JPS6366361B2 - - Google Patents

Info

Publication number
JPS6366361B2
JPS6366361B2 JP56067888A JP6788881A JPS6366361B2 JP S6366361 B2 JPS6366361 B2 JP S6366361B2 JP 56067888 A JP56067888 A JP 56067888A JP 6788881 A JP6788881 A JP 6788881A JP S6366361 B2 JPS6366361 B2 JP S6366361B2
Authority
JP
Japan
Prior art keywords
steel powder
carbon
decarburization
oxygen
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56067888A
Other languages
Japanese (ja)
Other versions
JPS57185901A (en
Inventor
Toshihiko Kubo
Minoru Ichidate
Eijiro Tamura
Isamu Karasuno
Masahide Unno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP56067888A priority Critical patent/JPS57185901A/en
Publication of JPS57185901A publication Critical patent/JPS57185901A/en
Publication of JPS6366361B2 publication Critical patent/JPS6366361B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、炭素0.1wt%以上、酸素0.2wt%以
下、Mn0.5〜7wt%を含有し、かつCr、V、Nb、
B、Si等Feよりも酸化物生成自由エネルギーの
低い易酸化性元素を1種以上含有する鋼粉の脱炭
方法に関する。 粉末冶金製品の原料となる鋼粉は、その酸素含
有量が低いことと共に、極く特殊な用途を除いて
炭素含有量の低いことが要求される。鋼粉中の酸
素および炭素は、鋼粉の圧縮性、成形性、焼結性
等に悪影響をおよぼすからである。 ところで、鋼粉の製造法としては、水アトマイ
ズ法、ガスアトマイズ法、油アトマイズ法が知ら
れている。上記水アトマイズ法で製造された鋼粉
は、噴霧媒である水によつて容易に酸化され、そ
の酸素含有量が高いことである。特に、Cr、
Mn、V等の易酸化性元素を含む鋼粉は酸化され
やすく、得られた酸化鋼粉の還元処理でも必要な
程度まで酸素量を下げることは困難である。1000
℃以上、5時間という高温、長時間の還元処理で
もたかだか0.4wt%程度までしか酸素含有量を下
げることができない。また、他の脱酸法として
は、アトマイズ鋼粉自体に還元剤としての炭素を
故意に添加しておいて、真空中で高温加熱するこ
とにより、C+O→COの反応で酸素と炭素を除
去するという特殊な方法が提案されている。しか
し、この方法によれば、酸素含有量をかなり下げ
られるが、酸素を下げるために最終成品鋼粉中に
残留する炭素量を一定量以上に保つ必要があり、
その装置および操業が複雑になつている。 ガスアトマイズ法は、噴霧媒としてN2、Ar等
のいわゆる不活性ガスを使用し、鋼粉を製造する
方法であり、炭素、酸素の含有量を低減させるこ
とが可能であるが、反面、多量に必要とする不活
性ガスが高価であると共に、得られた成品の粒子
形状が球形になり、その焼結性が悪いという問題
があつた。 油アトマイズ法は、油を噴霧媒として鋼粉を製
造する方法であつて、水アトマイズ法に比べて、
得られた鋼粉に酸化が生じていない(酸素含有量
が低い)という点においてすぐれているが、アト
マイズ時に浸炭するため脱炭処理を施さなければ
ならない点において問題がある。しかも、油アト
マイズ後における脱炭処理方法は、現状におい
て、連続的に効率的な処理方法が見い出されてい
ない状態である。 この発明は、炭素0.1wt%以上、酸素0.2wt%以
下、Mn0.5〜7wt%で、かつCr、V、Nb、B、
Siの元素を1種以上含む鋼粉を得るに当つて、酸
素0.2wt%以下と比較的低く、炭素含有量が比較
的高い鋼粉を使用し、酸化が進行しない間に脱炭
を完了せしめる方法について提案するものであ
り、その特徴は、少なくともH2O、H2からなる
大気圧以上の雰囲気中において、 750℃≦t≦1250℃、 PH2O/PH2≦0.04 ただし、t:雰囲気温度(℃) PH2O:水蒸気分圧 PH2:水素分圧 の条件で、処理時間15分以下、好ましくは10分以
下で処理することにある。なお、ここで「大気圧
以上」とは、設備に外気が侵入するのを防ぐため
に、大気圧よりやや正圧にすることを意味する。 以下、この発明法について詳細に説明する。 まず、この発明者らは、鋼粉中に含有する
0.1wt%以上の炭素を脱炭する雰囲気について検
討した。鋼粉中の炭素を脱炭するには、比較的炭
素と反応しやすい酸素を可及的に添加した雰囲気
にすることが考えられる。しかしながら、酸素を
含む雰囲気中では、鋼粉の主成分であるFe、あ
るいはFeよりも酸化しやすいCr、Mn、V、Nb、
B、Si等の易酸化性元素の酸化を招く結果とな
る。従つて、脱炭を促進し、比較的酸化させない
雰囲気を選定することが重要となる。 ところで、乾燥した純粋な水素は、さほど脱炭
性はないが、湿つた雰囲気中では水蒸気の作用に
より脱炭反応は促進される。しかも、水蒸気には
酸化性があるため、水素の分圧に対する水蒸気の
分圧比を適正に選定すると、Feおよび易酸化性
元素を酸化させることなく効率のよい脱炭が行な
われる。 そこで、この発明者らは、水蒸気、H2、N2
らなる雰囲気中で、効果的な酸化を行わせない脱
炭雰囲気について実験した。 第1図は、雰囲気条件を調べるための実験結果
であり、初期炭素含有量0.6wt%、初期酸素含有
量0.05wt%のCr−Mn系低合金鋼粉(Cr:1.0wt
%、Mn:1.5wt%)をステンレス製の容器に3
mmの層高に保ち、大気圧よりやや正圧のH2O、
H2、N2の雰囲気内でPH2O/PH2の値を種々変
化させ、10分後の炭素()含有量と酸素(
含有量を調べたものである。ただし、この時の雰
囲気温度は800℃と1050℃であつた。 この実験結果より、鋼粉の圧縮性、成形性、焼
結性に悪影響をおよぼさないと思われる炭素含有
量0.1wt%以下、酸素含有量0.2wt%以下の範囲で
は、PH2O/PH2の値を0.04以下の条件に保つと
よい。従つて、この発明法においては、雰囲気条
件をPH2O/PH2≦0.04とした。 第2図は、雰囲気温度を調べた実験結果であ
り、この実験では初期炭素含有量0.6wt%、初期
酸素含有量0.09wt%のCr−Mn系低合金鋼粉
(Cr:1.0wt%、Mn:1.5wt%)をステンレス製
の容器に3mmの層高に保ち、炉内雰囲気を
PH2O/PH2=0.03、PH2=70%、残りN2ガスで
大気圧よりやや正圧にして、雰囲気温度を種々変
えて、処理時間と炭素()、酸素()の含有
率の変化を調べた。この第2図より、脱炭性は雰
囲気温度を高くする程効果的であるが、時間が経
過するにつれて酸化も進むことがわかる。この脱
炭性、酸化の両面より、750℃以上でかつ10分以
内の短時間で容易に炭素含有量を0.1wt%以下ま
で脱炭でき、また極度の酸化も防止できる。さら
に、同第2図から、雰囲気温度を高くすればする
程、酸化は進まないが、脱炭が急に進むことがわ
かり、従つて、雰囲気温度を高くして、短時間の
処理が効率的であることがわかる。ところが、第
2図と同一条件の鋼粉、雰囲気中で雰囲気温度を
種々変化させた際の粒子相互の固着現象を調べた
結果、次のことが判明した。 すなわち、第3図は雰囲気温度を20分間保持し
たときの付着力を図示したものである。この第3
図より、温度が1250℃を越えると鋼粉の相互固着
が急速に強固になり、それに応じた脱炭処理後の
破砕が困難となり得策でないことが判明した。 以上、第2図および第3図の結果より鋼粉処理
の雰囲気温度(t℃)は、750℃≦t≦1250℃の
範囲が好ましいことになる。 これらの実験結果より、溶融金属から噴霧法に
よつて製造された炭素0.1wt%以上、酸素0.2wt%
以下、Mn0.5〜7wt%を含有し、かつCr、V、
Nb、B、Si等の易酸化性元素を1種以上含有す
る鋼粉を、大気圧以上の雰囲気中において、 750℃≦t≦1250℃、 PH2O/PH2≦0.04 ただし、t:雰囲気温度(℃) PH2O:水蒸気分圧 PH2:水素分圧 の条件下で、処理時間15分以下、好ましくは10分
以下で脱炭処理をすることにより、鋼粉の相互固
着による弊害を防止しつつ短時間に酸素含有量を
所定値に保つた状態で所望の0.1wt%以下まで含
有炭素量を低下させることが可能となる。 次に、この発明法の実施例について説明する。
まず、実施例を示すに当つて、使用した試験装置
の概要について説明する。 第4図はその試験装置の概要を示すものであ
り、脱炭炉1内へは、その雰囲気ガスを調整する
ために、H2O(蒸気)、H2、N2ガスのそれぞれの
供給系にバルブおよび圧力計9を設け、これらの
供給系からのそれぞれのガスはガス混合器10に
て均一に混合されて、加熱ヒーター8で加熱され
ながら所望の脱炭雰囲気ガスが前記脱炭炉1内に
供給されるようになつている。一方、サンプル鋼
粉7は、脱炭炉1の図示右端のサンプル取出口4
から該炉1内に装入され、該炉天井部に設けられ
たラジアントチユーブ2により所定の温度まで加
熱されるようになつている。このように雰囲気ガ
ス、雰囲気温度を保ちながら脱炭処理を行ない、
発生する排ガスは排ガス出口3より排出され、一
定時間経過したのち、加熱を止め、サンプル取出
口4部近傍よりN2ガスのみを供給し、常温近く
まで冷却し、冷えたサンプル鋼粉をサンプル取出
口4より炉外に取出す構造となつている。なお、
6は車軸つきサンプル容器であり、5は前記サン
プル容器の搬入、搬出に供するサンプル搬送用レ
ールを示す。 実施例 1 第1表に示す化学成分および粒度分布を有する
Cr−Mn系低合金鋼粉を第4図に示す試験装置で
脱炭処理した。その時の処理条件を第2表に、脱
炭処理後の鋼粉の化学成分および粒度分布を第3
表に示す。 第3表の結果より明らかなごとく、酸素含有量
をさほど増加させずに0.1wt%以下に保ち、しか
も他の化学成分、粒度分布に何等悪影響をおよぼ
さずに、炭素含有量を0.51wt%より0.05wt%まで
脱炭することができた。
This invention contains carbon 0.1wt% or more, oxygen 0.2wt% or less, Mn 0.5 to 7wt%, and Cr, V, Nb,
The present invention relates to a method for decarburizing steel powder containing one or more easily oxidizable elements having lower oxide formation free energy than Fe, such as B and Si. Steel powder, which is a raw material for powder metallurgy products, is required to have a low oxygen content and, except for very special uses, a low carbon content. This is because oxygen and carbon in the steel powder adversely affect the compressibility, formability, sinterability, etc. of the steel powder. By the way, water atomization method, gas atomization method, and oil atomization method are known as methods for producing steel powder. The steel powder produced by the water atomization method is easily oxidized by water, which is a spray medium, and has a high oxygen content. In particular, Cr,
Steel powder containing easily oxidizable elements such as Mn and V is easily oxidized, and even when the obtained oxidized steel powder is reduced, it is difficult to reduce the amount of oxygen to the required level. 1000
Even if the reduction treatment is carried out at temperatures above ℃ for 5 hours, the oxygen content can only be reduced to about 0.4 wt%. Another deoxidizing method is to intentionally add carbon as a reducing agent to the atomized steel powder itself, and then heat it at high temperature in a vacuum to remove oxygen and carbon through the C+O→CO reaction. A special method has been proposed. However, although this method can reduce the oxygen content considerably, it is necessary to maintain the amount of carbon remaining in the final steel powder above a certain level in order to lower the oxygen content.
Their equipment and operations are becoming more complex. The gas atomization method is a method of manufacturing steel powder using so-called inert gases such as N 2 and Ar as atomizing medium, and it is possible to reduce the content of carbon and oxygen, but on the other hand, it produces large amounts of There were problems in that the required inert gas was expensive, and the particles of the obtained product were spherical, resulting in poor sinterability. The oil atomization method is a method for producing steel powder using oil as a spray medium, and compared to the water atomization method,
Although the obtained steel powder is excellent in that no oxidation occurs (low oxygen content), there is a problem in that decarburization treatment must be performed because it is carburized during atomization. Moreover, at present, no continuous and efficient decarburization treatment method has been found after oil atomization. This invention contains 0.1 wt% or more of carbon, 0.2 wt% or less of oxygen, 0.5 to 7 wt% of Mn, and Cr, V, Nb, B,
In order to obtain steel powder containing one or more types of Si elements, steel powder with a relatively low oxygen content of 0.2wt% or less and a relatively high carbon content is used, and decarburization is completed before oxidation progresses. This method proposes a method, and its characteristics are: 750℃≦t≦1250℃, PH2O / PH2 0.04, where t : atmosphere Temperature (°C) PH 2 O: Partial pressure of water vapor PH 2 : Partial pressure of hydrogen, and the treatment time is 15 minutes or less, preferably 10 minutes or less. Here, "atmospheric pressure or higher" means that the pressure is slightly more positive than atmospheric pressure in order to prevent outside air from entering the equipment. This invention method will be explained in detail below. First, the inventors discovered that the steel powder contains
We investigated the atmosphere for decarburizing 0.1wt% or more of carbon. In order to decarburize the carbon in the steel powder, it is conceivable to create an atmosphere in which as much oxygen as possible, which reacts with carbon, is added as much as possible. However, in an atmosphere containing oxygen, Fe, the main component of steel powder, or Cr, Mn, V, Nb, which is more easily oxidized than Fe,
This results in oxidation of easily oxidizable elements such as B and Si. Therefore, it is important to select an atmosphere that promotes decarburization and is relatively non-oxidizing. By the way, dry pure hydrogen does not have much decarburization property, but in a humid atmosphere, the decarburization reaction is promoted by the action of water vapor. Furthermore, since water vapor has oxidizing properties, if the ratio of the partial pressure of water vapor to the partial pressure of hydrogen is appropriately selected, efficient decarburization can be performed without oxidizing Fe and easily oxidizable elements. Therefore, the inventors conducted an experiment on a decarburization atmosphere that does not cause effective oxidation in an atmosphere consisting of water vapor, H 2 , and N 2 . Figure 1 shows the results of an experiment to investigate the atmospheric conditions.
%, Mn: 1.5wt%) in a stainless steel container.
H 2 O at a slightly positive pressure above atmospheric pressure, maintained at a bed height of mm,
The values of PH 2 O/PH 2 were varied in an atmosphere of H 2 and N 2 , and the carbon ( C ) content and oxygen ( O ) content after 10 minutes were determined.
The content was investigated. However, the atmospheric temperatures at this time were 800°C and 1050°C. From this experimental result, PH 2 O/ It is best to keep the PH 2 value below 0.04. Therefore, in this invention method, the atmospheric condition was set to PH 2 O/PH 2 ≦0.04. Figure 2 shows the results of an experiment investigating the ambient temperature. :1.5wt%) was kept at a layer height of 3mm in a stainless steel container, and the atmosphere inside the furnace was
PH 2 O / PH 2 = 0.03, PH 2 = 70%, the remaining N 2 gas was used to make the pressure slightly positive than atmospheric pressure, and the ambient temperature was varied to determine the treatment time and the content of carbon ( C ) and oxygen ( O ). We looked at changes in the rate. From FIG. 2, it can be seen that decarburization is more effective as the ambient temperature is raised, but oxidation progresses as time passes. Due to both decarburization and oxidation, the carbon content can be easily decarburized to 0.1 wt% or less at temperatures above 750°C within 10 minutes, and extreme oxidation can also be prevented. Furthermore, from Figure 2, it can be seen that the higher the ambient temperature is, the slower the oxidation progresses, but the more rapidly decarburization progresses. It can be seen that it is. However, as a result of investigating the phenomenon of particles adhering to each other when steel powder was used under the same conditions as in FIG. 2 and the ambient temperature was variously changed in the atmosphere, the following was found. That is, FIG. 3 illustrates the adhesion force when the ambient temperature is maintained for 20 minutes. This third
The figure shows that when the temperature exceeds 1250°C, the mutual adhesion of the steel powder rapidly becomes strong, making it difficult to crush the steel powder after decarburization, which is not a good idea. From the results shown in FIGS. 2 and 3 above, the atmospheric temperature (t°C) for steel powder treatment is preferably in the range of 750°C≦t≦1250°C. From these experimental results, it was found that 0.1wt% or more of carbon and 0.2wt% of oxygen were produced from molten metal by the spray method.
The following contains Mn0.5 to 7wt%, and Cr, V,
Steel powder containing one or more easily oxidizable elements such as Nb, B, and Si is heated in an atmosphere above atmospheric pressure at 750℃≦t≦1250℃, PH 2 O/PH 2 ≦0.04, where t: atmosphere Temperature (°C) PH 2 O: Water vapor partial pressure PH 2 : By decarburizing the treatment time under the conditions of 15 minutes or less, preferably 10 minutes or less, the harmful effects of steel powder sticking together can be avoided. It becomes possible to reduce the carbon content to the desired 0.1 wt% or less while maintaining the oxygen content at a predetermined value in a short period of time. Next, an example of this invention method will be described.
First, in presenting examples, an overview of the test equipment used will be explained. Figure 4 shows the outline of the test equipment, and the supply systems for H 2 O (steam), H 2 , and N 2 gases are supplied into the decarburization furnace 1 in order to adjust the atmospheric gas. The respective gases from these supply systems are uniformly mixed in a gas mixer 10, and while being heated by a heating heater 8, a desired decarburizing atmosphere gas is supplied to the decarburizing furnace 1. It is now supplied internally. On the other hand, the sample steel powder 7 is taken from the sample outlet 4 at the right end of the figure in the decarburization furnace 1.
It is charged into the furnace 1 and heated to a predetermined temperature by a radiant tube 2 provided on the furnace ceiling. In this way, decarburization is performed while maintaining the atmospheric gas and temperature,
The generated exhaust gas is discharged from the exhaust gas outlet 3, and after a certain period of time has passed, the heating is stopped and only N2 gas is supplied from near the sample extraction port 4 to cool it to near room temperature, and the cooled sample steel powder is sampled. The structure is such that it is taken out from the furnace through outlet 4. In addition,
Reference numeral 6 indicates a sample container with an axle, and 5 indicates a sample transport rail used for loading and unloading the sample container. Example 1 Having the chemical composition and particle size distribution shown in Table 1
Cr-Mn based low alloy steel powder was decarburized using the testing apparatus shown in Figure 4. The treatment conditions at that time are shown in Table 2, and the chemical composition and particle size distribution of the steel powder after decarburization are shown in Table 3.
Shown in the table. As is clear from the results in Table 3, the oxygen content can be kept below 0.1wt% without increasing significantly, and the carbon content can be reduced to 0.51wt% without any negative effect on other chemical components or particle size distribution. % to 0.05wt%.

【表】【table】

【表】【table】

【表】 実施例 2 この実施例は、Vを含有する低合金鋼粉に関す
る実施例であり、第4表に示す化学成分、粒度分
布を有する鋼粉を、第4図の試験装置で脱炭処理
した。そのときの処理条件を第5表に、脱炭処理
後の鋼粉の化学成分および粒度分布を第6表に示
す。 第6表より明らかなごとく、酸素含有量をさほ
ど増加させず、0.1wt%以下に保ち、しかも他の
化学成分、粒度分布に何等悪影響をおよぼさず
に、炭素含有量を0.47wt%より0.04wt%まで脱炭
させることができた。
[Table] Example 2 This example concerns low-alloy steel powder containing V. Steel powder having the chemical composition and particle size distribution shown in Table 4 was decarburized using the testing apparatus shown in Figure 4. Processed. The treatment conditions at that time are shown in Table 5, and the chemical composition and particle size distribution of the steel powder after decarburization treatment are shown in Table 6. As is clear from Table 6, the carbon content can be reduced from 0.47wt% without significantly increasing the oxygen content, keeping it below 0.1wt%, and without having any adverse effects on other chemical components or particle size distribution. It was possible to decarburize down to 0.04wt%.

【表】【table】

【表】【table】

【表】【table】

【表】 実施例 3 この実施例は、SUS304系の鋼粉に関する実施
例であり、第7表に示す化学成分、粒度分布を有
する鋼粉を、第4図の試験装置で脱炭処理した。
そのときの処理条件を第8表に、脱炭処理後の鋼
粉の化学成分および粒度分布を第9表に示す。 第9表より明らかなごとく、酸素含有量をさほ
ど増加させずに0.1wt%以下に保ち、しかも他の
化学成分、粒度分布に何等悪影響をおよぼさず
に、炭素含有量を0.57wt%より0.09wt%まで脱炭
させることができた。
[Table] Example 3 This example concerns SUS304 steel powder, in which steel powder having the chemical composition and particle size distribution shown in Table 7 was decarburized using the testing apparatus shown in FIG. 4.
The treatment conditions at that time are shown in Table 8, and the chemical composition and particle size distribution of the steel powder after decarburization treatment are shown in Table 9. As is clear from Table 9, the oxygen content can be kept below 0.1wt% without increasing significantly, and the carbon content can be lowered from 0.57wt% without any adverse effects on other chemical components or particle size distribution. It was possible to decarburize down to 0.09wt%.

【表】【table】

【表】【table】

【表】 以上の実施例からでも明らかなごとく、炭素
0.1wt%以上で、Mnを含有し、酸素含有量が比
較的低く、しかもCr、V、Nb、B、Si等の易酸
化性元素を1種以上含有する鋼粉を、この発明法
により短時間に脱炭処理することが可能となつ
た。なお、Nb、Bの易酸化性元素については、
実施例をあげなかつたが、前記実施例と同様の効
果が得られることはいうまでもない。
[Table] As is clear from the above examples, carbon
Steel powder containing 0.1wt% or more of Mn, a relatively low oxygen content, and one or more easily oxidizable elements such as Cr, V, Nb, B, and Si can be shortened by the method of the present invention. It became possible to perform decarburization treatment in a short amount of time. Regarding easily oxidizable elements such as Nb and B,
Although no examples have been given, it goes without saying that the same effects as in the previous examples can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は脱炭雰囲気を調べるためのPH2O/
PH2と炭素、酸素含有量との関係を示す図表、第
2図は雰囲気温度を調べるために種々温度を変化
させたときの時間と炭素、酸素含有量との関係を
示す図表、第3図は雰囲気温度上限値を調べるた
めの雰囲気温度と鋼粉の付着力の関係を示す図
表、第4図はこの発明の実施例における試験装置
の概要を示す説明図である。 1……脱炭炉、2……ラジアントチユーブ、3
……排ガス出口、4……サンプル取出口、5……
サンプル搬送用レール、6……車軸つきサンプル
容器、7……サンプル、8……加熱ヒーター、9
……圧力計、10……ガス混合器。
Figure 1 shows PH 2 O/
A chart showing the relationship between PH 2 and carbon and oxygen content. Figure 2 is a chart showing the relationship between time and carbon and oxygen content when various temperatures are changed to investigate the ambient temperature. Figure 3 is a chart showing the relationship between PH 2 and carbon and oxygen content. 4 is a diagram showing the relationship between the atmospheric temperature and the adhesion force of steel powder for investigating the upper limit of the atmospheric temperature, and FIG. 4 is an explanatory diagram showing the outline of a test apparatus in an embodiment of the present invention. 1... Decarburization furnace, 2... Radiant tube, 3
...Exhaust gas outlet, 4...Sample extraction port, 5...
Sample transport rail, 6...Sample container with axle, 7...Sample, 8...Heating heater, 9
...Pressure gauge, 10...Gas mixer.

Claims (1)

【特許請求の範囲】 1 炭素0.1wt%以上、酸素0.2wt%以下、Mn0.5
〜7wt%を含有し、かつCr、V、Nb、B、Siの
元素を1種以上含有する鋼粉を、少なくとも
H2O、H2からなる大気圧以上の雰囲気において、 750℃≦t≦1250℃、 PH2O/PH2≦0.04 ただし、t:雰囲気温度(℃) PH2O:水蒸気分圧 PH2:水素分圧 の条件で、処理時間15分以下で処理することを特
徴とする鋼粉の処理方法。
[Claims] 1 Carbon 0.1wt% or more, oxygen 0.2wt% or less, Mn 0.5
~7wt% and at least one of the elements Cr, V, Nb, B, and Si.
In an atmosphere above atmospheric pressure consisting of H2O and H2 , 750℃≦t≦1250℃, PH2O / PH2 ≦0.04, where t: ambient temperature (℃) PH2O : water vapor partial pressure PH2 : A method for processing steel powder characterized by processing under hydrogen partial pressure conditions in a processing time of 15 minutes or less.
JP56067888A 1981-05-06 1981-05-06 Treatment for steel powder Granted JPS57185901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56067888A JPS57185901A (en) 1981-05-06 1981-05-06 Treatment for steel powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56067888A JPS57185901A (en) 1981-05-06 1981-05-06 Treatment for steel powder

Publications (2)

Publication Number Publication Date
JPS57185901A JPS57185901A (en) 1982-11-16
JPS6366361B2 true JPS6366361B2 (en) 1988-12-20

Family

ID=13357878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56067888A Granted JPS57185901A (en) 1981-05-06 1981-05-06 Treatment for steel powder

Country Status (1)

Country Link
JP (1) JPS57185901A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726122B2 (en) * 1986-12-12 1995-03-22 大同特殊鋼株式会社 Stainless steel powder for powder metallurgy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120705A (en) * 1974-08-14 1976-02-19 Nippon Steel Corp Kofunno datsutanshodonkangenho
JPS5443119A (en) * 1977-09-12 1979-04-05 Kawasaki Steel Co Heat treatment of iron powder for use in powder metallurgy
JPS57143401A (en) * 1981-02-28 1982-09-04 Sumitomo Metal Ind Ltd Treatment of metallic powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120705A (en) * 1974-08-14 1976-02-19 Nippon Steel Corp Kofunno datsutanshodonkangenho
JPS5443119A (en) * 1977-09-12 1979-04-05 Kawasaki Steel Co Heat treatment of iron powder for use in powder metallurgy
JPS57143401A (en) * 1981-02-28 1982-09-04 Sumitomo Metal Ind Ltd Treatment of metallic powder

Also Published As

Publication number Publication date
JPS57185901A (en) 1982-11-16

Similar Documents

Publication Publication Date Title
JP5001159B2 (en) Method for controlling the oxygen content of a powder
US4614638A (en) Process for producing sintered ferrous alloys
US4448746A (en) Process for producing alloy steel powder
JP2016526099A (en) Method for producing steel parts by powder metallurgy and the resulting steel parts
JPS6366361B2 (en)
JPS6411682B2 (en)
US4436696A (en) Process for providing a uniform carbon distribution in ferrous compacts at high temperatures
EP0108175A1 (en) Process for producing alloy steel powder
JPH07113121B2 (en) Method for producing low alloy steel powder for powder metallurgy with low C and low O
JPS5935602A (en) Production of low oxygen low carbon alloy steel powder
JPH0471962B2 (en)
US20020159910A1 (en) Method for sintering a carbon steel part using a hydrocolloid binder as carbon source
JPH06505772A (en) Metal granules suitable for recycling scrap metal, a method for producing the same, and a decarburization method
JP6112280B1 (en) Method for producing alloy steel powder for powder metallurgy
US5162099A (en) Process for producing a sintered compact from steel powder
JP6112283B1 (en) Method for producing alloy steel powder for powder metallurgy
JPS59211501A (en) Manufacture of steel powder
US2175850A (en) Powder metallurgy
JPS62274003A (en) Sintering of powder material
US5152847A (en) Method of decarburization annealing ferrous metal powders without sintering
JPS6364482B2 (en)
JP6112277B1 (en) Method for producing alloy steel powder for powder metallurgy
JP6112282B1 (en) Method for producing alloy steel powder for powder metallurgy
JPH0346524B2 (en)
MXPA00007197A (en) Process of preparing an iron-based powder in a gas-tight furnace