JPH06330110A - Production of metal or alloy powder - Google Patents

Production of metal or alloy powder

Info

Publication number
JPH06330110A
JPH06330110A JP13925093A JP13925093A JPH06330110A JP H06330110 A JPH06330110 A JP H06330110A JP 13925093 A JP13925093 A JP 13925093A JP 13925093 A JP13925093 A JP 13925093A JP H06330110 A JPH06330110 A JP H06330110A
Authority
JP
Japan
Prior art keywords
powder
metal
alloy
oxidation inhibitor
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13925093A
Other languages
Japanese (ja)
Other versions
JP3634388B2 (en
Inventor
Yoshiyuki Katou
欽之 加藤
Okie Nakabayashi
興栄 中林
Tatsuhiro Shimura
辰裕 志村
Tadatsugu Yabuta
忠嗣 藪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Kinzoku KK
Pacific Metals Co Ltd
Original Assignee
Taiheiyo Kinzoku KK
Pacific Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Kinzoku KK, Pacific Metals Co Ltd filed Critical Taiheiyo Kinzoku KK
Priority to JP13925093A priority Critical patent/JP3634388B2/en
Publication of JPH06330110A publication Critical patent/JPH06330110A/en
Application granted granted Critical
Publication of JP3634388B2 publication Critical patent/JP3634388B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To provide the production method of a metal or alloy powder which has a low oxygen content and is used for the powder metallurgy, injection molding, etc. CONSTITUTION:At the time of producing a metal or alloy powder by the water atomizing method, the molten metal or alloy is pulverized by allowing it to flow down from a nozzle and injecting into it high pressure atomized water contg. an oxidation inhibitor from an injection nozzle. Since the powder having a low oxygen content can be produced by using this method, the need for any special post treatment of the metal or alloy powder thus produced is eliminated and therefore the powder can be used as it is for injection molding, sintering, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は主に粉末冶金用、射出成
形用等に使用される、酸素含有量の低い金属又は合金粉
末の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a metal or alloy powder having a low oxygen content, which is mainly used for powder metallurgy, injection molding and the like.

【0002】[0002]

【従来の技術】金属又は合金粉末の製造方法として、水
アトマイズ法は周知のように、溶融した金属又は合金を
容器からノズルを通して流下させ、これに高圧水を噴射
ノズルから噴射して溶融した金属又は合金を粉砕し、粉
末を製造する方法である。
2. Description of the Related Art As is well known as a method for producing metal or alloy powder, a water atomizing method is a method in which molten metal or alloy is made to flow down from a container through a nozzle, and high-pressure water is sprayed from this nozzle to melt the metal. Alternatively, it is a method of pulverizing an alloy to produce a powder.

【0003】しかしながら、この水アトマイズ法で高温
で酸化されやすい金属又は合金について酸素含有量の低
い粉末を製造しようと試みても、高温の溶融した金属又
は合金と水とが接触した際に、水が酸素と水素に分解し
この酸素と金属又は合金との反応に起因すると考えられ
る酸化物を生成する為に、粉末の酸素レベルを下げるこ
とは困難であった。
However, even if an attempt is made to produce a powder having a low oxygen content for a metal or alloy which is easily oxidized at a high temperature by this water atomizing method, when a high temperature molten metal or alloy comes into contact with water, It has been difficult to lower the oxygen level of the powder because it decomposes into oxygen and hydrogen and produces oxides that are believed to result from the reaction of this oxygen with the metal or alloy.

【0004】また、酸素レベルを下げる試みとして、特
開平2−290002号公報に記載のようにアトマイズ
法で使用する水をアルゴンや窒素などの不活性ガスをバ
ブリングさせたり、減圧処理により水中の溶存酸素を減
少させる方法もあるが、粉末の酸素レベルを下げるには
十分とは言えなかった。
As an attempt to lower the oxygen level, water used in the atomizing method is bubbled with an inert gas such as argon or nitrogen as described in JP-A-2-290002, or dissolved in water by a reduced pressure treatment. There are ways to reduce oxygen, but it has not been sufficient to reduce the oxygen level in powders.

【0005】また、前記のような従来の水アトマイズ法
で製造した酸素含有量の高い金属又は合金粉末はそのま
までは使用できないので、その後、更に還元処理しなけ
ればならない。この還元処理には、水素や一酸化炭素等
の還元物質が必要であり、しかも、粉末を高温に加熱す
るために、粉末同志が焼結状態となるのでこれを解砕し
なければならず歩留が低下する。更に、設備について
も、加熱設備、粉体移動設備、還元ガス処理設備、解砕
設備等を要し、製造コストも高くなる欠点があった。
Further, since the metal or alloy powder having a high oxygen content produced by the conventional water atomizing method as described above cannot be used as it is, it must be further reduced. This reducing treatment requires reducing substances such as hydrogen and carbon monoxide, and since the powders are heated to a high temperature, the powders are in a sintered state and must be crushed. The stay is reduced. Further, as for the equipment, there is a drawback that a heating equipment, a powder moving equipment, a reducing gas treatment equipment, a crushing equipment and the like are required, and the manufacturing cost becomes high.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、従来
の水アトマイズ法では製造することができなかった酸素
含有量の低い金属又は合金の粉末の製造方法を提供する
ことである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a powder of metal or alloy having a low oxygen content, which cannot be produced by the conventional water atomizing method.

【0007】[0007]

【課題を解決するための手段】本発明は前記に課題を解
決するために、アトマイズ法で使用する水の中に酸化抑
制剤を添加し、この水を溶融した金属又は合金を容器か
らノズルを通して流下させ、これに高圧水を噴射ノズル
から噴射させて溶融した金属又は合金を粉砕し、粉末を
製造する点に特徴がある。
In order to solve the above-mentioned problems, the present invention adds an oxidation inhibitor to water used in the atomizing method, and then passes a metal or alloy obtained by melting the water from a container through a nozzle. It is characterized in that it is made to flow down and high-pressure water is jetted from this to pulverize the molten metal or alloy to produce powder.

【0008】[0008]

【作用】すなわち、アトマイズ法で使用する水の中に添
加した酸化抑制剤が、酸素と金属又は合金の酸化反応を
抑制すると考えられるために、高温で酸化されやすい金
属又は合金であっても、酸素含有量の低い金属又は合金
の粉末を製造することが可能になった。
In other words, since the oxidation inhibitor added to the water used in the atomizing method is considered to suppress the oxidation reaction between oxygen and the metal or alloy, even if the metal or alloy is easily oxidized at high temperature, It has become possible to produce metal or alloy powders with a low oxygen content.

【0009】ここで、本発明における酸化抑制剤とは高
温で金属又は合金の酸化を抑制する作用のある物質で、
有機系物質と無機系物質があり、有機系物質としてはア
ニリン、ピリジンやチクロヘキシルアミン、オクタデシ
ルアミン等の脂肪族アミン、芳香族イミダゾール、芳香
族尿素等の芳香族アミンなどのアミン類、更に酸アミド
類、チオフェノール、チオクレゾール等のサルファイド
類、アルデヒド類、ケトン類があり、無機系物質として
はクロム酸塩、ポリリン酸塩、けい酸塩、モリブデン酸
塩、タングステン酸塩等がありこれらの1種もしくは2
種以上の混合物を使用できる。
Here, the oxidation inhibitor in the present invention is a substance having an action of suppressing the oxidation of a metal or alloy at high temperature,
There are organic substances and inorganic substances, and as the organic substances, there are aniline, pyridine, cyclohexylamine, octadecylamine and other aliphatic amines, aromatic imidazoles, aromatic urea and other aromatic amines, and amines. There are sulfides such as amides, thiophenol and thiocresol, aldehydes and ketones, and inorganic substances include chromates, polyphosphates, silicates, molybdates and tungstates. 1 or 2
Mixtures of more than one can be used.

【0010】また、水への酸化抑制剤の添加量は0.1
%〜5%である。この理由は、0.1%以下では酸化抑
制効果が少なく、また5%以上加えても効果が飽和しコ
スト高になるからである。また、好ましい範囲は0.2
〜1%である。
The amount of the oxidation inhibitor added to water is 0.1.
% To 5%. The reason for this is that if it is 0.1% or less, the effect of suppressing oxidation is small, and if 5% or more is added, the effect is saturated and the cost becomes high. The preferred range is 0.2
~ 1%.

【0011】また、本発明における金属又は合金とは高
温で酸化され易い金属又は合金、例えば、鉄、珪素鋼、
ステンレス鋼、Mn含有鋼等の鉄基合金、クロム、クロ
ム基合金、チタン、チタン基合金、ニッケル、ニッケル
基合金等である。
The metal or alloy in the present invention is a metal or alloy that is easily oxidized at high temperature, such as iron or silicon steel,
Examples include iron-based alloys such as stainless steel and Mn-containing steel, chromium, chromium-based alloys, titanium, titanium-based alloys, nickel and nickel-based alloys.

【0012】本発明は従来の水アトマイズ法では製造す
ることができなかった、高温で酸化されやすい金属又は
合金でも酸化含有量の低い粉末を製造することを可能に
した。また、製造設備についても、アトマイズ法で使用
する水の中に酸化抑制剤を添加するだけでよいので、特
別の設備は全く不要で、従来の水アトマイズ法の製造設
備をそのまま使用できる長所がある。例えば、工業用素
材として大量に使用される鉄粉末や、磁性材料として重
要な珪素鋼や、マンガン含有鉄合金は、従来の水アトマ
イズ法で製造すると粉末の酸化が激しいのでそのままで
は使用できなかった。しかしながら、本発明によって製
造した粉末は酸化が抑制され酸素含有量が低いので、特
別な後処理を必要とせず、そのままで射出成形用、焼結
用等に供することができる。
The present invention has made it possible to produce a powder having a low oxidation content even in a metal or alloy which is easily oxidized at a high temperature and which cannot be produced by the conventional water atomizing method. Also, regarding the manufacturing equipment, since it is only necessary to add an oxidation inhibitor to the water used in the atomizing method, no special equipment is required at all, and there is an advantage that the manufacturing equipment of the conventional water atomizing method can be used as it is. . For example, iron powder, which is used in large quantities as an industrial material, silicon steel, which is important as a magnetic material, and manganese-containing iron alloy, cannot be used as it is because the powder is highly oxidized when manufactured by the conventional water atomization method. . However, since the powder produced according to the present invention is suppressed in oxidation and has a low oxygen content, it can be directly used for injection molding, sintering, etc. without requiring any special post-treatment.

【0013】[0013]

【実施例】【Example】

(実施例1) (Example 1)

【0014】[0014]

【表1】 [Table 1]

【0015】表1の化学成分の鉄500kgをアルゴン
ガスでシールした高周波誘導炉で溶解し、この溶融物を
1620℃の温度で、タンディッシュからノズルを通し
て流し、これに酸化抑制剤(オクタデシルアミン)の添
加量を変えて加えた水を1000kg/cm2 の高圧で
吹き付け、鉄粉末を製造した。なお、雰囲気ガスはAr
を使用した。また、比較例として、前記と同一の条件
で、酸化抑制剤を添加しない水を使用して鉄粉末を製造
した。なお、これらの例で得られた鉄粉末の分級後の平
均粒径は9.3〜9.8μmで、ばらつきは極めて小さ
かった。
Iron (500 kg) of the chemical composition shown in Table 1 was melted in a high-frequency induction furnace sealed with argon gas, and the melt was allowed to flow from a tundish through a nozzle at a temperature of 1620 ° C. to which an oxidation inhibitor (octadecylamine) was added. The water added while changing the addition amount of was sprayed at a high pressure of 1000 kg / cm 2 to produce an iron powder. The atmosphere gas is Ar
It was used. In addition, as a comparative example, iron powder was produced under the same conditions as above using water without addition of an oxidation inhibitor. The average particle size of the iron powder obtained in these examples after classification was 9.3 to 9.8 μm, and the variation was extremely small.

【0016】[0016]

【表2】 [Table 2]

【0017】表2は得られた鉄粉末について、水への酸
化抑制剤の添加量と酸素含有量の関係を調べたもので、
図1はこれらの関係を図示したものである。これらから
わかるように、比較例の酸化抑制剤を添加しない水を使
用した場合は、鉄粉末の酸素含有量は約20000pp
mも含有しているが、酸化抑制剤の添加量を0.1%、
0.2%、03%、0.5%と増加して行くと、酸化抑
制剤の添加量が少量にもかかわらず、鉄粉末の酸素含有
量は夫々14630ppm、9740ppm、3990
ppm、1980ppmと急激に減少する。
Table 2 shows the relation between the amount of the oxidation inhibitor added to water and the oxygen content of the obtained iron powder.
FIG. 1 illustrates these relationships. As can be seen from these, when water containing no oxidation inhibitor of Comparative Example is used, the oxygen content of the iron powder is about 20,000 pp.
m is also included, but the addition amount of the oxidation inhibitor is 0.1%,
When increasing to 0.2%, 03%, and 0.5%, the oxygen content of the iron powder was 14630 ppm, 9740 ppm, and 3990, respectively, despite the small amount of the oxidation inhibitor added.
It decreases sharply to 1980 ppm.

【0018】更に、酸化抑制剤の添加量を増加して行く
と、鉄粉末の酸素含有量は若干減少するがその効果は少
なくなる。このように、酸化抑制剤の添加量は少量にも
かかわらず、鉄粉末の酸化抑制の効果は極めて顕著であ
ることがわかる。従って、本発明で製造した鉄粉末はそ
の後、還元処理等は全く必要なく、そのままの状態で製
品として各種の用途に使用できる。
Further, as the amount of the oxidation inhibitor added is increased, the oxygen content of the iron powder is slightly reduced, but its effect is diminished. Thus, it can be seen that the effect of suppressing the oxidation of the iron powder is extremely remarkable, even though the amount of the oxidation inhibitor added is small. Therefore, the iron powder produced by the present invention can be used as it is for various purposes as a product without any subsequent reduction treatment.

【0019】(実施例2)(Example 2)

【0020】[0020]

【表3】 [Table 3]

【0021】表3の化学成分の珪素鋼500kgを実施
例1と同様にアルゴンガスでシールした高周波誘導炉で
溶解し、この溶融物を1640℃の温度で、タンディッ
シュからノズルを通して流し、これに酸化抑制剤(オク
タデシルアミン)を添加した水を1000kg/cm2
の高圧で吹き付け、珪素鋼粉末を製造した。なお、雰囲
気ガスはArを使用した。また、比較例として、前記と
同一の条件で、酸化抑制剤を添加しない水を使用して珪
素鋼粉末を製造した。なお、これらの例で得られた珪素
鋼粉末の分級後の平均粒径は9.4〜9.9μmであっ
た。
500 kg of silicon steel having the chemical composition shown in Table 3 was melted in a high-frequency induction furnace sealed with argon gas in the same manner as in Example 1, and the melt was flowed from a tundish through a nozzle at a temperature of 1640 ° C. 1000 kg / cm 2 of water added with an oxidation inhibitor (octadecylamine)
It was sprayed at high pressure to produce silicon steel powder. The atmosphere gas used was Ar. In addition, as a comparative example, silicon steel powder was produced under the same conditions as above using water without addition of an oxidation inhibitor. The average particle size of the silicon steel powder obtained in these examples after classification was 9.4 to 9.9 μm.

【0022】[0022]

【表4】 [Table 4]

【0023】表4は得られた珪素鋼粉末について、水へ
の酸化抑制剤の添加量と酸素含有量の関係を調べたもの
で、図2はこれらの関係を図示したものである。これら
からわかるように、比較例の酸化抑制剤を添加しない水
を使用した場合は、珪素鋼粉末の酸素含有量は約210
00ppmも含有しているが、酸化抑制剤の添加量を
0.1%、0.2%、0.3%:0.5%と増加して行
くと、酸化抑制剤の添加量が少量にもかかわらず、珪素
鋼粉末の酸素含有量は夫々16150ppm、1008
0ppm、7630ppm、2260ppmと急激に減
少する。
Table 4 shows the relation between the amount of the oxidation inhibitor added to water and the oxygen content in the obtained silicon steel powder, and FIG. 2 shows these relations. As can be seen from these, when water containing no oxidation inhibitor of Comparative Example is used, the oxygen content of the silicon steel powder is about 210.
Although it also contains 00 ppm, when the amount of oxidation inhibitor added increases to 0.1%, 0.2%, 0.3%: 0.5%, the amount of oxidation inhibitor added decreases to a small amount. Nevertheless, the oxygen content of the silicon steel powder is 16150 ppm and 1008, respectively.
It rapidly decreases to 0 ppm, 7630 ppm, and 2260 ppm.

【0024】更に、酸化抑制剤の添加量を増加して行く
と、珪素鋼粉末の酸素含有量は若干減少するがその効果
は少なくなった。このように、酸化抑制剤の添加量は少
量にもかかわらず、珪素鋼粉末の酸化抑制の効果は極め
て顕著であることがわかる。従って、本発明で製造した
珪素鋼粉末はその後、還元処理等は全く必要なく、その
ままの状態で製品として各種の用途にも使用できる。
Further, as the amount of the oxidation inhibitor added was increased, the oxygen content of the silicon steel powder was slightly reduced, but its effect was diminished. As described above, it can be seen that the effect of suppressing the oxidation of the silicon steel powder is extremely remarkable even though the amount of the oxidation inhibitor added is small. Therefore, the silicon steel powder produced by the present invention can be used as it is for various purposes as a product without any subsequent reduction treatment.

【0025】(実施例3)(Example 3)

【0026】[0026]

【表5】 [Table 5]

【0027】表5の化学成分のSUS316Lステンレ
ス鋼(Mn含有ステンレス鋼)500kgを実施例1と
同様にアルゴンガスでシールした高周波誘導炉で溶解
し、この溶融物を1630℃の温度で、タンディッシュ
からノズルを通して流し、これに酸化抑制剤(オクタデ
シルアミン)を添加した水を1000kg/cm2 の高
圧で吹き付け、SUS316Lステンレス鋼粉末を製造
した。なお、雰囲気ガスはArを使用した。また、比較
例として、前記と同一の条件で、酸化抑制剤を添加しな
い水を使用してSUS316Lステンレス鋼粉末を製造
した。なお、これらの例で得られた粉末の分級後の平均
粒径は9.3〜9.9μmであった。
500 kg of the chemical composition of SUS316L stainless steel (Mn-containing stainless steel) shown in Table 5 was melted in a high frequency induction furnace sealed with argon gas in the same manner as in Example 1, and this melt was heated at 1630 ° C. for tundish. From the above, and water to which an oxidation inhibitor (octadecylamine) was added was sprayed at a high pressure of 1000 kg / cm 2 to produce SUS316L stainless steel powder. The atmosphere gas used was Ar. In addition, as a comparative example, SUS316L stainless steel powder was produced under the same conditions as above using water without addition of an oxidation inhibitor. The average particle size of the powders obtained in these examples after classification was 9.3 to 9.9 μm.

【0028】[0028]

【表6】 [Table 6]

【0029】表6は得られたSUS316Lステンレス
鋼粉末について、水への酸化抑制剤の添加量と酸素含有
量の関係を調べたもので、図3はこれらの関係を図示し
たものである。これらからわかるように、比較例の酸化
抑制剤を添加しない水を使用した場合は、SUS316
Lステンレス鋼粉末の酸素含有量は約20000ppm
も含有しているが、酸化抑制剤を0.1%、0.2%、
0.3%、0.5%と添加量を増加して行くと、酸化抑
制剤の添加量が少量にもかかわらず、ステンレス鋼粉末
の酸素含有量は夫々は15040ppm、11860p
pm、10030ppm、6010ppmと急激に減少
する。
Table 6 shows the relationship between the amount of the oxidation inhibitor added to water and the oxygen content in the obtained SUS316L stainless steel powder, and FIG. 3 illustrates these relationships. As can be seen from these, when water containing no oxidation inhibitor of Comparative Example was used, SUS316
Oxygen content of L stainless steel powder is about 20000ppm
It also contains 0.1%, 0.2%,
When the addition amount was increased to 0.3% and 0.5%, the oxygen contents of the stainless steel powder were 15040 ppm and 11860 p, respectively, even though the addition amount of the oxidation inhibitor was small.
pm, 10030ppm, 6010ppm, and it decreases rapidly.

【0030】更に、酸化抑制剤の添加量を増加して行っ
ても、ステレンス鋼粉末の酸素含有量は若干減少するが
その効果は少なくなった。このように、酸化抑制剤の添
加量は少量にもかかわらず、ステンレス鋼粉末の酸化抑
制の効果は極めて顕著であることがわかる。従って、本
発明で製造したステンレス鋼粉末はその後、還元処理等
は全く必要なく、そのままの状態で製品として各種の用
途に使用できる。
Further, even when the amount of the oxidation inhibitor added was increased, the oxygen content of the stainless steel powder was slightly reduced, but its effect was diminished. As described above, it can be seen that the effect of suppressing the oxidation of the stainless steel powder is extremely remarkable even though the amount of the oxidation inhibitor added is small. Therefore, the stainless steel powder produced by the present invention can be used as it is for various purposes as a product without any reduction treatment after that.

【0031】[0031]

【発明の効果】本発明は従来の水アトマイズ法では製造
することができなかった、高温で酸化されやすい金属又
は合金を、噴射する水に少量の酸化抑制剤を添加するだ
けで、極めて容易に酸素含有量の低い粉末を製造するこ
とを可能にした。例えば、工業用素材として大量に使用
される鉄粉末や、磁性材料として重要な珪素鉄や、マン
ガン含有鉄合金は、従来の水アトマイズ法で製造すると
粉末の酸化が激しいのでそのままでは使用することはで
きなかった。しかしながら、本発明によって製造された
粉末は酸化が抑制され、酸素含有量が低いので、特別な
後処理を必要とせず、そのまま射出成形用、焼結用等に
使用することが可能になった。また、製造設備について
も、アトマイズ法で使用する水の中に酸化抑制剤を添加
するだけでよいので、特別の設備は全く不要で、従来の
水アトマイズ法の製造設備をそのまま使用できる長所も
ある。
INDUSTRIAL APPLICABILITY The present invention makes it extremely easy to prepare a metal or alloy which cannot be produced by the conventional water atomization method and which is easily oxidized at high temperature, by adding a small amount of an oxidation inhibitor to the water to be injected. It has made it possible to produce powders with a low oxygen content. For example, iron powder that is used in large quantities as an industrial material, silicon iron that is important as a magnetic material, and manganese-containing iron alloys cannot be used as they are because oxidation of the powder is severe when manufactured by the conventional water atomization method. could not. However, since the powder produced according to the present invention is suppressed in oxidation and has a low oxygen content, it can be used as it is for injection molding, sintering, etc. without requiring special post-treatment. Also, regarding the manufacturing equipment, since it is only necessary to add an oxidation inhibitor to the water used in the atomizing method, no special equipment is required at all, and there is an advantage that the manufacturing equipment of the conventional water atomizing method can be used as it is. .

【図面の簡単な説明】[Brief description of drawings]

【図1】鉄粉末製造時における水への酸化抑制剤添加量
と鉄粉末の酸素含有量の関係を示す図
FIG. 1 is a diagram showing the relationship between the amount of an oxidation inhibitor added to water and the oxygen content of iron powder during iron powder production.

【図2】珪素鋼粉末製造時における水への酸化抑制剤添
加量と珪素鋼の酸素含有量の関係を示す図
FIG. 2 is a diagram showing the relationship between the amount of an oxidation inhibitor added to water and the oxygen content of silicon steel during the production of silicon steel powder.

【図3】ステンレス鋼粉末製造時における水への酸化抑
制剤添加量とステンレス鋼の酸素含有量の関係を示す図
FIG. 3 is a diagram showing the relationship between the amount of an oxidation inhibitor added to water and the oxygen content of stainless steel during the production of stainless steel powder.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属又は合金粉末を水アトマイズ法で製
造する際に、溶融した金属又は合金を、ノズルより流下
させ、これに酸化抑制剤を添加したアトマイズ水を噴射
ノズルより高圧で噴射することにより、前記溶融した金
属又は合金を粉末化することを特徴とする金属又は合金
粉末の製造方法。
1. When producing a metal or alloy powder by a water atomizing method, a molten metal or alloy is made to flow down from a nozzle, and atomized water added with an oxidation inhibitor is jetted at a high pressure from a jet nozzle. The method for producing metal or alloy powder according to claim 1, wherein the molten metal or alloy is powdered.
JP13925093A 1993-05-19 1993-05-19 Method for producing metal or alloy powder Expired - Lifetime JP3634388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13925093A JP3634388B2 (en) 1993-05-19 1993-05-19 Method for producing metal or alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13925093A JP3634388B2 (en) 1993-05-19 1993-05-19 Method for producing metal or alloy powder

Publications (2)

Publication Number Publication Date
JPH06330110A true JPH06330110A (en) 1994-11-29
JP3634388B2 JP3634388B2 (en) 2005-03-30

Family

ID=15240943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13925093A Expired - Lifetime JP3634388B2 (en) 1993-05-19 1993-05-19 Method for producing metal or alloy powder

Country Status (1)

Country Link
JP (1) JP3634388B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248546A (en) * 2009-04-13 2010-11-04 Olympus Corp Method of producing metal powder, metal powder produced by the same, and metal powder producing device
JP2021503553A (en) * 2017-11-17 2021-02-12 コリア ミンティング, セキュリティ プリンティング アンド アイディー カード オペレーティング コーポレーションKorea Minting, Security Printing & Id Card Operating Corp. AlNICO-based magnetic particles for security inks
CN113351873A (en) * 2021-06-08 2021-09-07 金川镍钴研究设计院有限责任公司 Production method of low-oxygen stainless steel powder for injection molding

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248546A (en) * 2009-04-13 2010-11-04 Olympus Corp Method of producing metal powder, metal powder produced by the same, and metal powder producing device
JP2021503553A (en) * 2017-11-17 2021-02-12 コリア ミンティング, セキュリティ プリンティング アンド アイディー カード オペレーティング コーポレーションKorea Minting, Security Printing & Id Card Operating Corp. AlNICO-based magnetic particles for security inks
JP2022141626A (en) * 2017-11-17 2022-09-29 コリア ミンティング,セキュリティ プリンティング アンド アイディー カード オペレーティング コーポレーション Alnico-based magnetic particles for security ink
CN113351873A (en) * 2021-06-08 2021-09-07 金川镍钴研究设计院有限责任公司 Production method of low-oxygen stainless steel powder for injection molding

Also Published As

Publication number Publication date
JP3634388B2 (en) 2005-03-30

Similar Documents

Publication Publication Date Title
CN111500942B (en) High-nitrogen-content non-magnetic stainless steel powder and preparation method thereof
US10926334B2 (en) Powder metal material for wear and temperature resistance applications
CN104001924A (en) Iron-based alloy premix for metal injection forming
US5114471A (en) Hydrometallurgical process for producing finely divided spherical maraging steel powders
US4787934A (en) Hydrometallurgical process for producing spherical maraging steel powders utilizing spherical powder and elemental oxidizable species
US4859237A (en) Hydrometallurgical process for producing spherical maraging steel powders with readily oxidizable alloying elements
GB1491726A (en) Powder mixture for the production of alloy steel
JPH06330110A (en) Production of metal or alloy powder
WO2017051541A1 (en) Method for manufacturing alloy steel powder for sintered member raw material
JPH10102105A (en) Manufacture of fine metallic powder
JP3454890B2 (en) Method for producing metal or alloy powder
CA2904887A1 (en) Powder metal compositions for wear and temperature resistance applications and method of producing same
JPH07113121B2 (en) Method for producing low alloy steel powder for powder metallurgy with low C and low O
JP2000104103A (en) Method and apparatus for manufacturing metal powder
CN102409186B (en) Silicon-based nitroalloy used for molten steel nitrogen microalloyed treatment and production technology thereof
JPH0723481B2 (en) Stainless steel powder
Tunberg et al. Enhanced vacuum sintering of water-atomized austenitic stainless steel powder by carbon addition
JPS59211501A (en) Manufacture of steel powder
dePoutiloff et al. Sintering of stainless steels
JP2001105104A (en) Method for continuously casting steel and continuously cast slab
Danninger et al. Manganese alloyed sintered steels prepared from elemental powders
Ostrik Alloy powders in the Fe—Cu, Fe—Cr, Fe—Mn, and Fe—Cr—Mn systems
RU2202445C1 (en) Method for making iron base powder
JPS62218504A (en) Production of steel powder
Simmons et al. Advanced processing techniques for nitrogen alloying of iron-based alloy powders

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20040827

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20041027

Free format text: JAPANESE INTERMEDIATE CODE: A523

A61 First payment of annual fees (during grant procedure)

Effective date: 20041224

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100107

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

EXPY Cancellation because of completion of term