount of Co in terms of welding resistance, cutting speed, rigidity (especially flapping) and the like.

【0005】[0005]

【問題を解決するための手段】特に、高品位な仕上げ面
を得るため切削速度を上げると、溶着により仕上げ面が
劣化するか、溶着等から切り屑を巻き込み切れ刃がチッ
ピング、欠損を生じたりして使用不能となることが多か
った。そのため本願発明は超硬合金の特徴である剛性を
最大限に発揮させるため、適度な粒径(粒抑制剤)と粒
抑制材量を適鞭選択することにより達成したものであ
る。
[Means for solving the problem] Especially, if the cutting speed is increased to obtain a high-quality finished surface, the finished surface deteriorates due to welding, or chips are entrained from the welding and the cutting edge causes chipping or chipping. And often became unusable. Therefore, the present invention has been achieved by selecting an appropriate grain size (grain suppressor) and a grain suppressor amount in order to maximize the rigidity that is characteristic of cemented carbide.

【0006】[0006]

【作用】そのため、本願発明は、硬質相をWC80〜9
5重量%と、TaC、VC、Cr3C2のうち少なくと
も1種又は2種以上0.05〜2.5重量%からなり、
残部結合相が鉄族金属の1種又は2種以上からなるWC
基超硬合金において、硬質相の平均粒度を0.7〜1.
0μmとしたことを特徴とするものである。さらに好ま
しくは、上記粒抑制剤においても、その抑制剤の添加量
に応じて抑制効果と強度劣化の程度が異なるため、Ta
C、Cr3C2では0.5〜2.5%、VCでは0.05
〜0.1%程度に抑えた方がより効果的である。
Therefore, in the present invention, the hard phase is changed to WC80-9.
5% by weight and at least one or more of TaC, VC and Cr3C2 of 0.05 to 2.5% by weight,
WC in which the remaining binder phase consists of one or more iron group metals
In the base cemented carbide, the average grain size of the hard phase is 0.7 to 1.
The feature is that the thickness is 0 μm. More preferably, even in the above grain suppressor, the suppressing effect and the degree of strength deterioration differ depending on the addition amount of the suppressing agent.
0.5 to 2.5% for C and Cr3C2, 0.05 for VC
It is more effective to suppress the content to about 0.1%.

【0007】次に数値を限定した理由を述べる。WC
は、80%未満では所望の耐摩耗性が得られなく、又9
5%を超えて含有させると靱性劣化より欠損しやすくな
ることから80〜95%とした。TaC、VC、Cr3
C2は焼結時の粒成長を抑制するために添加するが、い
ずれも0.05%未満ではその効果が少なく、2.5%
を超えて含有させると靱性を著しく劣化させるため0.
05〜2.5%とした。結合相は5%未満だと靱性が劣
化し、30%を超えて含有させると耐摩耗性が極端に悪
くなるため5〜30%とした。
Next, the reason for limiting the numerical values will be described. WC
Is less than 80%, the desired wear resistance cannot be obtained.
If the content exceeds 5%, the fracture tends to occur rather than the deterioration in toughness, so the content is set to 80 to 95%. TaC, VC, Cr3
C2 is added to suppress grain growth during sintering, but if the content of C2 is less than 0.05%, the effect is small.
If it is contained in excess of 0, the toughness is significantly deteriorated, so that
It was set to 05 to 2.5%. If the binder phase is less than 5%, the toughness is deteriorated, and if it exceeds 30%, the wear resistance is extremely deteriorated, so the content is set to 5 to 30%.

【0008】次に硬質相の平均粒度は1.0μmを超え
ると硬さが軟らかくなりすぎ、耐摩耗性を劣化させる。
又、硬さの低下を防ぐため結合相量を減らすと靱性劣化
を招き所望の特性が得られない。又0.7μm未満で
は、その粒径を得るため出発原料の制約を受け、かつ必
要以上に粒抑制剤の添加量を増やさなければならないた
め0.7〜1.0μmとした。以下、実施例にて具体的
に説明する。
Next, if the average particle size of the hard phase exceeds 1.0 μm, the hardness becomes too soft and wear resistance deteriorates.
Further, if the amount of the binder phase is reduced in order to prevent the decrease in hardness, the toughness deteriorates and desired characteristics cannot be obtained. On the other hand, if it is less than 0.7 μm, the starting material is restricted in order to obtain the particle size, and the amount of the grain suppressor to be added must be increased more than necessary, so the grain size is set to 0.7 to 1.0 μm. Hereinafter, specific examples will be described.

【0009】[0009]

【実施例】市販のWC粉末(平均粒径0.8μm)、T
aC(同1.5μm)、VC(同1.0μm)、Cr3
C2(同1.0μm)、Co粉(同1.0μm)を用
い、表1に示すような成分に配合し、湿式混合粉砕を行
なった。しかる後試験片の形状に成形し1350〜14
00°Cの温度で焼結し、研削加工を行い作成した。表
面をラップし鏡面に仕上げ、硬さ(HRA)、抗折力
(kg/mm2 )を測定し、その結果も表1に併記す
る。
EXAMPLE Commercially available WC powder (average particle size 0.8 μm), T
aC (1.5 μm), VC (1.0 μm), Cr3
Using C2 (1.0 μm in the same) and Co powder (1.0 μm in the same), the components shown in Table 1 were mixed, and wet mixing and pulverization were performed. After that, it is molded into the shape of a test piece, 1350-14
It was made by sintering at a temperature of 00 ° C and grinding. The surface is wrapped and finished to a mirror surface, the hardness (HRA) and the transverse rupture strength (kg / mm 2 ) are measured, and the results are also shown in Table 1.

【0010】[0010]

【表1】 試料番号 WC TaC Cr3C2 VC Co 粒度 硬さ 抗折力 本 1 bal - 1.0 0.1 10.0 0.75 92.5 375 発 2 bal 0.5 1.0 0.1 10.0 0.7 92.8 350 明 3 bal - 0.5 0.2 10.0 0.8 92.3 360 例 4 bal 0.5 0.5 0.2 10.0 0.8 92.1 380 5 bal 1.5 0.5 0.1 10.0 0.9 91.5 390 比 6 bal - 1.0 0.1 10.0 0.6 93.2 300 較 7 bal 0.5 1.0 0.1 10.0 0.6 93.2 310 例 8 bal - 1.0 0.1 15.0 0.6 91.0 350[Table 1] Sample No. WC TaC Cr3C2 VC Co Grain size Hardness Bending strength 1 bal-1.0 0.1 10.0 0.75 92.5 375 2 bal 0.5 1.0 0.1 10.0 0.7 92.8 350 Mei 3 bal-0.5 0.2 10.0 0.8 92.3 360 Example 4 bal 0.5 0.5 0.2 10.0 0.8 92.1 380 5 bal 1.5 0.5 0.1 10.0 0.9 91.5 390 Ratio 6 bal-1.0 0.1 10.0 0.6 93.2 300 Comparison 7 bal 0.5 1.0 0.1 10.0 0.6 93.2 310 Example 8 bal-1.0 0.1 15.0 0.6 91.0 350

【0011】次に、試料番号1の超硬合金でごく一般的
なエンドミル、刃径10mm、2枚刃、右刃右ねじれ、
外周切れ刃のねじれ角を25゜を製作し、また比較のた
め試料番号6のWC粒度の細かいものも製作した。次に
下記の条件で各々5本づつ切削試験を行なった。切削速
度=100m/min、1刃当りの送り=0.03mm
/刃、切り込み深さ=10mm、切り込み幅=5mm、
被削材 SCM440、2m切削後、逃げ面最大摩耗量
(mm)、チッピング発生率を測定した。尚、チッピン
グ発生率とはチッピングした切刃長さの総和を全切刃長
さの総和で除し、100分率で表わしたものである。そ
の結果を表2に示す。
Next, a very general end mill for cemented carbide of sample number 1, blade diameter 10 mm, 2 blades, right blade right twist,
The twist angle of the outer peripheral cutting edge was 25 °, and for comparison, a sample No. 6 having a fine WC grain size was also produced. Next, a cutting test was conducted on each of the five pieces under the following conditions. Cutting speed = 100m / min, feed per blade = 0.03mm
/ Blade, depth of cut = 10 mm, width of cut = 5 mm,
Work Material SCM440 After 2 m cutting, the maximum flank wear amount (mm) and the chipping occurrence rate were measured. The chipping occurrence rate is expressed as a 100-percentage by dividing the sum of the lengths of the cutting edges that are chipped by the sum of the lengths of all the cutting edges. The results are shown in Table 2.

【0012】[0012]

【表2】 試料番号 試験本数 チッピング発生率 逃げ面最大摩耗量 本発明例 1 1本目 1.5% 0.01 1 2本目 1.0% 0.01 1 3本目 0.6% 0.01 1 4本目 2.0% 0.01 1 5本目 1.2% 0.01 比較例 6 1本目 8.5% 0.015 6 2本目 13.5% 0.16 6 3本目 1.8% 0.01 6 4本目 5.9% 0.02 6 5本目 15.3% 0.19 [Table 2] Sample No. Number of tests Chipping occurrence rate Maximum flank wear amount Inventive Example 1 1st line 1.5% 0.01 1 2nd line 1.0% 0.01 1 3rd line 0.6% 0.01 1 4th 2.0% 0.01 1 5th 1.2% 0.01 Comparative Example 6 1st 8.5% 0.015 6 2nd 13.5% 0.16 6 3rd 1.8% 0. 01 6 4th 5.9% 0.02 6 5th 15.3% 0.19

【0013】表2より本発明によるエンドミルは、強度
・硬さのバランスが良いため耐チッピング性を示すチッ
ピング発生率及び耐摩耗性とも格段に優れることが認め
られる。
It can be seen from Table 2 that the end mill according to the present invention has a good balance of strength and hardness, and thus is extremely excellent in chipping occurrence rate showing wear resistance and wear resistance.

【0014】[0014]

【発明の効果】本願発明は、WC基超硬合金の粒度と、
粒抑制剤、Co量を適正化することにより超硬の特徴で
ある高剛性を生かし、強度をもたせることが出来た。ま
た粒度を適正化することにより粒成長などの合金ミクロ
組織上の欠陥が減少し安定した性能を示す微粒超硬合金
である。
The present invention is based on the particle size of WC-based cemented carbide,
By optimizing the amount of grain suppressor and Co, it was possible to make use of the high rigidity, which is a characteristic of cemented carbide, and to provide strength. Further, by optimizing the grain size, defects in the alloy microstructure such as grain growth are reduced, and a fine grain cemented carbide showing stable performance.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 硬質相をWC80〜95重量%と、Ta
C、VC、Cr3C2のうち少なくとも1種又は2種以上
0.05〜2.5重量%からなり、残部結合相が鉄族金
属の1種又は2種以上からなるWC基超硬合金におい
て、硬質相の平均粒度を0.7〜1.0μmとしたこと
を特徴とする微粒超硬合金。
1. A hard phase comprising WC of 80 to 95% by weight and Ta of
C, VC, Cr3C2 at least one kind or two or more kinds in the WC-based cemented carbide consisting of 0.05 to 2.5% by weight, the balance binder phase is made of one or more kinds of iron group metals, A fine cemented carbide, characterized in that the average grain size of the phases is 0.7 to 1.0 μm.
【請求項2】 請求項1記載の微粒超硬合金において、
VC0.05〜0.1重量%の範囲としたことを特徴と
する微粒超硬合金。
2. The fine cemented carbide according to claim 1, wherein
VC in the range of 0.05 to 0.1% by weight.
JP21210892A 1992-07-16 1992-07-16 Fine-grain cemented carbide Expired - Fee Related JP3206972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21210892A JP3206972B2 (en) 1992-07-16 1992-07-16 Fine-grain cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21210892A JP3206972B2 (en) 1992-07-16 1992-07-16 Fine-grain cemented carbide

Publications (2)

Publication Number Publication Date
JPH0633183A true JPH0633183A (en) 1994-02-08
JP3206972B2 JP3206972B2 (en) 2001-09-10

Family

ID=16617014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21210892A Expired - Fee Related JP3206972B2 (en) 1992-07-16 1992-07-16 Fine-grain cemented carbide

Country Status (1)

Country Link
JP (1) JP3206972B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6258147B1 (en) 1999-01-29 2001-07-10 Seco Tools Ab Cemented carbide with a hardenable binder phase
CN100387737C (en) * 2005-11-21 2008-05-14 株洲硬质合金集团有限公司 Method for preparing super fine hard alloy
KR101141263B1 (en) * 2009-10-07 2012-05-08 김기열 ADHESIVE MATERIALS OF WC-Fe BASED HARD METAL AND MANUFACTURING METHOD OF THE SAME
CN103305741A (en) * 2013-07-01 2013-09-18 长沙肯贝科技有限公司 Hard alloy, hard alloy cutter bar and manufacturing method thereof
CN108085555A (en) * 2017-12-04 2018-05-29 株洲夏普高新材料有限公司 Hard alloy suitable for cutting high temperature alloy and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6258147B1 (en) 1999-01-29 2001-07-10 Seco Tools Ab Cemented carbide with a hardenable binder phase
CN100387737C (en) * 2005-11-21 2008-05-14 株洲硬质合金集团有限公司 Method for preparing super fine hard alloy
KR101141263B1 (en) * 2009-10-07 2012-05-08 김기열 ADHESIVE MATERIALS OF WC-Fe BASED HARD METAL AND MANUFACTURING METHOD OF THE SAME
CN103305741A (en) * 2013-07-01 2013-09-18 长沙肯贝科技有限公司 Hard alloy, hard alloy cutter bar and manufacturing method thereof
CN108085555A (en) * 2017-12-04 2018-05-29 株洲夏普高新材料有限公司 Hard alloy suitable for cutting high temperature alloy and preparation method thereof

Also Published As

Publication number Publication date
JP3206972B2 (en) 2001-09-10

Similar Documents

Publication Publication Date Title
JP4991111B2 (en) Cemented carbide tools and their cemented carbide
US9127335B2 (en) Cemented carbide tools
JP2000319735A (en) Manufacture of submicron order cemented carbide increased in toughness
JPS6112847A (en) Sintered hard alloy containing fine tungsten carbide particles
JPH05186843A (en) Carbon nitride sintered alloy with controlled particle size
JPH0633183A (en) Fine-grained sintered hard alloy
JP2616655B2 (en) Titanium carbonitride-based cermet cutting tool with excellent wear resistance
JPH0550314A (en) Material for shaft cutting tool
JP3318887B2 (en) Fine-grained cemented carbide and method for producing the same
JPS6256943B2 (en)
JPH0681072A (en) Tungsten carbide base sintered hard alloy
JPH0346538B2 (en)
EP1422304B1 (en) Ti(C,N)-(Ti,Nb,W)(C,N)-Co alloy for milling cutting tool applications
JP3292949B2 (en) Fine-grained cemented carbide and method for producing the same
JPS6256944B2 (en)
JP2668962B2 (en) End mill made of tungsten carbide based cemented carbide with excellent fracture resistance
JP2663474B2 (en) Square cutting tip made of cemented carbide for cutting Ti alloy
JPS61147841A (en) Hyperfine-grained sintered hard alloy
JP3493587B2 (en) Titanium carbonitride-based cermet cutting tool with excellent wear resistance
JP2666338B2 (en) Tungsten carbide based cemented carbide end mill
JPS6033609B2 (en) Super hard alloy end mill
JPS5942067B2 (en) Tough tungsten carbide-based cemented carbide for cutting tools
JPH04152004A (en) Cutting tool
JPS62170451A (en) Sintered hard alloy
JP2830054B2 (en) Carbide alloy for end mill

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees