JPH06329577A - Production of lower fatty acid from lower aliphatic ketone - Google Patents

Production of lower fatty acid from lower aliphatic ketone

Info

Publication number
JPH06329577A
JPH06329577A JP14427293A JP14427293A JPH06329577A JP H06329577 A JPH06329577 A JP H06329577A JP 14427293 A JP14427293 A JP 14427293A JP 14427293 A JP14427293 A JP 14427293A JP H06329577 A JPH06329577 A JP H06329577A
Authority
JP
Japan
Prior art keywords
reaction
water
fatty acid
ketone
aliphatic ketone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14427293A
Other languages
Japanese (ja)
Inventor
Sachio Asaoka
佐知夫 浅岡
Kazuaki Ueda
一彰 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP14427293A priority Critical patent/JPH06329577A/en
Publication of JPH06329577A publication Critical patent/JPH06329577A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To efficiently obtain a lower fatty acid useful as a raw material for industrial products in high selectivity and in high yield by bringing a specific aliphatic ketone into contact with a zeolite catalyst in the presence of water at a given reaction temperature in a vapor phase. CONSTITUTION:A lower aliphatic ketone of the formula (R is lower alkyl; R' is H or lower alkyl) such as methyl ethyl ketone is brought into contact with a zeolite catalyst in the presence of water (the amount of water used is preferably 0.1-50wt.% based on the lower aliphatic ketone) at 300-50O deg.C in a vapor phase to give the objective compound.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、低級脂肪族ケトンから
低級脂肪酸を一工程で選択率良く製造する方法に関する
ものである。 【0002】 【従来の技術及びその問題点】低級脂肪族ケトンはカル
ボニル基を持つため反応性が大きく、アルドール縮合等
の反応によって利用価値の高い化学品を合成できること
から、種々の工業品製造原料として利用されている。例
えばアセトンからは、メタクリル酸メチル、ビスフェノ
ールA、メチルイソブチルケトン、ケテン(無水酢酸等
の原料)等が製造されている。しかし、低級脂肪族ケト
ンから直接、或いは低級脂肪族ケトンと水の反応によっ
て低級脂肪酸を合成した文献は見当らず、低級脂肪族ケ
トンから低級脂肪酸を製造する方法は、メチルエチルケ
トンから酢酸を合成する場合に代表されるように、液相
又は気相空気酸化法に限定さてれている。しかしなが
ら、周知のように空気酸化法はラジカル反応として進行
するため選択性が悪く、そのため分離・精製費が嵩むほ
か安全対策費も大きいという問題がある。 【0003】 【発明が解決しようとする課題】本発明は、低級脂肪族
ケトンから効率良く低級脂肪酸を製造する技術を確立す
ることをその課題としている。 【0004】 【課題を解決するための手段】本発明者らは前記課題を
解決するため鋭意研究を重ねた結果、本発明を完成する
に至った。すなわち、本発明によれば、下記一般式
(1)で示される低級脂肪族ケトンを、水の存在下に反
応温度300〜500℃の気相で、ゼオライト触媒と接
触させることを特徴とする低級脂肪酸の製造方法が提供
される。 前記式中、Rは低級アルキル基を示し、R′は水素又は
低級アルキル基を示す。低級アルキル基としては、炭素
数1〜6、好ましくは炭素数1〜4のものが挙げられ
る。 【0005】本発明における低級脂肪族ケトン(以下、
単に低級ケトンとも言う)からの低級脂肪酸生成機構は
下式のように推定される。すなわち、原料の低級ケトン
は2量体(中間体1)からアルドール縮合体(中間体
2)を形成し、ここに生成した中間体2は水の存在する
酸触媒上でカルボニウムイオン(中間体3)を経て不安
定中間体(中間体4)となり、これが安定化を求めて低
級脂肪酸と低級オレフィンに転換するものと推定され
る。 【化1】(上記式中、Rは低級アルキル基、R′は水素原子又は
低級アルキル基を示す) 【0006】前記推定機構からも分るように、本発明に
よる低級脂肪酸生成反応を円滑に進行させるためには酸
点及び水の存在が必須であるが、水は中間体2を生成す
るアルドール縮合時に副生するので、水不在でも脂肪酸
が生成するが、外部からの水の添加により反応を円滑に
進行させることができる。また、反応系に存在する水は
反応に直接関与するだけでなく、触媒表面に吸着した生
成物の脱離促進や副反応で触媒上に沈着した炭素質物除
去にも大きく寄与しており、長時間連続して反応を選択
率良く持続させる役割も果すものである。周知のよう
に、固体酸触媒上には酸強度の異なる多種の酸点が存在
し、特定反応を選択的に進行させるためには特定の酸点
を有することが要求される。すなわち、特定反応に対し
強すぎる酸点や弱すぎる酸点は、主反応への触媒作用が
ほとんどなく副反応のみを促進する。本発明で使用する
ゼオライト触媒に多種の酸点が存在することは良く知ら
れており、このため反応初期の低級ケトン反応率は高い
が、多岐にわたる副反応が生起して低級脂肪酸選択率が
低い。この場合の副反応は芳香族生成反応や炭素質物生
成反応が主体であり、強すぎる酸点によるものと推定さ
れるが、その活性持続期間はあまり長くなく、その強酸
点の消失の後になると選択率良く低級脂肪酸を生成する
触媒に転換する。すなわち、本発明で使用するゼオライ
ト触媒は本発明の反応条件で反応を継続すると、定常活
性期には選択的低級脂肪酸生成触媒となることが認めら
れた。 【0007】本発明ではZSM−5型ゼオライト触媒が
好適に使用され、ゼオライト触媒の細孔構造も選択性を
定める重要因子の一つと言える。MTG法(メタノール
からガソリンを製造する方法)からも明らかなようにゼ
オライト触媒における形状効果は大きく、本発明でも前
記中間体2が低級ケトンと反応しないで中間体3経由で
中間体4へ進むのは、ゼオライト触媒の形状効果の寄与
によるものと推定される。中間体4が触媒上で存在し得
ることや、これが低級脂肪酸と低級オレフィンに分解し
て安定化するのも、触媒の表面状態及び触媒形状による
ものと考えられる。このような特定形状は、当初からゼ
オライト表面に存在するほか、反応初期に副生する炭素
質物や共存する水によって触媒上に二次的に形成される
可能性もあり、現在の表面測定技術では充分な測定が困
難であるが、酸点に代表される触媒表面の電子状態のほ
か形状効果等の影響もあって、低級ケトンからの低級脂
肪酸の生成が可能になったものと考えられる。 【0008】本発明の原料となる脂肪族ケトンは、ゼオ
ライト触媒細孔に適合したものでなければならず、分子
寸法の余り大きすぎるものは円滑に反応しない。本発明
で用いる低級脂肪族ケトン分子は脂肪酸生成に好適な触
媒細孔内に容易に進入できるから、ここで低級脂肪酸に
効率よく転換する。 【0009】本発明における反応温度は300〜500
℃、好ましくは350〜450℃である。反応温度が低
すぎると反応が充分に進行しないため中間段階の生成物
が多く、例えばアセトンを原料ケトンとした場合はジア
セトンアルコールやメシチルオキシドが主生成物とな
る。反応温度が高すぎた場合は反応が過度となって芳香
族化合物や炭素質物の生成が多くなり、低級脂肪酸の選
択率が大幅に減少する。 【0010】水の添加量は原料ケトンの0.1〜50重
量%、好ましくは1〜40重量%であり、添加量が少な
すぎると中間体4の生成反応が抑制されるから低級脂肪
酸選択率が低下すると共に、水による吸着物の脱離効果
や炭素質物の排除効果も減少するから、触媒上への炭素
質物の沈着速度が増加して触媒寿命が低下する。水添加
量が大すぎた場合は添加量過少の場合より触媒や反応へ
のマイナス効果が少ないが、大量の水が存在すると反応
速度が低下するから反応率が低下して生産性が悪くな
る。また、大量の水を存在させるためにエネルギー効率
や生成物の分離効率も低下し、過剰の水の存在は工業的
見地からは好ましくない。 【0011】本発明法は、低級ケトンをゼオライト触媒
層を流通させることで実施される。この場合、液体空間
速度(以下LHSVと省略)は0.1〜10hr-1、好
ましくは0.2〜5hr-1であり、大きすぎれば反応性
が低下し、小さすぎた場合は触媒上への滞留時間が長く
なるから炭素質物生成等の副反応が増加する。 【0012】 【実施例】次に本発明を実施例によってさらに詳細に説
明するが、本発明はこの実施例に限定されるものではな
い。 【0013】実施例1〜12、比較例1〜4 内径30mmの石英製反応管を使用する通常の気相流通
反応装置を使用し、この中央部に水素型のZSM−5ゼ
オライト触媒を20ml充填して触媒層とした。この反
応管を管状電気炉内に設置し、触媒層中央に押入した熱
電対によって触媒層温度を制御できるようにした。原料
のアセトン及び水は、気化器を通して反応管入口から気
体状態で触媒層に供給し、反応生成物は反応管出口に備
えた水冷の冷却器を経て受器に補集後、ドライアイス−
メタノールを冷却剤とするコールドトラップで低沸点成
分を補集した。コールドトラップは入口部の管径を太め
にし、水の凝縮で管壁に固着する氷によるコールドトラ
ップの閉塞に注意すると共に、コールドトラップ出口部
を蛇管型にして低沸点成分が気体状で逃散するのを防止
した。このようにすれば反応生成物のほぼ全量を補集す
ることができる。以上に示した反応方式でアセトン単独
又はアセトンと水を14時間反応させた後、反応生成物
を補集してガスクロマトグラフ法で分析し表1の結果を
得た。 【0014】実施例13 実施例1〜12と同様にして、原料のアセトンの代りに
メチルエチルケトンを用いて、反応温度を375℃、L
HSVを2hr-1、H2O添加量をメチルエチルケトン
使用量の5重量%として14時間反応させたところ、反
応率8.9%、カルボン酸選択率52.3wt%、オレ
フィン類選択率40.8wt%であり、カルボン酸の主
成分はプロピオン酸、オレフィン類の主成分はペンテン
類であった。 【0015】 【表1】【0015】 【発明の効果】本発明によれば、低級脂肪族ケトンから
簡単な一段反応で選択率良く低級脂肪酸を得ることがで
きる。本発明の反応はこれまで全く報告されたことがな
く、本発明は低級ケトンからの新しい低級脂肪酸の製造
方法を提供するもので、その産業的意義は多大である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a lower fatty acid from a lower aliphatic ketone in one step with good selectivity. 2. Description of the Related Art Since lower aliphatic ketones have a carbonyl group, they are highly reactive, and chemicals of high utility value can be synthesized by reactions such as aldol condensation. Is used as. For example, from acetone, methyl methacrylate, bisphenol A, methyl isobutyl ketone, ketene (a raw material such as acetic anhydride), etc. are produced. However, no literature has been found synthesizing lower fatty acids directly from lower aliphatic ketones or by reacting lower aliphatic ketones with water, and a method for producing lower fatty acids from lower aliphatic ketones is described in the case of synthesizing acetic acid from methyl ethyl ketone. As represented, it is limited to liquid or gas phase air oxidation processes. However, as is well known, since the air oxidation method proceeds as a radical reaction, the selectivity is poor, so that there is a problem that the separation and purification costs are high and the safety measures cost is also high. An object of the present invention is to establish a technique for efficiently producing lower fatty acids from lower aliphatic ketones. The present inventors have completed the present invention as a result of intensive studies to solve the above problems. That is, according to the present invention, a lower aliphatic ketone represented by the following general formula (1) is brought into contact with a zeolite catalyst in the gas phase at a reaction temperature of 300 to 500 ° C. in the presence of water. A method for producing a fatty acid is provided. In the above formula, R represents a lower alkyl group and R'represents hydrogen or a lower alkyl group. Examples of the lower alkyl group include those having 1 to 6 carbon atoms, and preferably those having 1 to 4 carbon atoms. In the present invention, the lower aliphatic ketone (hereinafter,
The lower fatty acid production mechanism from (also referred to as lower ketone) is presumed as the following formula. That is, the lower ketone as a raw material forms an aldol condensate (intermediate 2) from a dimer (intermediate 1), and the intermediate 2 produced here is a carbonium ion (intermediate) on an acid catalyst in the presence of water. It is presumed that an unstable intermediate (intermediate 4) is obtained via 3), and this is converted to a lower fatty acid and a lower olefin for stabilization. [Chemical 1] (In the above formula, R represents a lower alkyl group, and R'represents a hydrogen atom or a lower alkyl group.) As can be seen from the above presumed mechanism, in order to smoothly proceed the lower fatty acid production reaction of the present invention, Requires the presence of acid sites and water, but since water is a by-product during the aldol condensation that produces intermediate 2, fatty acids are produced even in the absence of water, but the reaction proceeds smoothly by the addition of water from the outside. Can be made. In addition, the water present in the reaction system not only directly participates in the reaction, but also greatly contributes to the promotion of desorption of the product adsorbed on the catalyst surface and the removal of the carbonaceous material deposited on the catalyst by the side reaction. It also plays the role of sustaining the reaction with good selectivity for a continuous time. As is well known, various acid points having different acid strengths are present on a solid acid catalyst, and it is required to have a specific acid point in order to selectively proceed a specific reaction. That is, an acid point that is too strong or too weak for a particular reaction has almost no catalytic action on the main reaction and promotes only a side reaction. It is well known that the zeolite catalyst used in the present invention has various types of acid sites. Therefore, the lower ketone conversion rate in the initial stage of the reaction is high, but a wide variety of side reactions occur to lower the lower fatty acid selectivity. . The side reaction in this case is mainly an aromatic formation reaction and a carbonaceous material formation reaction, and it is presumed that it is due to an excessively strong acid point, but its activity duration is not so long and it is selected after the disappearance of the strong acid point. Converts to a catalyst that efficiently produces lower fatty acids. That is, it was confirmed that the zeolite catalyst used in the present invention becomes a selective lower fatty acid production catalyst in the stationary activity period when the reaction is continued under the reaction conditions of the present invention. In the present invention, the ZSM-5 type zeolite catalyst is preferably used, and the pore structure of the zeolite catalyst can be said to be one of the important factors that determine the selectivity. As is clear from the MTG method (method for producing gasoline from methanol), the shape effect of the zeolite catalyst is large, and in the present invention, the intermediate 2 does not react with the lower ketone and proceeds to the intermediate 4 via the intermediate 3. Is presumably due to the contribution of the shape effect of the zeolite catalyst. It is considered that the presence of the intermediate 4 on the catalyst and the fact that the intermediate 4 is decomposed into the lower fatty acid and the lower olefin and stabilized are due to the surface state and the shape of the catalyst. Such a specific shape is present on the zeolite surface from the beginning, and may be secondarily formed on the catalyst by carbonaceous substances by-produced in the early stage of the reaction or coexisting water. Although sufficient measurement is difficult, it is considered that the lower fatty acid can be produced from the lower ketone due to the influence of the shape effect and the electronic state of the catalyst surface represented by the acid point. The aliphatic ketone as the raw material of the present invention must be compatible with the zeolite catalyst pores, and those having too large a molecular size do not react smoothly. Since the lower aliphatic ketone molecule used in the present invention can easily enter the catalyst pores suitable for fatty acid production, it is efficiently converted into lower fatty acid here. The reaction temperature in the present invention is 300 to 500.
C., preferably 350 to 450.degree. If the reaction temperature is too low, the reaction does not proceed sufficiently, and thus many intermediate products are produced. For example, when acetone is used as the starting ketone, diacetone alcohol and mesityl oxide are the main products. If the reaction temperature is too high, the reaction becomes excessive and the production of aromatic compounds and carbonaceous substances increases, and the selectivity of lower fatty acids decreases significantly. The amount of water added is 0.1 to 50% by weight, preferably 1 to 40% by weight of the raw material ketone. If the amount of water added is too small, the reaction of forming intermediate 4 is suppressed. And the desorption effect of the adsorbate by water and the removal effect of the carbonaceous material are also reduced, so that the deposition rate of the carbonaceous material on the catalyst is increased and the catalyst life is reduced. When the amount of water added is too large, the negative effect on the catalyst and the reaction is smaller than when the amount added is too small, but when a large amount of water is present, the reaction rate decreases and the reaction rate decreases, resulting in poor productivity. Further, the presence of a large amount of water lowers the energy efficiency and the product separation efficiency, and the presence of excess water is not preferable from an industrial viewpoint. The method of the present invention is carried out by passing a lower ketone through the zeolite catalyst layer. In this case, the liquid hourly space velocity (hereinafter abbreviated as LHSV) is 0.1 to 10 hr −1 , preferably 0.2 to 5 hr −1 , and if it is too large, the reactivity decreases, and if it is too small, it moves onto the catalyst. Since the residence time becomes longer, side reactions such as carbonaceous material production increase. The present invention will now be described in more detail with reference to examples, but the present invention is not limited to these examples. Examples 1 to 12 and Comparative Examples 1 to 4 An ordinary vapor phase flow reactor using a quartz reaction tube having an inner diameter of 30 mm was used, and 20 ml of hydrogen type ZSM-5 zeolite catalyst was filled in the central portion. To obtain a catalyst layer. This reaction tube was installed in a tubular electric furnace so that the temperature of the catalyst layer could be controlled by a thermocouple pushed into the center of the catalyst layer. Acetone and water as raw materials are supplied to the catalyst layer in a gas state from the inlet of the reaction tube through the vaporizer, and the reaction product is collected in the receiver through the water-cooled cooler provided at the outlet of the reaction tube, and then the dry ice-
The low boiling point components were collected by a cold trap using methanol as a cooling agent. For the cold trap, make the pipe diameter of the inlet part thicker and pay attention to the clogging of the cold trap due to ice sticking to the pipe wall due to the condensation of water, and make the cold trap outlet part a serpentine type to escape the low boiling point component in the form of gas Was prevented. By doing so, almost all of the reaction product can be collected. After reacting acetone alone or acetone and water for 14 hours in the reaction system shown above, the reaction products were collected and analyzed by gas chromatography to obtain the results shown in Table 1. Example 13 In the same manner as in Examples 1 to 12, methyl ethyl ketone was used in place of the starting material acetone, the reaction temperature was 375 ° C., and L was L.
The reaction was carried out for 14 hours with HSV being 2 hr −1 and H 2 O being 5% by weight of the amount of methyl ethyl ketone used. The reaction rate was 8.9%, the carboxylic acid selectivity was 52.3 wt% and the olefins selectivity was 40.8 wt. %, The main component of carboxylic acid was propionic acid, and the main component of olefins was pentenes. [Table 1] According to the present invention, a lower fatty acid can be obtained from a lower aliphatic ketone by a simple one-step reaction with good selectivity. The reaction of the present invention has never been reported so far, and the present invention provides a novel method for producing a lower fatty acid from a lower ketone, and its industrial significance is great.

Claims (1)

【特許請求の範囲】 (ただしRは低級アルキル基を、R′は水素原子又は低
級アルキル基を示す)で示される低級脂肪族ケトンを、
水の存在下に反応温度300〜500℃の気相で、ゼオ
ライト触媒と接触させることを特徴とする低級脂肪酸の
製造方法。 【請求項2】 水の存在量が原料とする低級脂肪族ケト
ン量の0.1〜50重量%である請求項1の低級脂肪酸
の製造方法。
[Claims] (Wherein R represents a lower alkyl group, R'represents a hydrogen atom or a lower alkyl group),
A method for producing a lower fatty acid, which comprises contacting with a zeolite catalyst in a gas phase at a reaction temperature of 300 to 500 ° C in the presence of water. 2. The method for producing a lower fatty acid according to claim 1, wherein the amount of water present is 0.1 to 50% by weight of the amount of the lower aliphatic ketone used as a raw material.
JP14427293A 1993-05-24 1993-05-24 Production of lower fatty acid from lower aliphatic ketone Pending JPH06329577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14427293A JPH06329577A (en) 1993-05-24 1993-05-24 Production of lower fatty acid from lower aliphatic ketone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14427293A JPH06329577A (en) 1993-05-24 1993-05-24 Production of lower fatty acid from lower aliphatic ketone

Publications (1)

Publication Number Publication Date
JPH06329577A true JPH06329577A (en) 1994-11-29

Family

ID=15358236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14427293A Pending JPH06329577A (en) 1993-05-24 1993-05-24 Production of lower fatty acid from lower aliphatic ketone

Country Status (1)

Country Link
JP (1) JPH06329577A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101120A1 (en) * 2009-03-02 2010-09-10 国立大学法人 鹿児島大学 Apparatus for producing aromatic hydrocarbons or ketone compounds, apparatus for producing levulinic acid, apparatus for separating levulinic acid, and apparatus for producing hydrocarbons from levulinic acid
JP2011051957A (en) * 2009-09-04 2011-03-17 Mitsui Chemicals Inc Method for producing olefin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101120A1 (en) * 2009-03-02 2010-09-10 国立大学法人 鹿児島大学 Apparatus for producing aromatic hydrocarbons or ketone compounds, apparatus for producing levulinic acid, apparatus for separating levulinic acid, and apparatus for producing hydrocarbons from levulinic acid
JP2011051957A (en) * 2009-09-04 2011-03-17 Mitsui Chemicals Inc Method for producing olefin

Similar Documents

Publication Publication Date Title
JP5669826B2 (en) Process for producing 2-substituted tetrahydropyranol
KR20000057542A (en) Preparation of vinyl acetate
JPH01146837A (en) Method for dehydrating cyclohexenone
US4528400A (en) Preparation of ketones
US4570021A (en) Preparation of ketones
JPH06329577A (en) Production of lower fatty acid from lower aliphatic ketone
JP4754058B2 (en) Method for producing isopropyl alcohol
CA1120457A (en) Preparaion of ketones
EP1193238B1 (en) Process for producing 2,4,5-trialkylbenzaldehydes
SU1225480A3 (en) Method of producing ethylidendiacetate
JPS6140658B2 (en)
JP3795970B2 (en) Method for producing α, β-unsaturated aldehyde
JPH07100679B2 (en) Process for producing α- (3-benzoylphenyl) propionic acid or its ester
JPH0149697B2 (en)
JPS6033370B2 (en) Method for producing 2-aryl ethanol
JP3923133B2 (en) Method for producing α, β-unsaturated aldehyde
JPS5946932B2 (en) Production method of p-cresol
US4162268A (en) Process for preparing diacetylbenzene
CA1122613A (en) Preparation of aldehydes
KR960009677B1 (en) Preparation of 4-isobutyl styrene
KR960002598B1 (en) PROCESS FOR PREPARING Ñß-(3-BENZYL PHENYL)PROPIONIC ACID DERIVATIVE
Paczkowski et al. Synthesis of 3-alkoxy-2, 2-dimethyl-propan-1-ols by hydrogenation of 2-substituted 5, 5-dimethyl-[1, 3] dioxanes using copper catalysts. Part I: Investigations in the gas phase
JPH0536427B2 (en)
JPH0115489B2 (en)
JPH0692900A (en) Production of ester