JPH0633110A - Electrical heating and sintering device - Google Patents
Electrical heating and sintering deviceInfo
- Publication number
- JPH0633110A JPH0633110A JP19040092A JP19040092A JPH0633110A JP H0633110 A JPH0633110 A JP H0633110A JP 19040092 A JP19040092 A JP 19040092A JP 19040092 A JP19040092 A JP 19040092A JP H0633110 A JPH0633110 A JP H0633110A
- Authority
- JP
- Japan
- Prior art keywords
- cooling water
- temperature
- green compact
- furnace
- temp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は圧粉体を通電加熱して焼
結する通電加熱焼結装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric heating and sintering apparatus for electrically heating a green compact to sinter it.
【0002】[0002]
【従来の技術】タングステンやモリブデンなどの高い融
点の金属からなる部材を製造する場合には、これらの金
属の粉末からなる棒形の圧粉体を成形し、この圧粉体に
直接通電してその時に生じる自己発熱により焼結を行う
通電加熱焼結法が採用されている。そして、この通電加
熱焼結法には、内部に圧粉体を配置する炉と、圧粉体を
支持する支持手段と、圧粉体に通電する手段と、支持手
段に冷却水を供給し供給した冷却水を排出する冷却水流
通手段とを備えた通電加熱焼結装置が使用されている。2. Description of the Related Art When manufacturing a member made of a metal having a high melting point such as tungsten or molybdenum, a rod-shaped green compact made of powder of these metals is molded and the powder compact is directly energized. An electric heating sintering method in which sintering is performed by self-heating generated at that time is adopted. Further, in this electric heating and sintering method, a furnace in which a green compact is placed, a supporting means for supporting the green compact, a means for energizing the green compact, and a cooling water are supplied and supplied to the supporting means. An electric heating and sintering apparatus provided with a cooling water flow means for discharging the cooling water is used.
【0003】この通電加熱焼結法では、棒形の圧粉体を
対象に焼結することから圧粉体全体を均一に焼結するた
めに、圧粉体体自体からの発熱量と、上記冷却手段から
の冷却熱量のバランスにより焼結温度が変動してしまう
ことから、安定した焼結温度を得るには圧粉体の温度を
正確に測定し、この測定結果に基づいて圧粉体の温度制
御を行うことが必要である。圧粉体の温度制御は、圧粉
体に通電する電流の値を制御することにより圧粉体の発
熱温度を制御することに行っている。In this electric heating sintering method, since a rod-shaped green compact is sintered, the amount of heat generated from the green compact itself and Since the sintering temperature fluctuates depending on the balance of the amount of cooling heat from the cooling means, the temperature of the green compact is accurately measured to obtain a stable sintering temperature, and the temperature of the green compact is measured based on this measurement result. It is necessary to control the temperature. The temperature control of the green compact is carried out by controlling the heat generation temperature of the green compact by controlling the value of the current passing through the green compact.
【0004】従来、圧粉体の温度を測定するためには、
炉のにその外部から内部を透視できる覗き窓を設け、放
射温度計などを用いて炉の外部から覗き窓を通して炉の
内部に配置された圧粉体の温度を測定する方法が採用さ
れている。すなわち、温度上昇した圧粉体から発せられ
る光(熱エネルギ−)を覗き窓を通して放射温度計が受
けて圧粉体の温度を測定するものである。この場合、覗
き窓は炉の内部に配置されている圧粉体の中央部に対向
して形成されている。Conventionally, in order to measure the temperature of the green compact,
The furnace is provided with a peep window that allows the inside to be seen through from the outside, and the method of measuring the temperature of the green compact placed inside the furnace through the peek window from the outside of the furnace using a radiation thermometer is adopted. . That is, the radiation thermometer receives the light (thermal energy) emitted from the powder compact whose temperature has risen through a viewing window to measure the temperature of the powder compact. In this case, the viewing window is formed so as to face the central portion of the green compact arranged inside the furnace.
【0005】[0005]
【発明が解決しようとする課題】しかし、このような従
来の通電加熱焼結装置には、圧粉体の温度測定を行う上
で次に述べる問題がある。However, such a conventional electric heating and sintering apparatus has the following problems in measuring the temperature of the green compact.
【0006】圧粉体の温度が上昇すると、圧粉体を形成
する粉末に含まれるSi O2 、K2O、Al2 O3 など
のド−プ剤が蒸発して炉内部に発散し、そのド−プ剤の
かすが炉の覗き窓に付着する。このようになると圧粉体
から発せられる光が覗き窓に付着したド−プ剤のかすに
遮られ、覗き窓を通して放射温度計に達する量が低下す
るために、放射温度計による圧粉体の温度測定が正確に
行えないことがある。When the temperature of the green compact rises, the doping agents such as SiO 2 , K 2 O and Al 2 O 3 contained in the powder forming the green compact are evaporated and diffused inside the furnace. The dope residue adheres to the viewing window of the furnace. In this case, the light emitted from the powder compact is blocked by the dust of the dope agent adhering to the viewing window, and the amount reaching the radiation thermometer through the viewing window is reduced. The temperature may not be measured accurately.
【0007】また、覗き窓は圧粉体の中央部に対向して
設けられているため、この覗き窓を通して温度測定を行
う場合には、圧粉体の中央部の温度のみを測定すること
になる。しかし、焼結に際しては種々の理由により圧粉
体の一端部、他端部および中央部の各部の温度の上昇度
合が均一でないことがある。この場合には覗き窓を通し
て温度測定しても圧粉体全体の温度を正確に測定するこ
とができないことになる。この対策として炉に圧粉体の
各端部および中央部に対応して除き窓を設けることが考
えられる。しかし、この場合には温度測定のための構成
が複雑で部品点数も多くなる。しかも、仮に各覗き窓を
通して圧粉体の各部の温度を個別に測定しても、各部の
温度が異なる圧粉体の温度を精度良く制御することに寄
与することができない。このように従来の通電加熱焼結
装置では圧粉体の温度を正確に測定することが困難であ
り、この結果圧粉体温度を正確に制御することに寄与で
きなかった。Further, since the peep window is provided so as to face the central portion of the green compact, when the temperature is measured through the peep window, it is necessary to measure only the temperature of the central portion of the green compact. Become. However, during sintering, the temperature rises at one end, the other end, and the center of the green compact may not be uniform for various reasons. In this case, the temperature of the entire green compact cannot be accurately measured even if the temperature is measured through the viewing window. As a countermeasure for this, it is conceivable to provide the furnace with a window except for each end and center of the green compact. However, in this case, the structure for temperature measurement is complicated and the number of parts is increased. Moreover, even if the temperature of each part of the green compact is individually measured through each peep window, it cannot contribute to the accurate control of the temperature of the green compact having different temperatures. As described above, it is difficult to accurately measure the temperature of the green compact with the conventional electric heating sintering apparatus, and as a result, it has not been possible to contribute to the accurate control of the temperature of the green compact.
【0008】本発明は前記事情に基づいてなされたもの
で、焼結に際して圧粉体の温度を正確に測定でき、圧粉
体温度を正確に制御することができる通電加熱焼結装置
を提供することを目的とする。The present invention has been made in view of the above circumstances, and provides an electric heating and sintering apparatus capable of accurately measuring the temperature of a green compact during sintering and accurately controlling the temperature of the green compact. The purpose is to
【0009】[0009]
【課題を解決するための手段】前記目的を達成するため
に本発明の通電加熱焼結装置は、圧粉体に通電してこの
時に生じる自己発熱により圧粉体を焼結する炉装置にお
いて、内部に前記圧粉体を配置する炉と、前記圧粉体を
支持する支持手段と、前記圧粉体に通電する手段と、前
記支持手段に冷却水を供給し供給した冷却水を排出する
冷却水流通手段と、前記支持手段に供給される冷却水の
温度および前記支持手段から排出される冷却水の温度を
測定する手段と、この温度測定手段からの情報を受けて
冷却水の給水温度と排水温度との差を求めて前記圧粉体
の温度を推定および/またはこの温度の異常を検知する
手段と炉を具備することを特徴とするものである。In order to achieve the above object, an electric heating and sintering apparatus of the present invention is a furnace apparatus for energizing a green compact to sinter the green compact by self-heating generated at this time. A furnace in which the green compact is placed, a supporting means for supporting the green compact, a means for energizing the green compact, and a cooling device for supplying cooling water to the supporting means and discharging the supplied cooling water. Water circulation means, means for measuring the temperature of the cooling water supplied to the support means and the temperature of the cooling water discharged from the support means, and the supply temperature of the cooling water received from the temperature measurement means. It is characterized by comprising a means for estimating the temperature of the green compact and / or detecting an abnormality of this temperature by obtaining a difference from the drainage temperature and a furnace.
【0010】[0010]
【作用】圧粉体を支持する手段は、通電焼結すること
と、焼結される圧粉体により高温に加熱されるので、冷
却水により冷却している。この冷却水の給水温度と、冷
却後の排水温度との差が圧粉体の温度に比例し、この温
度差を測定することにより圧粉体の温度を推定すること
ができるということが、本発明の基本的な考え方であ
る。The means for supporting the green compact is cooled by cooling water because it is subjected to electric current sintering and is heated to a high temperature by the green compact to be sintered. The difference between the water supply temperature of this cooling water and the drainage temperature after cooling is proportional to the temperature of the green compact, and the temperature of the green compact can be estimated by measuring this temperature difference. This is the basic idea of the invention.
【0011】具体的には、予め圧粉体と同じ種類の粉体
からなる圧粉体を焼結した時の冷却水の給排水の温度差
と圧粉体温度との関係を実験により求めておく。そし
て、焼結に際して冷却水の給水温度と、冷却後の排水温
度とを測定し、予め求めておいた実験デ−タに基づいて
これらの温度の差から圧粉体の温度を求める。Specifically, the relationship between the temperature difference between the water supply and drainage of the cooling water and the temperature of the green compact when sintering the green compact made of the same kind of powder as the green compact is obtained in advance by an experiment. . Then, during sintering, the supply temperature of the cooling water and the drainage temperature after cooling are measured, and the temperature of the green compact is determined from the difference between these temperatures based on the experimental data obtained in advance.
【0012】そして、冷却水の流量により冷却水の温度
が規定される。このことから冷却水の前記給排温度差に
基づいて冷却水の流量を制御すると、冷却水の温度を制
御し、この結果圧粉体の温度を制御できる。The temperature of the cooling water is regulated by the flow rate of the cooling water. Therefore, if the flow rate of the cooling water is controlled based on the difference between the supply and discharge temperatures of the cooling water, the temperature of the cooling water can be controlled, and as a result, the temperature of the green compact can be controlled.
【0013】また、冷却水の前記給排水温度差と冷却水
の流量に基づいて圧粉体に通電する電流値を制御する、
あるいは冷却水の前記給排水温度差に基づいて冷却水の
流量と圧粉体に通電する電流値を組み合わせて制御する
ことにより、圧粉体の温度を制御することができる。Further, the current value to be passed through the green compact is controlled on the basis of the temperature difference between the water supply and drainage of the cooling water and the flow rate of the cooling water.
Alternatively, the temperature of the green compact can be controlled by combining and controlling the flow rate of the cooling water and the value of the current flowing through the green compact on the basis of the difference between the supply and discharge temperatures of the cooling water.
【0014】[0014]
【実施例】本発明の実施例について図面を参照して説明
する。通電加熱焼結装置の構成を図2を参照して説明す
る。この実施例の装置はベルジャ型の炉を用いたもので
ある。Embodiments of the present invention will be described with reference to the drawings. The configuration of the electric heating and sintering apparatus will be described with reference to FIG. The apparatus of this embodiment uses a bell jar type furnace.
【0015】図中1はベルジャ型をなす炉で、水冷式の
二重壁構造となっていて冷却水供給系統に接続する入口
1a および冷却水排出系統に接続する出口1b が設けら
れている。1c は覗き窓である。2は基台で、炉1の底
開放部に着脱可能に取り付けられている。基台2は水冷
式となっており、図示しない冷却水に入口および出口が
設けられている。炉1と基台2とで構成される空間部に
は圧粉体Pが直立して配置される。In the figure, reference numeral 1 designates a bell jar type furnace having a water-cooled double wall structure, which is provided with an inlet 1a connected to a cooling water supply system and an outlet 1b connected to a cooling water discharge system. 1c is a viewing window. Reference numeral 2 denotes a base, which is detachably attached to the bottom opening portion of the furnace 1. The base 2 is water-cooled, and an inlet and an outlet are provided for cooling water (not shown). A powder compact P is placed upright in a space formed by the furnace 1 and the base 2.
【0016】3は導電性金属例えば銅で形成された導電
パイプである。導電パイプ3は炉1の内部に配置され、
両端部が基台2を貫通して外部に延出しており、上部中
央には圧粉体Pの上端を把持する上クランプ4が設けら
れている。Reference numeral 3 is a conductive pipe made of a conductive metal such as copper. The conductive pipe 3 is arranged inside the furnace 1,
Both ends extend through the base 2 to the outside, and an upper clamp 4 for gripping the upper end of the green compact P is provided at the center of the upper part.
【0017】5は導電性金属例えば銅で形成された導電
パイプである。導電パイプ5は炉1の内部に配置され、
両端部が基台2を貫通して外部に延出しており、上部中
央には圧粉体Pの下端を把持する下クランプ6が設けら
れている。これら導電パイプ3、5は圧粉体Pに電流を
流す導電部材を構成しており、夫々の一方の端部には通
電回路に接続されたタ−ミナル7、8が取り付けてあ
る。また、各導電パイプ3、5は冷却水通路を構成して
おり、一端は冷却水給水系統に接続し、他端は冷却水排
水系統に接続されている。なお、炉1には水素などの不
活性ガス供給系統に接続するガス入口9a が設けられ、
基台2にはガス排出系統に接続するガス出口9b が設け
られている。圧粉体温度測定および温度制御を行うため
の構成について図1を参照して説明する。Reference numeral 5 is a conductive pipe made of a conductive metal such as copper. The conductive pipe 5 is arranged inside the furnace 1,
Both ends extend through the base 2 to the outside, and a lower clamp 6 for holding the lower end of the green compact P is provided at the center of the upper part. These conductive pipes 3 and 5 constitute a conductive member for passing an electric current through the powder compact P, and terminals 7 and 8 connected to a current-carrying circuit are attached to one end of each of them. Each of the conductive pipes 3 and 5 constitutes a cooling water passage, one end of which is connected to the cooling water supply system and the other end of which is connected to the cooling water drainage system. The furnace 1 is provided with a gas inlet 9a connected to an inert gas supply system such as hydrogen,
The base 2 is provided with a gas outlet 9b connected to a gas exhaust system. A configuration for measuring the temperature of the green compact and controlling the temperature will be described with reference to FIG.
【0018】冷却水を用いて冷却を行う炉1、上部クラ
ンプ4、下部クランプ6および基台2における各冷却水
入口は共通に接続され、図示しない冷却水供給装置から
冷却水が供給される主冷却水供給系統に接続されてい
る。この主冷却水供給系統には温度計11と流量制御弁
12が接続され、また主冷却水供給系統から分岐して炉
1、上部クランプ4、下部クランプ6および基台2に接
続される各分岐冷却水供給系統には夫々流量制御弁13
と流量計14が接続されている。Each of the cooling water inlets of the furnace 1, the upper clamp 4, the lower clamp 6 and the base 2 for cooling with cooling water is connected in common, and cooling water is supplied from a cooling water supply device (not shown). It is connected to the cooling water supply system. A thermometer 11 and a flow control valve 12 are connected to the main cooling water supply system, and each branch is branched from the main cooling water supply system and connected to the furnace 1, the upper clamp 4, the lower clamp 6 and the base 2. Each cooling water supply system has a flow rate control valve 13
And the flowmeter 14 are connected.
【0019】炉1、上部クランプ4、下部クランプ6お
よび基台2の冷却水出口に接続された冷却水排出系統に
は夫々温度計15が接続されている。また炉1のガス入
口9a に接続するガス供給系統には温度計16と流量制
御弁17と流量計18が接続され、炉1のガス出口9b
に接続するガス供給系統には温度計19が接続されてい
る。Thermometers 15 are connected to the cooling water discharge systems connected to the cooling water outlets of the furnace 1, the upper clamp 4, the lower clamp 6 and the base 2, respectively. The gas supply system connected to the gas inlet 9a of the furnace 1 is connected with a thermometer 16, a flow control valve 17, and a flow meter 18, and the gas outlet 9b of the furnace 1 is connected.
A thermometer 19 is connected to the gas supply system connected to.
【0020】20は制御装置である。この制御装置20
は主冷却水供給系統の温度計11、冷却水排出系統の各
温度計15からの測定信号を受け、ガス供給系統の温度
計16とガス供給系統の温度計19から測定情報を受け
るようになっている。制御装置20は各分岐冷却水供給
系統の流量計14とガス供給系統の流量計18から測定
情報を受けるよう受けるようになっている。制御装置2
0には、予め焼結すべき圧粉体と同じ種類の粉体からな
る圧粉体を焼結した時の冷却水の給排水の温度差と圧粉
体温度との関係を実験により求めた先行実験デ−タを入
力しておく。Reference numeral 20 is a control device. This control device 20
Receives the measurement signals from the thermometer 11 of the main cooling water supply system and the thermometers 15 of the cooling water discharge system, and receives the measurement information from the thermometer 16 of the gas supply system and the thermometer 19 of the gas supply system. ing. The controller 20 is adapted to receive measurement information from the flow meter 14 of each branch cooling water supply system and the flow meter 18 of the gas supply system. Control device 2
0 indicates that the relationship between the temperature difference between the water supply / drainage of cooling water and the temperature of the green compact when the green compact of the same kind as the green compact to be sintered was previously sintered was experimentally determined. Enter experimental data.
【0021】そして、制御装置20は上記各測定情報と
先行実験デ−タとを比較して焼結中の圧粉体温度を求め
る。制御装置20はこの求めた温度に応じて主冷却水供
給系統の流量制御弁12と各分岐冷却水供給系統の流量
制御弁13に指令を与えてその開度を制御する。また、
制御装置20は圧粉体Pに電流を流す通電焼結回路21
に圧粉体Pに流す電流の値を制御する指示を与える。Then, the control device 20 compares the above-mentioned respective measurement information with the preceding experimental data to obtain the temperature of the green compact during sintering. The controller 20 gives a command to the flow rate control valve 12 of the main cooling water supply system and the flow rate control valve 13 of each branch cooling water supply system according to the obtained temperature to control the opening degree. Also,
The control device 20 uses an energization sintering circuit 21 for supplying an electric current to the green compact P.
Is instructed to control the value of the current flowing through the green compact P.
【0022】なお、22は各分岐冷却水供給系統の流量
計14における冷却水の流量およびガス供給系統の流量
計におけるガスの流量を監視する監視装置、23は各冷
却水排出系統の温度計15における冷却水の温度および
ガス排出系統の温度計19におけるガスの温度を監視す
る監視装置である。このように構成した通電加熱焼結装
置において焼結を行う場合について説明する。Reference numeral 22 is a monitoring device for monitoring the flow rate of the cooling water in the flow meter 14 of each branch cooling water supply system and the flow rate of the gas in the flow meter of the gas supply system, and 23 is the thermometer 15 of each cooling water discharge system. It is a monitoring device for monitoring the temperature of the cooling water in and the temperature of the gas in the thermometer 19 of the gas discharge system. A case where sintering is performed in the electric heating sintering apparatus configured as described above will be described.
【0023】炉1の内部に高融点金属粉末からなる棒形
の圧粉体Pを上下方向に配置し、上端を上部クランプ4
で、下端を下部クランプ6で夫々把持する。通電回路か
ら導電パイプ3、上部クランプ4、圧粉体P、下部クラ
ンプ6および導電パイプ5を結ぶ回路に電流を流す。圧
粉体Pに電流が流れると圧粉体Pは自身の抵抗により発
熱して温度上昇する。このことにより圧粉体Pが所定時
間および所定温度で通電加熱されて焼結される。A rod-shaped green compact P made of refractory metal powder is vertically arranged inside the furnace 1, and an upper clamp 4 is provided at the upper end.
Then, the lower ends are gripped by the lower clamps 6, respectively. An electric current is passed from the energizing circuit to the circuit connecting the conductive pipe 3, the upper clamp 4, the green compact P, the lower clamp 6 and the conductive pipe 5. When an electric current flows through the green compact P, the green compact P generates heat due to its own resistance and its temperature rises. As a result, the green compact P is electrically heated at a predetermined temperature for a predetermined temperature and sintered.
【0024】主冷却水供給系統から各分岐冷却水供給系
統に冷却水を流す。分岐冷却水供給系統から炉1に冷却
水を流して炉1全体を冷却することにより、輻射、熱伝
導の熱移動の関係からより熱移動が起こり圧粉体Pが冷
却される。また、分岐冷却水供給系統から導電パイプ3
に冷却水を流して上部クランプ4を冷却し、導電パイプ
6に冷却水を流して下部クランプ4を冷却することによ
り、輻射、熱伝導の熱移動の関係から圧粉体Pが冷却さ
れる。基台2に冷却水を流して冷却する。そして、炉
1、上部クランプ4、下部クランプ6および基台2を冷
却した冷却水は各冷却水排出系統を経て排出される。ガ
ス供給系統から炉1の内部にガスを供給して炉1の内部
を所定の雰囲気にする。次に圧粉体Pを焼結するに際し
て、圧粉体Pの温度測定および温度制御を行う方法につ
いて説明する。Cooling water is supplied from the main cooling water supply system to each branch cooling water supply system. By flowing cooling water from the branch cooling water supply system to the furnace 1 to cool the entire furnace 1, heat transfer occurs more due to the heat transfer relationship between radiation and heat conduction, and the green compact P is cooled. In addition, from the branch cooling water supply system to the conductive pipe 3
By flowing cooling water to the upper clamp 4 to cool the upper clamp 4 and cooling water to the conductive pipe 6 to cool the lower clamp 4, the green compact P is cooled due to the heat transfer of radiation and heat conduction. The base 2 is cooled by flowing cooling water. The cooling water that has cooled the furnace 1, the upper clamp 4, the lower clamp 6, and the base 2 is discharged through each cooling water discharge system. Gas is supplied from the gas supply system to the inside of the furnace 1 to make the inside of the furnace 1 have a predetermined atmosphere. Next, a method for measuring and controlling the temperature of the green compact P when sintering the green compact P will be described.
【0025】主冷却水供給系統の温度計11は主冷却水
供給系統を流れる冷却水の温度を測定し、その測定情報
を制御装置20に与える。また、各分岐冷却水排出系統
に夫々設けた各温度計15は各分岐冷却水排出系統を流
れる冷却水の温度を測定し、その測定情報を制御装置2
0に与える。制御装置20では、温度計11が測定した
冷却水の給水温度と各温度計15が測定した排水温度の
差を求める。ここで、予め制御装置20に入力してある
先行実験デ−タに基づいて前記冷却水の給水温度と排水
温度の差から焼結している圧粉体Pの温度を推定する。The thermometer 11 of the main cooling water supply system measures the temperature of the cooling water flowing through the main cooling water supply system and gives the measurement information to the controller 20. Further, each thermometer 15 provided in each branch cooling water discharge system measures the temperature of the cooling water flowing through each branch cooling water discharge system, and the measured information is used as the control device 2.
Give to 0. The controller 20 obtains the difference between the cooling water supply temperature measured by the thermometer 11 and the drainage temperature measured by each thermometer 15. Here, the temperature of the green compact P to be sintered is estimated from the difference between the feed water temperature and the drain water temperature of the cooling water, based on the preceding experimental data input to the control device 20 in advance.
【0026】そして、推定した圧粉体Pの温度が必要と
する所定温度と差がある場合には、冷却水の流量を制御
して圧粉体の温度を制御する。制御装置20は推定した
圧粉体Pの温度が必要とする所定温度と差に応じて、炉
1、上部クランプ4、下部クランプ6および基台2に流
す冷却水の流量を算出し、さらにこの冷却水の流量を得
るために必要な各流量制御弁12、13の開度を算出す
る。制御装置20は主冷却水供給系統の流量制御弁12
と各分岐冷却水排出系統の流量制御弁13の開度を制御
し、炉1、上部クランプ4、下部クランプ6および基台
2に流す冷却水の流量を制御する。この時、各分岐冷却
水供給系統の流量計14で炉1、上部クランプ4、下部
クランプ6および基台2に流す冷却水の流量を測定し、
流量制御弁13の開度制御に寄与する情報とする。これ
により焼結中の圧粉体Pの温度を制御する。If the estimated temperature of the green compact P is different from the required predetermined temperature, the flow rate of the cooling water is controlled to control the temperature of the green compact. The control device 20 calculates the flow rate of the cooling water flowing through the furnace 1, the upper clamp 4, the lower clamp 6 and the base 2 in accordance with the difference between the estimated temperature of the green compact P and the required predetermined temperature. The opening of each flow control valve 12, 13 required to obtain the flow rate of the cooling water is calculated. The control device 20 is the flow control valve 12 of the main cooling water supply system.
And the opening degree of the flow rate control valve 13 of each branch cooling water discharge system is controlled to control the flow rate of the cooling water flowing to the furnace 1, the upper clamp 4, the lower clamp 6 and the base 2. At this time, the flow rate of the cooling water flowing through the furnace 1, the upper clamp 4, the lower clamp 6 and the base 2 is measured by the flow meter 14 of each branch cooling water supply system,
The information is information that contributes to the opening control of the flow control valve 13. This controls the temperature of the green compact P during sintering.
【0027】また、圧粉体Pを加熱すると圧粉体Pに含
まれるド−プ剤が蒸発して炉1内部に拡散する。炉1内
部のガスを外部に排出するとガスとともにド−プ剤が一
緒に排出されるので対流の熱移動の関係により圧粉体体
Pの熱を奪う。そこで、炉1内部のガスを外部に排出す
る熱量を一定にするために炉1に対するガスの供給量お
よび排出量を制御することが好ましい。すなわち、炉1
に供給するガスの温度を温度計16で測定し、炉1から
排出するガスの温度を温度計19で測定し、測定情報を
制御装置20に与える。この情報は前記冷却水の給排水
温度差とともに圧粉体Pの温度推定の情報とする。そし
て、制御装置20は圧粉体Pの温度に応じて制御弁17
の開度を制御して炉1に供給するガスの流量を制御す
る。When the green compact P is heated, the doping agent contained in the green compact P evaporates and diffuses inside the furnace 1. When the gas inside the furnace 1 is discharged to the outside, the doping agent is discharged together with the gas, so that the heat of the green compact P is taken due to the convective heat transfer relationship. Therefore, it is preferable to control the gas supply amount and the gas discharge amount with respect to the furnace 1 in order to make the heat amount for discharging the gas inside the furnace 1 to the outside constant. That is, furnace 1
The temperature of the gas supplied to the furnace is measured by the thermometer 16, the temperature of the gas discharged from the furnace 1 is measured by the thermometer 19, and the measurement information is given to the controller 20. This information is used as information for estimating the temperature of the green compact P together with the temperature difference between the water supply and drainage of the cooling water. Then, the control device 20 controls the control valve 17 according to the temperature of the green compact P.
To control the flow rate of gas supplied to the furnace 1.
【0028】また圧粉体Pの焼結温度は、前工程である
粉末製造工程や圧粉体成形工程の条件により各圧粉体P
毎に微妙に変化する。すなわち、前工程の変動により圧
粉体体Pの焼結温度が変化する。このような圧粉体Pの
焼結温度の変化には冷却水の流量制御が適している。The sintering temperature of the green compact P depends on the conditions of the powder manufacturing process and the green compact forming process which are the preceding steps.
It changes slightly each time. That is, the sintering temperature of the green compact P changes due to fluctuations in the previous process. Flow rate control of cooling water is suitable for such a change in the sintering temperature of the green compact P.
【0029】このため、各冷却水供給系統の流量計14
の冷却水流量情報およびガス供給系統の流量計18のガ
ス流量情報を監視装置22で監視して表示し、各冷却水
排出系統の温度計15の冷却水排水温度情報およびガス
排出系統の温度計19のガス排出温度情報を監視装置2
3で監視して表示する。Therefore, the flow meter 14 of each cooling water supply system
Of the cooling water flow rate information and the gas flow rate information of the flow meter 18 of the gas supply system are monitored and displayed by the monitoring device 22, and the cooling water drainage temperature information of the thermometer 15 of each cooling water discharge system and the thermometer of the gas discharge system are displayed. Monitoring device 2 for 19 gas discharge temperature information
Monitor and display in 3.
【0030】また、圧粉体Pに対する温度制御の方法と
して、冷却水の給排水温度差と冷却水の流量に基づいて
圧粉体Pに通電する電流値を制御する方法がある。この
場合には制御装置20は圧粉体Pの必要とする温度に応
じて電流値を算出して通電焼結回路21に指令を与え、
通電焼結回路21が圧粉体Pに通電する電流の値を制御
する。As a method for controlling the temperature of the green compact P, there is a method of controlling the current value to be applied to the green compact P on the basis of the temperature difference between the supply and drain of cooling water and the flow rate of the cooling water. In this case, the control device 20 calculates a current value according to the temperature required for the green compact P and gives a command to the electric sintering circuit 21,
The electric current sintering circuit 21 controls the value of the electric current applied to the green compact P.
【0031】さらに、冷却水の前記給排水温度差に基づ
いて冷却水の流量と圧粉体に通電する電流値を組み合わ
せて制御することにより、圧粉体Pの温度を制御するこ
とができる。Further, the temperature of the green compact P can be controlled by combining and controlling the flow rate of the cooling water and the value of the current flowing through the green compact based on the difference in the temperature of supply and drainage of the cooling water.
【0032】[0032]
【発明の効果】以上説明したように本発明の通電加熱焼
結装置によれば、冷却水の給水温度と、冷却後の排水温
度との差が圧粉体の温度に比例し、この温度差を測定す
ることにより圧粉体の温度を推定するので、従来のよう
に放射温度計により圧粉体の温度を測定する場合のよう
な障害がなく、圧粉体全体の温度を測定することができ
る。As described above, according to the electric heating and sintering apparatus of the present invention, the difference between the feed water temperature of the cooling water and the drainage temperature after cooling is proportional to the temperature of the green compact. Since the temperature of the green compact is estimated by measuring the temperature of the green compact, it is possible to measure the temperature of the green compact as a whole without the obstacles of the conventional method of measuring the temperature of the green compact with a radiation thermometer. it can.
【0033】従って、本発明によれば、棒形の圧粉体を
焼結するに際して圧粉体の温度を正確に測定でき、圧粉
体の温度を正確に制御することができる通電加熱焼結装
置を提供することができる。Therefore, according to the present invention, the temperature of the green compact can be accurately measured when sintering the green compact and the temperature of the green compact can be accurately controlled. A device can be provided.
【図1】本発明の通電加熱焼結装置における圧粉体温度
測定のための構成の一実施例を示すブロック図。FIG. 1 is a block diagram showing an example of a configuration for measuring a powder compact temperature in an electric heating sintering apparatus of the present invention.
【図2】本発明の通電加熱焼結装置の構成の一実施例を
示す断面図。FIG. 2 is a cross-sectional view showing an example of the configuration of an electric heating sintering apparatus of the present invention.
1…炉、3,5…導電パイプ、4,6…クランプ、1
1,15…温度計、20…制御装置。1 ... Furnace, 3, 5 ... Conductive pipe, 4, 6 ... Clamp, 1
1, 15 ... Thermometer, 20 ... Control device.
Claims (1)
熱により圧粉体を焼結する装置において、内部に前記圧
粉体を配置する炉と、前記圧粉体を支持する支持手段
と、前記圧粉体に通電する手段と、前記支持手段に冷却
水を供給し供給した冷却水を排出する冷却水流通手段
と、前記支持手段に供給される冷却水の温度および前記
支持手段から排出される冷却水の温度を測定する手段
と、この温度測定手段からの情報を受けて冷却水の給水
温度と排水温度との差を求めて前記圧粉体の温度を推定
および/またはこの温度の異常を検知する手段とを具備
することを特徴とする通電加熱焼結装置。1. A device for sintering a green compact by energizing the green compact by self-heating generated at this time, and a furnace for arranging the green compact inside, and a supporting means for supporting the green compact. A means for energizing the green compact, a cooling water circulating means for supplying cooling water to the supporting means and discharging the supplied cooling water, a temperature of the cooling water supplied to the supporting means and the discharging from the supporting means Means for measuring the temperature of the cooling water, and information from the temperature measuring means to obtain the difference between the feed water temperature and the drainage temperature of the cooling water to estimate the temperature of the green compact and / or An electric heating and sintering apparatus, comprising: means for detecting abnormality.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19040092A JPH0633110A (en) | 1992-07-17 | 1992-07-17 | Electrical heating and sintering device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19040092A JPH0633110A (en) | 1992-07-17 | 1992-07-17 | Electrical heating and sintering device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0633110A true JPH0633110A (en) | 1994-02-08 |
Family
ID=16257524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19040092A Pending JPH0633110A (en) | 1992-07-17 | 1992-07-17 | Electrical heating and sintering device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0633110A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9387970B2 (en) | 2009-10-28 | 2016-07-12 | Cj Cheiljedang Corp. | Container structure |
-
1992
- 1992-07-17 JP JP19040092A patent/JPH0633110A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9387970B2 (en) | 2009-10-28 | 2016-07-12 | Cj Cheiljedang Corp. | Container structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4947889A (en) | Method of measuring flow rate and flow meter for use in said method as well as apparatus for controlling flow rate of liquid using said flow meter | |
US5291142A (en) | Method and apparatus for measuring the resistance of conductive materials due to electromigration | |
JP2019511090A (en) | Heater system | |
KR100308439B1 (en) | Method and device for effecting temperature compensation in load detector | |
EP0962763A1 (en) | Differential scanning calorimeter | |
JP2008530560A (en) | Differential scanning calorimeter (DSC) with temperature controlled furnace | |
JP2019525403A (en) | Heater bundle for adaptive control and current leakage reduction method | |
JP3231601B2 (en) | Electric furnace temperature control method and apparatus | |
JP5070570B2 (en) | Thermal expansion coefficient measuring method and measuring apparatus | |
JPH0633110A (en) | Electrical heating and sintering device | |
JP4829833B2 (en) | Temperature estimation method and temperature estimation device | |
JP2012172871A (en) | Heat treatment apparatus and temperature measuring method of heat treatment apparatus | |
CN106500862B (en) | A method of periodically the oxidation of thermocouple is compensated | |
JP2002352938A (en) | Disconnection predicting method for heater element wire of heat treatment device, and the heat-treating device | |
JP2022140402A (en) | Heater bundles with local power switching | |
JP3893475B2 (en) | Thermoelectric element figure of merit measuring apparatus and measuring method | |
JP3828815B2 (en) | Temperature control device for heating furnace | |
US20040118190A1 (en) | Method for measuring diffusion coefficient in conductive melts, and apparatus for measuring the same | |
JP2002181751A (en) | Differential scan calorimeter | |
US20040226359A1 (en) | Mass flowmeter for measuring by the CT method | |
JP2005008901A (en) | Method and apparatus for producing glass particulate deposit | |
JPH04363026A (en) | Semiconductor manufacturing apparatus | |
EP4067846A1 (en) | Temperature measurement method, temperature measurement probe, and temperature measurement device | |
JPS62156707A (en) | Method for controlling temperature in furnace interior of hot hydrostatic pressure applying device | |
JP2009097882A (en) | Device for measuring amount of insulated heat |