JPS59211501A - Manufacture of steel powder - Google Patents

Manufacture of steel powder

Info

Publication number
JPS59211501A
JPS59211501A JP58084187A JP8418783A JPS59211501A JP S59211501 A JPS59211501 A JP S59211501A JP 58084187 A JP58084187 A JP 58084187A JP 8418783 A JP8418783 A JP 8418783A JP S59211501 A JPS59211501 A JP S59211501A
Authority
JP
Japan
Prior art keywords
steel powder
treatment
powder
decarburization
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58084187A
Other languages
Japanese (ja)
Inventor
Isamu Karasuno
烏野 勇
Eijirou Tamura
田村 英二朗
Sadao Yonehara
米原 貞夫
Yasufumi Shiromata
白又 靖文
Masahide Unno
正英 海野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP58084187A priority Critical patent/JPS59211501A/en
Publication of JPS59211501A publication Critical patent/JPS59211501A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain easily low carbon and low oxygen alloy steel powder by decarburizing steel powder contg. an easily oxidizable element obtd. by an oil atomizing method in an atmosphere contg. H2 and H2O, and reducing the powder in a nonoxidizing atmosphere contg. H2. CONSTITUTION:Molten steel contg. one or more kinds of easily oxidizable elements selected among Cr, Mn, V, Nb and Si is atomized with a nonoxidizing liq. as an atomizing medium. The resulting steel powder having <=0.2wt% O2 content and >=0.1wt% C content is decarburized in an atmosphere contg. H2O and H2, and it is reduced at 850-1,200 deg.C in a nonoxidizing atmosphere having <=-20 deg.C dew point.

Description

【発明の詳細な説明】 本発明は合金鋼粉の製造方法、より詳しくは油アトマイ
ズ法により得たクロム、マンガン等の易酸化性元素を1
種以上含有する合金鋼粉の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention describes a method for producing alloy steel powder, more specifically, a method for producing alloy steel powder, in which easily oxidizable elements such as chromium and manganese obtained by an oil atomization method are
The present invention relates to a method for producing alloy steel powder containing more than

粉末冶金の原料となる鋼粉は、その酸素含有量が低いこ
とと共に、極く特殊な用途を除いて炭素含有量が低いこ
′とが要求される。銅粉中の酸素および炭素は、鋼粉の
圧縮性、成形性、焼結性などの特性(・二悪影響を及ぼ
すからである。
Steel powder, which is a raw material for powder metallurgy, is required to have a low oxygen content and, except for very special uses, a low carbon content. This is because oxygen and carbon in copper powder adversely affect the compressibility, formability, sinterability, and other properties of steel powder.

従来、鋼粉の製造法、としては、水アトマイズ法、ガス
アトマイズ法および油アトマイズ法が知られている。し
かし、本発明により処理されるような易酸化性元素を含
む合金鋼粉を製造しようとする場合、これらの゛従来法
には次のような問題点が見られた。
Conventionally, water atomization, gas atomization, and oil atomization are known as methods for producing steel powder. However, when attempting to produce alloy steel powder containing easily oxidizable elements as processed by the present invention, these conventional methods have the following problems.

英アトマイズ法: 噴霧媒として水を使うため、この方法では生成粉末が水
アトマイズ時に酸化されるのは避けられない。
British atomization method: Since water is used as the atomization medium, this method inevitably oxidizes the resulting powder during water atomization.

しかも、その酸化量は一般に非常に大きく、合金成分設
計において易酸化性元素の添加は制約を受ける。
Moreover, the amount of oxidation is generally very large, and the addition of easily oxidizable elements is restricted in alloy component design.

特に、クロム(Cr)、マンガン(Mn) 、バナジウ
ム(■)、ニオブ(Nb)、ホウ素(B)、ケイ素(S
i)などの易酸化性元素を含有する溶鋼を水アトマ、゛
イズすると、これらの元素は噴霧媒である水により容易
に酸化され、したがって、鋼粉の酸素含有量を下げるた
めの処理として得られた鋼粉を次いで還元処理すること
が必要である。この還元は、たとえば1000℃以上の
温度で1〜2時間という高温度かつ長時間の処理を要す
るが、このような還元処理を施しても、炭素含量的0.
1%、酸素含量的0.3%程度の銅粉しか得られない。
In particular, chromium (Cr), manganese (Mn), vanadium (■), niobium (Nb), boron (B), silicon (S
When molten steel containing easily oxidizable elements such as i) is atomized with water, these elements are easily oxidized by water, which is a spraying medium, and therefore, it is difficult to use as a treatment to lower the oxygen content of steel powder. It is then necessary to subject the resulting steel powder to a reduction treatment. This reduction requires treatment at a high temperature and for a long time, for example, at a temperature of 1000° C. or higher for 1 to 2 hours, but even with such a reduction treatment, the carbon content remains at 0.
Only copper powder with an oxygen content of about 1% and 0.3% can be obtained.

炭素および酸素含量がこの程度であ゛ると、たと走ば、
成形圧5T/cmlJの圧縮密度が6.7g/c/4呈
度であり、粉末冶金用の鋼粉としての特性に不十分さが
残る。
When the carbon and oxygen contents are at this level, if you run,
The compressed density at a compacting pressure of 5 T/cmlJ is 6.7 g/c/4, and the properties as a steel powder for powder metallurgy remain insufficient.

ガスアトマイズ法: 噴霧媒として窒素、アルゴンなどの不活性ガスを使用す
る方法であって、酸化は抑制されるため、鋼粉の炭素お
よび酸素含有量は所望のレベルに低減させることができ
る。その反面、噴霧媒として多量に必要となる不活性ガ
スが高価であり、そのためコストは水アトマイズ時の1
0倍以上となる。また、ガス冷却のたや冷却速度が遅く
、得られた銅粉の形状が球形となる傾向があり、そのた
め成形性および焼結性は悪化する。このような銅粉は冷
間成形が困難であって、コストがかかる特殊な成形法を
必要とする。
Gas atomization method: This method uses an inert gas such as nitrogen or argon as an atomizing medium, and since oxidation is suppressed, the carbon and oxygen contents of the steel powder can be reduced to a desired level. On the other hand, the inert gas required in large quantities as a spray medium is expensive, so the cost is 1
It becomes 0 times or more. In addition, the cooling rate of gas cooling is slow, and the shape of the obtained copper powder tends to be spherical, resulting in poor formability and sinterability. Such copper powders are difficult to cold form and require expensive special forming methods.

以上の理由から、ガスアトマイズ法は特殊な用途には実
用化されているが、粉末冶金において最も一般的な焼結
用あるいは焼結鍛造用の鋼粉の製造にはほとんど採用さ
れていない。
For the above reasons, although the gas atomization method has been put into practical use for special purposes, it has hardly been adopted for producing steel powder for sintering or sinter-forging, which is the most common method in powder metallurgy.

油アトマイズ法: 油アトマイズ法は、鉱物油または動植物油などの油を噴
霧媒とするもので、前述の水アトマイズ法に比べて、鋼
製造時に酸化が起こらない、すなわち、溶鋼中に前述の
ような易酸化性合金元素が存在する場合でも、酸素含量
が0.2%以下という低酸素の鋼粉が得られる点でずく
れている。しかし、アトマイズ時に噴霧媒から鋼粉への
浸炭が起こるため、次工程で脱炭処理を施さなければな
らない。
Oil atomization method: The oil atomization method uses oil such as mineral oil or animal or vegetable oil as the atomizing medium, and compared to the water atomization method described above, oxidation does not occur during steel production. Even in the presence of easily oxidizable alloying elements, it is outstanding in that low-oxygen steel powder with an oxygen content of 0.2% or less can be obtained. However, since carburization from the spray medium to the steel powder occurs during atomization, decarburization must be performed in the next step.

易酸化性元素を含む鋼粉を製造する場合、酸化したもの
を還元するより、浸炭したものを脱炭する方が有利であ
ろうことは推測されるが、かかる銅粉の効率的かつ容易
な脱炭処理法は従来見出されていなかった。
When producing steel powder containing easily oxidizable elements, it is assumed that it is more advantageous to decarburize carburized material than to reduce oxidized material, but it is difficult to efficiently and easily prepare such copper powder. A decarburization treatment method had not been previously discovered.

本発明者らは先に、油アトマイズ法で得た易酸化性元素
を含有する鋼粉の脱炭条件について研究の結果、油アト
マイズ法で酸素0.2%以下、炭素0.1%以上を含有
する銅粉を得、これをH20H2含有雰囲気中、1特定
の条件下で脱炭した後、還元雰囲気下で冷却することに
より、酸素含有量0.2%以下、炭素含有量0.1%以
下という低炭素、低酸素の合金鋼粉を効率よく連続的に
製造できることを見出した(特願昭57−189238
号)。なお、本明細書において、%は特に指定のない限
り重量%である。
The present inventors previously researched the decarburization conditions for steel powder containing easily oxidizable elements obtained by the oil atomization method, and found that the oil atomization method reduced oxygen to 0.2% or less and carbon to 0.1% or more. After decarburizing this under specific conditions in an H20H2-containing atmosphere and cooling it in a reducing atmosphere, the oxygen content is 0.2% or less and the carbon content is 0.1%. We have discovered that it is possible to efficiently and continuously produce the following low-carbon, low-oxygen alloy steel powder (Japanese Patent Application No. 57-189238
issue). In addition, in this specification, % is weight % unless otherwise specified.

この油アトマイズとその後の脱炭処理の組合せからなる
方法ば、水アトマイズ法に比べて、製造効率がよく、し
かも低酸素と低炭素を共に実現できる点で非常に有望な
方法であるが、実際の操業にあたっては次のような困難
がある。すなわち、水素のみによる脱炭は速度が遅く実
用的でないため、脱炭処理は水素と水蒸気を含有する雰
囲気中で行うが、水蒸気には酸化性があるため、脱炭の
進行とともにFeより酸化し易いCr、Mn、V、Nb
、B、Siなどの易酸化性元素の酸化も進行するので、
目標とする低炭素、低酸素の鋼粉とするためには脱炭処
理条件に制約が伴う。換言すると、脱炭処理条件の範囲
か狭く、操業のコントロールが厄介である。
A method consisting of a combination of oil atomization and subsequent decarburization is a very promising method in that it has better production efficiency than the water atomization method and can achieve both low oxygen and low carbon. There are the following difficulties in operating the plant. In other words, since decarburization using only hydrogen is slow and impractical, decarburization treatment is performed in an atmosphere containing hydrogen and steam, but since steam has oxidizing properties, it oxidizes more than Fe as decarburization progresses. Easy Cr, Mn, V, Nb
Since oxidation of easily oxidizable elements such as , B, and Si also progresses,
In order to achieve the target low carbon and low oxygen steel powder, there are restrictions on the decarburization treatment conditions. In other words, the range of decarburization treatment conditions is narrow, making operation control difficult.

本発明者らその後研究により、油アトマイズ法で(Mた
易酸化性元素を含有する銅粉の処理法として、H2とH
20を含有する雰囲気中での脱炭処理の後に、H2を含
有する非酸化性雰囲気中で還元処理を行うという2段処
理法により、比較的容易に低炭素、低酸素の合金鋼粉が
得られることを見出し、本発明に到達した。
Subsequent research by the present inventors revealed that the oil atomization method (H2 and H
Low carbon and low oxygen alloy steel powder can be obtained relatively easily by a two-stage treatment method in which decarburization treatment is performed in an atmosphere containing H20, followed by reduction treatment in a non-oxidizing atmosphere containing H2. The present invention was achieved based on the discovery that

本発明の方法によると、炭素含量が0.03%以下、酸
素含量が0.15%以下という、水アトマイズ法で得ら
れる銅粉に比べて大幅に低炭素、低酸素の銅粉が得られ
、炭素及び酸素含有量がこの程度であると、銅粉の圧縮
密度は、成形圧が5 T / odの場合で6.9g 
/ ca以上と良好になる。
According to the method of the present invention, copper powder with a carbon content of 0.03% or less and an oxygen content of 0.15% or less, which is significantly lower than copper powder obtained by water atomization, can be obtained. , when the carbon and oxygen contents are at this level, the compressed density of the copper powder is 6.9 g when the molding pressure is 5 T/od
/ca or more is good.

ここに、本発明は、Cr、Mn、■、Nb、B及びSi
から選ばれた易酸化性元素を1種以上含有する溶鋼を非
酸化性液体を噴霧媒とするアトマイスにより微粉化する
ことによって得た、酸素含有量0.2重量%以下、炭素
含有量0.1重量%以上の銅粉を、少なくともH2Oお
よびH2を含有する雰囲気で脱炭処理し、次いでH2を
主体とする非酸化性雰囲気中において、 850℃≦t≦1200℃、 Dp  ≦ −20°C (ただし、t:雰囲気温度、Dp:雰囲気露点)の条件
下で還元処理することを特徴とする鋼粉の製造方法であ
る。
Here, the present invention provides Cr, Mn, ■, Nb, B and Si.
A molten steel containing one or more easily oxidizable elements selected from the following is pulverized using an atomizer using a non-oxidizing liquid as an atomizing medium, with an oxygen content of 0.2% by weight or less and a carbon content of 0.2% by weight. 1% by weight or more of copper powder is decarburized in an atmosphere containing at least H2O and H2, and then in a non-oxidizing atmosphere mainly composed of H2, 850°C≦t≦1200°C, Dp≦−20°C (However, t: atmospheric temperature, Dp: atmospheric dew point) This is a method for producing steel powder characterized in that the reduction treatment is carried out under the following conditions.

以下、添付図面を参照しながら本発明をより詳しく説明
する。
Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

本発明の製造方法において使用される原料鋼粉は、Cr
XMn、V、Nb、BおよびSiよりなる群から選ばれ
た易酸化性元素を少なくとも1種含有する溶鋼を、鉱物
油または動植物油などの非酸化性液体を噴霧媒とするア
トマイズにより微粉化することにより得られる。
The raw material steel powder used in the production method of the present invention is Cr
Molten steel containing at least one easily oxidizable element selected from the group consisting of XMn, V, Nb, B, and Si is pulverized by atomization using a non-oxidizing liquid such as mineral oil or animal or vegetable oil as a spray medium. It can be obtained by

溶鋼の#1filWは慣用の方法により実施できるが、
溶鋼に上記の易酸化性元素が含まれていることから、゛
溶製段階でもかかる元素の酸化は可及的に防止すべきで
ある。
#1filW of molten steel can be carried out by conventional methods,
Since molten steel contains the above-mentioned easily oxidizable elements, oxidation of such elements should be prevented as much as possible even during the melting stage.

アトマイズは、従来の油アトマイズ法と同様に、鉱物油
、動物油、植物油などの非酸化性液体を使用して行うが
、噴霧媒は全体として本質的に非酸化性であればよく、
水などの酸化性成分が少量混入したものでもよい。
Atomization is carried out using non-oxidizing liquids such as mineral oil, animal oil, vegetable oil, etc., as in conventional oil atomization methods, but the spray medium need only be essentially non-oxidizing as a whole;
It may also contain a small amount of oxidizing component such as water.

油アトマイズにより得られる銅粉の酸素含有量は0.2
%以下に制限されるが、これは、酸素含有量がこれより
高くなると、次工程の脱炭処理時にいくらかの酸化は避
けられないので、脱炭後の鋼粉の酸素含有量が0.3%
を越える恐れがあり、そうなると水アトマイズ法に関し
て既に述べたように、後の還元処理が厄介となり、さら
には還元によっても低酸素化が達成できなくなるからで
ある。酸素含有量は可及的に低いのが好ましい。脱酸処
理を行なった後の溶鋼の酸化防止、特にアトマイズ時の
酸化防止に留意することによって、油アトマイズにより
得られる鋼粉の酸素含有量をかなり低く抑えることがで
き、0.2%以下、好ましくは0.1%以下、特に好ま
しくは0.05%以下の酸素含有量を十分に得ることが
できる。
The oxygen content of copper powder obtained by oil atomization is 0.2
% or less, but this is because if the oxygen content is higher than this, some oxidation is unavoidable during the next decarburization process, so the oxygen content of the steel powder after decarburization is 0.3% or less. %
If this happens, as already mentioned with respect to the water atomization method, the subsequent reduction treatment will be troublesome, and furthermore, it will not be possible to achieve low oxygen levels even through reduction. Preferably, the oxygen content is as low as possible. By paying attention to the prevention of oxidation of the molten steel after deoxidizing treatment, especially during atomization, the oxygen content of the steel powder obtained by oil atomization can be kept to a fairly low level, 0.2% or less, An oxygen content of preferably 0.1% or less, particularly preferably 0.05% or less can be sufficiently obtained.

油アトマイズで得た鋼粉の炭素含有量は0.1%以上と
なるが、このように多量の炭素は噴霧媒からの浸炭によ
り不可避的に入ってくるものである。
The carbon content of steel powder obtained by oil atomization is 0.1% or more, but such a large amount of carbon inevitably enters the steel powder due to carburization from the spray medium.

本発明による製造法にあっては、油アトマイズで得た鋼
粉を第1段としてまずH2とH2Oを含有する雰囲気中
で脱炭処理する。この脱炭で鋼粉の炭素含有量を0.0
5%以下に低下させるのが好ましい。脱炭雰囲気中にH
2Oが存在するため、酸素含有量が若干増大するのは避
けられないが、酸素含有量の増大も可及的に低く抑える
。約0.3%以下、好ましくは約0.25%までの酸素
含有量はこの脱炭処理後の段階で許容できる。
In the production method according to the present invention, steel powder obtained by oil atomization is first decarburized in an atmosphere containing H2 and H2O. This decarburization reduces the carbon content of steel powder to 0.0
It is preferable to lower it to 5% or less. H in the decarburizing atmosphere
Due to the presence of 2O, a slight increase in oxygen content is unavoidable, but the increase in oxygen content is also kept as low as possible. Oxygen contents of up to about 0.3%, preferably up to about 0.25%, are acceptable in this post-decarburization stage.

脱炭処理条件は上記の炭素および酸素含有量が達成でき
る限り特に制限されないが、代表的な処理条件を挙げる
と、処理温度は550℃以上、1200℃以下、使用雰
囲気の雰囲気露点(Dp)は15≦l)p≦35 である。
The decarburization treatment conditions are not particularly limited as long as the above carbon and oxygen contents can be achieved, but typical treatment conditions include a treatment temperature of 550°C or higher and 1200°C or lower, and an atmospheric dew point (Dp) of the working atmosphere. 15≦l) p≦35.

このように、特願昭57−189238号の方法におけ
る脱炭処理条件に比べて本発明の方法は脱炭処理条件の
制約がゆるく、処理が比較的容易に実施できることが特
徴の1つである。
As described above, one of the characteristics of the method of the present invention is that, compared to the decarburization treatment conditions in the method of Japanese Patent Application No. 57-189238, the restrictions on the decarburization treatment conditions are looser and the treatment can be carried out relatively easily. .

脱炭処理した銅粉を、本発明にあっては、次いでH2を
主体とする非酸化性雰囲気中で還元処理して、脱炭処理
により酸化した鋼粉の酸素含有量を所望の水準まで低下
させる。この非酸化性雰囲気には微量のH2Oが通常混
入しており、また希釈ガスとしてN2、Arなどの不活
性ガスが存在していてもよい。
In the present invention, the decarburized copper powder is then subjected to a reduction treatment in a non-oxidizing atmosphere mainly composed of H2 to reduce the oxygen content of the steel powder oxidized by the decarburization treatment to a desired level. let A trace amount of H2O is usually mixed in this non-oxidizing atmosphere, and an inert gas such as N2 or Ar may also be present as a diluent gas.

この還元処理において、目的とする還元を果たすために
は、処理温度と雰囲気の露点(Dp)が重要な影響を及
ぼすことを本発明者らは実験の結果見出した。
In this reduction treatment, the present inventors have found through experiments that the treatment temperature and the dew point (Dp) of the atmosphere have important effects in achieving the desired reduction.

第1表に化学組成と粒度を示す油アトマイズ法により得
た合金鋼粉を、露点が30℃のH2O−H2’雰囲気中
、930°Cで20分間脱炭処理した。脱炭処理後の鋼
粉の化学組成と粒度分布も第1表に併せて示す。得られ
た脱炭処理後の供試鋼粉を、微量の水蒸気を含むH2雰
囲気中で、雰囲気の温度および露点を変えて還元処理し
、酸素および炭素含有量に及ぼす温度および露点の影響
について調査した。実験結果を第1図に示す。第1図に
おいて、原粉酸素、原粉炭素とあるのは、脱炭処理後(
還元処理前)の供試鋼粉の酸素および炭素含有量を表し
ている。
Alloy steel powder obtained by the oil atomization method whose chemical composition and particle size are shown in Table 1 was decarburized at 930°C for 20 minutes in an H2O-H2' atmosphere with a dew point of 30°C. The chemical composition and particle size distribution of the steel powder after decarburization are also shown in Table 1. The resulting decarburized test steel powder was reduced in an H2 atmosphere containing a small amount of water vapor by varying the temperature and dew point of the atmosphere, and the effects of temperature and dew point on oxygen and carbon content were investigated. did. The experimental results are shown in Figure 1. In Figure 1, raw powder oxygen and raw powder carbon refer to after decarburization (
It represents the oxygen and carbon content of the sample steel powder (before reduction treatment).

第1表 an*pおよびSの含有量はそれぞれ0.025%以下
The contents of an*p and S in Table 1 are each 0.025% or less.

第1図かられかるように、還元処理が可能となる条件(
すなわち、酸素含有量を原粉酸化しヘルより低下させる
ことが可能となる条件)は、処理温度と雰囲気露点(D
p)の両方の関係から決まる。処理温度が850°Cよ
り低い場合、例えば830 ’Cのときは、還元を達成
するためには一40°C以下のl)pが必要となり、処
理温度が800℃では一55°Cの[)pが必要となる
As shown in Figure 1, the conditions under which reduction processing is possible (
In other words, the conditions under which it is possible to oxidize the oxygen content of the raw powder and lower it below Heril's level are determined by the processing temperature and the atmospheric dew point (D
It is determined from the relationship between both p). If the processing temperature is lower than 850°C, e.g. 830'C, a l) p of -40°C or less is required to achieve reduction, and at a processing temperature of 800°C, a p of -55°C is required. ) p is required.

しかしながら、H2を含有する非酸化性雰囲気で=40
°C以下のDpを得るのは、多量のH2ガスを炉内に投
入することが必要になること、極めて低露点(例えば、
Dp−60°C以下)のH2ガスを使用する必要がある
ことなど、実用上さまざまの困難が伴うと同時に、コス
ト的にも割高となり、実操業では採用できない。したが
って、本発明の方法にあっては、還元処理温度を850
℃以上に限定した。
However, in a non-oxidizing atmosphere containing H2 = 40
Obtaining a Dp below °C requires injecting a large amount of H2 gas into the furnace, and extremely low dew points (e.g.
This method involves various practical difficulties, such as the need to use H2 gas with a temperature of Dp -60°C or less, and is also relatively expensive, so it cannot be used in actual operations. Therefore, in the method of the present invention, the reduction treatment temperature is set at 850°C.
Limited to temperatures above ℃.

露点に関しては、第1図のデータから、処理温度が85
0℃以上のとき、Dpが一20℃以下であれば還元が可
能であることがわかる。したがって、還元処理雰囲気の
露点を本発明においては一20℃以下に限定した。
Regarding the dew point, from the data in Figure 1, the processing temperature is 85
It can be seen that when the temperature is 0°C or higher, reduction is possible if Dp is -20°C or lower. Therefore, in the present invention, the dew point of the reduction treatment atmosphere is limited to -20°C or less.

第1図から、処理温度が高くなる程、またDpが低くな
る程、還元M(酸素含有量の減少量)は多くなることが
わかる。
From FIG. 1, it can be seen that the higher the treatment temperature and the lower Dp, the greater the reduction M (amount of decrease in oxygen content).

一方、過度の高温処理になると、鋼粉の粒子同志の粘着
が大きくなり、粉砕が困難となるので、粒子の付着力に
対する還元処理温度の影響を調べた。結果を第2図にグ
ラフで示す。これより、処理温度が1200°Cを越え
ると粒子同志の相互固着が急激に強固になり、処理後の
粉砕が困難となるので得策でないことが判明した。よっ
て、還元処理温度の上限は1200℃とした。なお、同
じ理由から、脱炭処理もやはり1200℃以下の処理温
度で行うのが好ましい。
On the other hand, if the steel powder is treated at an excessively high temperature, the adhesion of the steel powder particles to each other increases, making grinding difficult. Therefore, the influence of the reduction treatment temperature on the adhesion of the particles was investigated. The results are shown graphically in FIG. From this, it has been found that if the treatment temperature exceeds 1200°C, the mutual adhesion of the particles will rapidly become stronger, making it difficult to crush the particles after treatment, which is not a good idea. Therefore, the upper limit of the reduction treatment temperature was set to 1200°C. Incidentally, for the same reason, the decarburization treatment is also preferably carried out at a treatment temperature of 1200° C. or lower.

また、炭素含有量に関しても、第1図のグラフが示すよ
うに、還元処理後の炭素含有量はいずれも原粉炭素量よ
り低い値を示している。この炭素量低下は、雰囲気中の
微量H20による脱炭反応(C+820−GO十H2)
あるいはH2による脱炭反応(C+2H2−CH4)に
よるものと考えられる。
Regarding the carbon content, as shown in the graph of FIG. 1, the carbon content after the reduction treatment is lower than the carbon content of the raw powder. This decrease in carbon content is due to the decarburization reaction (C+820-GO+H2) caused by a trace amount of H20 in the atmosphere.
Alternatively, it is considered to be due to a decarburization reaction (C+2H2-CH4) caused by H2.

このように1本発明の2段処理法によると、油アトマイ
ズ法で得た銅粉を脱炭処理後、第2段処理として還元処
理する際に、酸素含有量の望ましいレヘルへの大幅な低
下のみならず、炭素含有量の実質的低下も同時に起こる
ので、第1段の脱炭処理をさほど厳密に制御する必要は
なくなる。すなわち、脱炭処理のみで所期の酸素含有量
及び炭素含有量を同時に得ようとする特願昭57−18
9238号の方法に比べて、脱炭処理条件の制約は大幅
に緩和され、処理を容易に実施することができ、後段の
還元処理も処理条件の制約は厳しくない。
As described above, according to the two-stage treatment method of the present invention, when copper powder obtained by oil atomization is decarburized and then subjected to reduction treatment as the second stage treatment, the oxygen content is significantly reduced to the desired level. Moreover, since a substantial reduction in carbon content also occurs at the same time, it is no longer necessary to control the first stage decarburization process so tightly. In other words, a patent application filed in 1983 attempts to obtain the desired oxygen content and carbon content at the same time through decarburization treatment alone.
Compared to the method of No. 9238, the restrictions on the decarburization treatment conditions are significantly relaxed, the treatment can be carried out easily, and the subsequent reduction treatment is not subject to strict restrictions on the treatment conditions.

以下、実施例により本発明を例示する。The invention will now be illustrated by examples.

天蓋皿上 Mn−Cr系低合金鋼の溶鋼を、噴霧媒として鉱物油を
用いた油アトマイズ法により微粉化し、得られた鋼粉を
、H2とH20を含む露点30℃の雰囲気中、950℃
で30分間脱炭処理した。次いで、脱炭処理後の鋼粉を
、第2表に示す条件下で微量の820を含むH2雰囲気
中で還元処理した。アトマイズしたまま(アトマイズ後
)、脱炭処理後および還元処理後の鋼粉の化学組成と粒
度分布を第3表に示す。第3表の結果から明らかなよう
に、還元処理後の炭素および酸素の含有量は、A−Cの
全鋼種について脱炭処理後よりいずれも低下しており、
炭素: 0.03%以下、酸素:O,IS%以下という
それぞれの目標の含有量はいずれも十分に確保された。
Molten Mn-Cr low alloy steel on a canopy plate is pulverized by oil atomization using mineral oil as an atomizing medium, and the obtained steel powder is heated at 950°C in an atmosphere containing H2 and H20 with a dew point of 30°C.
Decarburization treatment was performed for 30 minutes. Next, the steel powder after the decarburization treatment was subjected to a reduction treatment in an H2 atmosphere containing a trace amount of 820 under the conditions shown in Table 2. Table 3 shows the chemical composition and particle size distribution of the steel powder as atomized (after atomization), after decarburization treatment, and after reduction treatment. As is clear from the results in Table 3, the carbon and oxygen contents after the reduction treatment were lower than after the decarburization treatment for all steel types A-C.
The target contents of carbon: 0.03% or less and oxygen: O, IS% or less were all sufficiently secured.

汰画■吐λ 本例は、Mn、、Crの他に■、Nb、、Bの1種を含
有する鋼粉の実施例である。実施例1と同様に鉱物油を
噴霧媒として油アトマイズ法により鋼粉を得、同様に脱
炭処理した後、次の第4表に示す還元条件下で微量のH
2Cを含むH2雰囲気中で還元処理した。第5表に、ア
トマイズ後、脱炭処理後および還元処理後のそれぞれの
銅粉の化学組成と粒度分布を示す。
This example is an example of a steel powder containing one of 1, Nb, and B in addition to Mn and Cr. Steel powder was obtained by the oil atomization method using mineral oil as the spray medium in the same manner as in Example 1, and after being decarburized in the same manner, a trace amount of H was added under the reducing conditions shown in Table 4 below.
Reduction treatment was performed in an H2 atmosphere containing 2C. Table 5 shows the chemical composition and particle size distribution of each copper powder after atomization, decarburization treatment, and reduction treatment.

第5表かられかるように、還元処理後の鋼粉は、脱炭処
理後に比べて酸素含有量が0.02〜0.05%低減し
ており、いずれの鋼種についても炭素量: 0.03%
以下、酸素量: 0.15%以下という所望の脱炭・還
元が達成されていた。
As can be seen from Table 5, the oxygen content of the steel powder after the reduction treatment was reduced by 0.02 to 0.05% compared to after the decarburization treatment, and the carbon content for all steel types: 0. 03%
Below, the desired decarburization and reduction with an oxygen content of 0.15% or less was achieved.

第4表 還元処理条件Table 4 Reduction processing conditions

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、脱炭処理した銅粉の還元処理における還元処
理温度および雰囲気露点(Dp)と還元後の銅粉の炭素
及び酸素含有量との関係を示すグラフ;及び 第2図は、還元処理温度と鋼粉粒子の付着力との関係を
示すグラフである。 出願人  住友金属工業株式会社 代理人  弁理士 広 瀬 章 −
Figure 1 is a graph showing the relationship between the reduction treatment temperature and atmospheric dew point (Dp) in the reduction treatment of decarburized copper powder and the carbon and oxygen content of the copper powder after reduction; It is a graph showing the relationship between treatment temperature and adhesion force of steel powder particles. Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent Attorney Akira Hirose −

Claims (1)

【特許請求の範囲】 Cr 、、M n −、V、Nb、、、BおよびStか
ら選ばれ、た易酸化性元素を1種以上含有する溶鋼を非
酸化性液体を噴霧媒とするアトマイズにより微粉化する
ことによって得た、酸素含有量0.2重量%以下、炭素
含有M O,1重量%以上の鋼粉を、少なくともH2O
およびH2を含有する雰囲気で脱炭処理し、次いでH2
を主体とする非酸化性雰囲気中において、850℃≦t
≦1200℃、 Dp  ≦ −20℃ (ただし、t:雰囲気温度、Dp:雰囲気露点)の条件
下で還元処理することを特徴とする鋼粉の製造方法。
[Claims] Molten steel containing one or more easily oxidizable elements selected from Cr, Mn-, V, Nb, B, and St is atomized using a non-oxidizing liquid as a spray medium. A steel powder obtained by pulverization with an oxygen content of 0.2% by weight or less and a carbon content of 1% by weight or more is treated with at least H2O.
Decarburization treatment is carried out in an atmosphere containing H2 and H2, and then H2
In a non-oxidizing atmosphere mainly composed of
A method for producing steel powder, characterized in that reduction treatment is carried out under the conditions of ≦1200°C, Dp ≦ -20°C (where t: ambient temperature, Dp: atmospheric dew point).
JP58084187A 1983-05-16 1983-05-16 Manufacture of steel powder Pending JPS59211501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58084187A JPS59211501A (en) 1983-05-16 1983-05-16 Manufacture of steel powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58084187A JPS59211501A (en) 1983-05-16 1983-05-16 Manufacture of steel powder

Publications (1)

Publication Number Publication Date
JPS59211501A true JPS59211501A (en) 1984-11-30

Family

ID=13823470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58084187A Pending JPS59211501A (en) 1983-05-16 1983-05-16 Manufacture of steel powder

Country Status (1)

Country Link
JP (1) JPS59211501A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425901A (en) * 1987-07-17 1989-01-27 Kobe Steel Ltd Production of low alloy steel powder for low c and low o powder metallurgy
US6358298B1 (en) 1999-07-30 2002-03-19 Quebec Metal Powders Limited Iron-graphite composite powders and sintered articles produced therefrom

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425901A (en) * 1987-07-17 1989-01-27 Kobe Steel Ltd Production of low alloy steel powder for low c and low o powder metallurgy
US6358298B1 (en) 1999-07-30 2002-03-19 Quebec Metal Powders Limited Iron-graphite composite powders and sintered articles produced therefrom

Similar Documents

Publication Publication Date Title
US4266974A (en) Alloy steel powder having excellent compressibility, moldability and heat-treatment property
US3901661A (en) Prealloyed steel powder for formation of structural parts by powder forging and powder forged article for structural parts
US5462577A (en) Water-atomized iron powder and method
US3966454A (en) Method for producing iron or iron alloy powders having a low oxygen content
JP2015108195A (en) Low alloy steel powder
EP0038558A1 (en) Process for producing sintered ferrous alloys
JP3177482B2 (en) Low alloy steel powder for sinter hardening
JP3446322B2 (en) Alloy steel powder for powder metallurgy
JPS59211501A (en) Manufacture of steel powder
JPH07113121B2 (en) Method for producing low alloy steel powder for powder metallurgy with low C and low O
JPS6318001A (en) Alloy steel powder for powder metallurgy
JPH0471962B2 (en)
EP0108175A1 (en) Process for producing alloy steel powder
JPH0459362B2 (en)
JPS5935602A (en) Production of low oxygen low carbon alloy steel powder
JPH0717923B2 (en) Low alloy iron powder for sintering and method for producing the same
JPH08218101A (en) Steel powdery mixture for powder metallurgy and material for sintering containing the same
JPH07138601A (en) High cr alloy steel powder for wear resistant sintering material and its mixture
JPS59173201A (en) Preparation of highly compressible alloyed steel powder
JPH0995701A (en) Production of partially alloyed steel powder
JPS5873702A (en) Production of powder metal forged parts having excellent hardenability and toughness
JPH11229001A (en) Production of high strength sintered parts
JPS6366361B2 (en)
JPS6249345B2 (en)
JPS61183444A (en) High strength sintered alloy and its manufacture