JPH0115489B2 - - Google Patents

Info

Publication number
JPH0115489B2
JPH0115489B2 JP55118875A JP11887580A JPH0115489B2 JP H0115489 B2 JPH0115489 B2 JP H0115489B2 JP 55118875 A JP55118875 A JP 55118875A JP 11887580 A JP11887580 A JP 11887580A JP H0115489 B2 JPH0115489 B2 JP H0115489B2
Authority
JP
Japan
Prior art keywords
weight
reaction
phenol
bpe
ethylphenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55118875A
Other languages
Japanese (ja)
Other versions
JPS5742644A (en
Inventor
Kinya Fujii
Masaaki Sekya
Hiroaki Taniguchi
Akio Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Maruzen Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruzen Oil Co Ltd filed Critical Maruzen Oil Co Ltd
Priority to JP55118875A priority Critical patent/JPS5742644A/en
Publication of JPS5742644A publication Critical patent/JPS5742644A/en
Publication of JPH0115489B2 publication Critical patent/JPH0115489B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は、一般式 (式中、nは0、1、2、3、4または5を表わ
す。) で表わされるフエノール誘導体を触媒の存在下に
おいて水素気流中で熱分解することにより主とし
てエチルフエノールを製造し、同時にビニルフエ
ノールを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the general formula (In the formula, n represents 0, 1, 2, 3, 4, or 5.) By thermally decomposing the phenol derivative represented by The present invention relates to a method for producing phenol.

従来、2,2−ビス(4−ヒドロキシフエニ
ル)プロパン〔ビスフエノールA〕の分解反応に
よりP−イソプロペニルフエノールを得る方法
〔特公昭38−1368;特公昭53−13619〕およびこの
p−イソプロペニルフエノールを水添してp−イ
ソプロピルフエノールを得る方法〔特開昭50−
35150〕、また、1,1−ビス(4−ヒドロキシフ
エニル)エタンを大過剰の水の存在下で520℃に
おいて熱分解してp−ビニルフエノールを得る方
法〔E.S.Smolinら、I&EC Product Research
And Development、(1)、16、1964年〕等が公
知であるが、後者の公知例においては、熱分解生
成物を臭素価および水素添加価のみで推定してい
ることから実験結果の信頼度が低く、ビニルフエ
ノールの収率も極めて低いものである。また、特
公昭35−18173によると、フエノールまたはクレ
ゾールとアセトアルデヒドまたはアセチレンとの
反応によつて製造されるフエノール誘導体を、酸
化物触媒を用いて熱分解させることによりビニル
フエノールとフエノールを得る方法が示されてい
るが、この方法では、まだ上記フエノール誘導体
の分解率とビニルフエノールの収率が低く、満足
し得るものではない。またこのフエノール誘導体
を熱分解してエチルフエノールを製造する方法
〔J.B.Niederlら、J.Am.Chem.Soc.、59、1113
(1937)〕も知られているが、この方法によるエチ
ルフエノールの収率は約40%と低く、かつ原料の
約20%が炭化物になつてしまう欠点を有する。さ
らに、特公昭38−1368あるいは特開昭54−84536
等によれば、アルカリ性物質あるいは鉄、コバル
ト等の酸化物を触媒として用い、上記のフエノー
ル誘導体を熱分解してパラビニルフエノールを得
ているが、エチルフエノールの併産を示唆するも
のは見当たらない。また、熱分解反応を水素の気
流下で行なつている例もまつたく見られない。
Conventionally, a method for obtaining P-isopropenylphenol by decomposition reaction of 2,2-bis(4-hydroxyphenyl)propane [bisphenol A] [Japanese Patent Publication No. 38-1368; Japanese Patent Publication No. 53-13619] and this p-iso Method for obtaining p-isopropylphenol by hydrogenating propenylphenol
35150], and a method for obtaining p-vinylphenol by thermally decomposing 1,1-bis(4-hydroxyphenyl)ethane at 520°C in the presence of a large excess of water [ESSmolin et al., I&EC Product Research
And Development, 3 (1), 16, 1964], but in the latter known example, the reliability of the experimental results is low because the thermal decomposition products are estimated only by the bromine number and hydrogenation number. The yield of vinylphenol is also extremely low. Furthermore, according to Japanese Patent Publication No. 35-18173, a method is disclosed in which vinylphenol and phenol are obtained by thermally decomposing a phenol derivative produced by the reaction of phenol or cresol with acetaldehyde or acetylene using an oxide catalyst. However, this method is still unsatisfactory as the decomposition rate of the phenol derivative and the yield of vinylphenol are low. Also, a method for producing ethylphenol by thermally decomposing this phenol derivative [JBNiederl et al., J.Am.Chem.Soc., 59 , 1113
(1937)], but this method has the disadvantage that the yield of ethylphenol is as low as about 40%, and about 20% of the raw material turns into char. In addition, JP 1977-1368 or JP 54-84536
According to et al., the above-mentioned phenol derivatives are thermally decomposed to obtain paravinylphenol using alkaline substances or oxides of iron, cobalt, etc. as catalysts, but nothing has been found to suggest that ethylphenol is co-produced. . Furthermore, there are no examples of thermal decomposition reactions being carried out under a hydrogen stream.

本発明者らは、エチルフエノールはビニルフエ
ノールと同様に、工業的に極めて有用な物質で
あ、エチルフエノールを選択的に製造することも
極めて有意義であるという観点から、これらの物
質の製造法に関する研究を種々重ねた結果、前記
の式(A)で表わされるフエノール誘導体を水素気流
下で熱分解することにより主生成物としてエチル
フエノールが得られ、かつ従来の公知の方法に比
べてエチルフエノールとビニルフエノールの合計
の収率が高いのみならず、高沸点凝縮物の生成や
触媒表面上へのコーキングが低減されて触媒の連
続使用時間を長くし得ることを見出し、本発明を
完成した。
The present inventors have developed a method for producing these substances from the viewpoint that ethylphenol, like vinylphenol, is an extremely useful substance industrially, and that selectively producing ethylphenol is also extremely meaningful. As a result of various studies, ethylphenol was obtained as the main product by thermally decomposing the phenol derivative represented by the above formula (A) in a hydrogen stream, and it was found that ethylphenol was obtained as a main product by thermally decomposing the phenol derivative represented by the above formula (A). The inventors have completed the present invention by discovering that not only the total yield of vinylphenol is high, but also the formation of high-boiling condensates and coking on the catalyst surface can be reduced, making it possible to extend the continuous use time of the catalyst.

すなわち本発明の要旨は、一般式 (式中、nは0、1、2、3、4または5を表わ
す。) で表わされるフエノール誘導体を触媒の存在下で
熱分解してエチルフエノールおよびビニルフエノ
ールを製造する方法において、反応を水素気流下
で行なうことを特徴とするエチルフエノールおよ
びビニルフエノールの製造方法に存する。
That is, the gist of the present invention is that the general formula (In the formula, n represents 0, 1, 2, 3, 4 or 5.) In a method for producing ethylphenol and vinylphenol by thermally decomposing a phenol derivative represented by The present invention relates to a method for producing ethylphenol and vinylphenol, which is characterized in that it is carried out under an air flow.

本発明において、一般式(A)で表わされるフエノ
ール誘導体の例としては、1,1−ビス(4−ヒ
ドロキシフエニル)エタン、1,1−ビス(2−
ヒドロキシフエニル)エタン、2,4′−ジヒドロ
キシ−α,α−ジフエニルエタン、そのほかフエ
ノールとアセトアルデヒド、パラアルデヒド、ビ
ニルエーテルあるいはアセチレン等とから公知の
方法〔C.S.Marvelら、J.Polymer Science、
689(1949);W.E.Hanfordら、Industrial
Engineering Chemistry、40、1171(1948);米国
特許2515164〕により得られるフエノール核を2
乃至5個含む縮合物または付加重合物などが挙げ
られるが、これらの例に拘束されることはない。
In the present invention, examples of the phenol derivative represented by the general formula (A) include 1,1-bis(4-hydroxyphenyl)ethane, 1,1-bis(2-
Hydroxyphenyl)ethane, 2,4'-dihydroxy-α,α-diphenylethane, and other known methods using phenol and acetaldehyde, paraaldehyde, vinyl ether, acetylene, etc. [CS Marvel et al., J. Polymer Science, 4 ,
689 (1949); WE Hanford et al., Industrial
Engineering Chemistry, 40 , 1171 (1948); US Pat. No. 2,515,164].
Examples include condensates and addition polymers containing from 5 to 5, but the present invention is not limited to these examples.

また、本発明の方法において用いられる触媒の
例としては、シリカ、アルミナ、シリカ・アルミ
ナ、H型合成ゼオライト、希土類元素含有H型合
成ゼオライト、天然ゼオライト、ベントナイト、
モンモリナイト、カオリナイト、シリカ・マグネ
シア、アルミナ・ボリア、シリカ・チタニア・ジ
ルコニア等の固体酸触媒、酸化セリウム、酸化プ
ラセオデミウム、酸化ネオデミウム、酸化ヨウロ
ピウム、酸化タリウム等の金属酸化物触媒、酸化
マグネウム、酸化カルシウム、酸化ストロンチウ
ム、酸化バリウム、酸化ナトリウム、酸化カリウ
ム、酸化亜鉛、酸化セシウム、アルカリ金属また
はアルカリ土類金属置換合成ゼオライト、ソーダ
ライム、ガレオナイト等の固体塩基触媒、鉄、コ
バルト、ニツケル、銅、パラジウム、白金、パラ
ジウム/炭素、パラジウム/シリカ等の還元型金
属触媒等が挙げられ、これら触媒は単独もしくは
混合系でも用いられる。また、反応時に使用する
水素ガスは、純粋なものはもちろんのこと、若干
の不純物を含むものや、工業的に得られる窒素、
炭酸ガス、メタンなどを含むものであつてもよ
く、水素の使用量は、前記の式(A)で表わされる反
応原料に対して約0.1〜104モル比の範囲が好まし
い。
Further, examples of catalysts used in the method of the present invention include silica, alumina, silica/alumina, H-type synthetic zeolite, rare earth element-containing H-type synthetic zeolite, natural zeolite, bentonite,
Solid acid catalysts such as montmorinite, kaolinite, silica/magnesia, alumina/boria, silica/titania/zirconia, metal oxide catalysts such as cerium oxide, praseodemium oxide, neodemium oxide, europium oxide, thallium oxide, magnesium oxide, calcium oxide , strontium oxide, barium oxide, sodium oxide, potassium oxide, zinc oxide, cesium oxide, alkali metal or alkaline earth metal substituted synthetic zeolite, solid base catalysts such as soda lime, galeonite, iron, cobalt, nickel, copper, palladium, Examples include reduced metal catalysts such as platinum, palladium/carbon, and palladium/silica, and these catalysts may be used alone or in a mixed system. In addition, the hydrogen gas used during the reaction is not only pure, but also hydrogen gas that contains some impurities, industrially obtained nitrogen,
It may contain carbon dioxide gas, methane, etc., and the amount of hydrogen used is preferably in the range of about 0.1 to 10 4 molar ratio with respect to the reaction raw material represented by the above formula (A).

次に、本発明の方法を実施するに当たり、反応
の方式は気相または液相流通式、またはバツチ式
等のいずれの方式によつてもよく、また、反応に
際して希釈剤を使用することもある。この希釈剤
の例としては、水、酢酸、プロピオン酸、しゆう
酸等の有機酸、メタノール、エタノール等のアル
コール類、ジメチルエーテル、ジエチルエーテル
等のエーテル類、アセトン、メチルエチルケトン
等のケトン類、ベンゼン、トルエン、キシレン等
の芳香族炭化水素、フエノール、クレゾール、エ
チルフエノール等のフエノール類、窒素、酸素、
炭酸ガス等の気体類が挙げられる。また、反応は
通常、常圧下で実施されるが、減圧もしくは加圧
下において実施することもある。すなわち、気相
または液相流通反応方式による場合は、反応圧力
は常圧または加圧であることが好ましく、この時
の反応温度は約280℃〜680℃、液空間速度
(LHSV)は、約0.01〜100hr-1の範囲であること
が好ましい。さらに、希釈剤を用いる場合には、
希釈剤と原料のフエノール誘導体との割合は約
0.1〜103モル比の範囲が好ましい。次に、液相バ
ツチ反応方式による場合は、通常水素ガスまたは
水素含有ガスを吹き込みながら、常圧もしくは減
圧において反応を行ない、この時の反応温度は約
150℃〜350℃、反応時間は約10分〜48時間、また
使用する触媒の量は反応原料に対して約0.01〜15
重量%の割合いが好ましい。さらに、希釈剤を使
用する場合には反応原料に対して約0.1〜103モル
比の範囲が好ましい。
Next, in carrying out the method of the present invention, the reaction method may be any method such as a gas phase or liquid phase flow method, or a batch method, and a diluent may be used during the reaction. . Examples of the diluent include water, organic acids such as acetic acid, propionic acid, and oxalic acid, alcohols such as methanol and ethanol, ethers such as dimethyl ether and diethyl ether, ketones such as acetone and methyl ethyl ketone, benzene, Aromatic hydrocarbons such as toluene and xylene, phenols such as phenol, cresol, and ethylphenol, nitrogen, oxygen,
Examples include gases such as carbon dioxide. Further, the reaction is usually carried out under normal pressure, but may also be carried out under reduced pressure or increased pressure. That is, when using a gas phase or liquid phase flow reaction method, the reaction pressure is preferably normal pressure or increased pressure, the reaction temperature at this time is about 280°C to 680°C, and the liquid hourly space velocity (LHSV) is about It is preferably in the range of 0.01 to 100 hr -1 . Furthermore, when using a diluent,
The ratio of diluent to raw material phenol derivative is approximately
A range of 0.1 to 10 3 molar ratio is preferred. Next, when using a liquid phase batch reaction method, the reaction is usually carried out at normal pressure or reduced pressure while blowing hydrogen gas or hydrogen-containing gas, and the reaction temperature at this time is approximately
150°C to 350°C, reaction time is approximately 10 minutes to 48 hours, and the amount of catalyst used is approximately 0.01 to 15% of the reaction raw material.
The percentage by weight is preferred. Furthermore, if a diluent is used, it is preferably in the range of about 0.1 to 10 3 molar ratio to the reaction raw materials.

本発明の方法によれば、従来の水素の不存在下
でビスフエノールエタン等の前記の式(A)で表わさ
れるフエノール誘導体を熱分解する方法に比べ
て、得られるエチルフエノールとビニルフエノー
ルの合計の収率は著しく高いのみならず、高沸点
縮合物の生成や触媒表面上へのコーキングを低減
し、触媒の連続使用時間を長くすることができる
という特長を有する。
According to the method of the present invention, compared to the conventional method of thermally decomposing a phenol derivative represented by the above formula (A) such as bisphenolethane in the absence of hydrogen, the total amount of ethylphenol and vinylphenol obtained is Not only is the yield extremely high, but the production of high-boiling condensates and coking on the catalyst surface can be reduced, and the continuous use time of the catalyst can be extended.

以下に実施例を挙げて本発明の方法を具体的に
説明する。
The method of the present invention will be specifically explained below with reference to Examples.

実施例 1 固定床気相接触流通反応装置の反応管に粒状の
シリカ・アルミナ触媒を充てんし、これに1,1
−ビス(4−ヒドロキシフエニル)エタン〔以下
BPEと略称する。〕(純度98%)10gと水20gと
の混合溶液および水素を液空間速度〔BPEを基
準とする。〕が0.5hr-1、水素とBPEとのモル比が
50となるように送入し、反応温度500〜510℃で反
応させた。得られた反応物をガスクロトグラフイ
ーおよびゲル浸透クロマトグラフイーにより分析
した結果、原料のBPEの分解率は92%であり、
液状分解生成物の組成はパラエチルフエノール
44.4重量%、パラビニルフエノール2.3重量%、
フエノール48.0重量%および未知成分は5.3重量
%であつた。
Example 1 A reaction tube of a fixed bed gas phase catalytic flow reactor was filled with granular silica/alumina catalyst, and 1,1
-bis(4-hydroxyphenyl)ethane [hereinafter
It is abbreviated as BPE. ] (purity 98%) A mixed solution of 10 g and 20 g of water and hydrogen at a liquid hourly space velocity [based on BPE. ] is 0.5hr -1 , and the molar ratio of hydrogen to BPE is
50° C., and the reaction was carried out at a reaction temperature of 500 to 510°C. As a result of analyzing the obtained reaction product by gas chromatography and gel permeation chromatography, the decomposition rate of the raw material BPE was 92%.
The composition of the liquid decomposition product is paraethylphenol.
44.4% by weight, paravinylphenol 2.3% by weight,
Phenol was 48.0% by weight and unknown components were 5.3% by weight.

実施例 2 実施例1において、シリカ・アルミナの触媒の
代りに触媒としてクロマトグラフイー用シリカゲ
ルを用いた以外は実施例1と同様にして実験を行
なつた結果、BPEの分解率は90%であり、液状
分解生成物の組成はパラフエノール40.9重量%、
パラビニルフエノール5.9重量%、フエノール50
重量%および未知成分は3.2重量%であつた。
Example 2 An experiment was carried out in the same manner as in Example 1 except that chromatographic silica gel was used as a catalyst instead of the silica-alumina catalyst. As a result, the decomposition rate of BPE was 90%. Yes, the composition of the liquid decomposition product is paraphenol 40.9% by weight,
Paravinylphenol 5.9% by weight, phenol 50
Weight% and unknown components were 3.2% by weight.

実施例 3 実施例1において、触媒として粒状の酸化セリ
ウムを用いた以外は実施例1と同様にして反応を
行なつた結果、BPEの分解率は78%であり、液
状分解生成物の組成はパラエチルフエノール39.4
重量%、パラビニルフエノール6.1重量%、フエ
ノール51.5重量%および未知成分が3.0重量%で
あつた。
Example 3 The reaction was carried out in the same manner as in Example 1 except that granular cerium oxide was used as a catalyst. As a result, the decomposition rate of BPE was 78%, and the composition of the liquid decomposition product was Paraethylphenol 39.4
Paravinylphenol was 6.1% by weight, phenol was 51.5% by weight, and unknown components were 3.0% by weight.

実施例 4 実施例1において、触媒として粒状のガレオナ
イトを用いた以外は実施例1と同様にして反応を
行なつた結果、BPEの分解率は80%であり、液
状分解生成物の組成はパラエチルフエノール39.3
重量%、パラビニルフエノール6.3重量%、フエ
ノール50.3重量%および未知成分は4.1重量%で
あつた。
Example 4 The reaction was carried out in the same manner as in Example 1 except that granular galeonite was used as a catalyst. As a result, the decomposition rate of BPE was 80%, and the composition of the liquid decomposition product was Ethylphenol 39.3
The weight percentages were 6.3% by weight of paravinylphenol, 50.3% by weight of phenol, and 4.1% by weight of unknown components.

実施例 5 実施例1において、触媒として粒状のパラジウ
ム/カーボンを用いた以外は実施例1と同様にし
て反応を行なつた結果、BPEの分解率は91%で
あり、液状分解生成物の組成はパラエチルフエノ
ール36.4重量%、パラビニルフエノール6.2重量
%、フエノール50.0重量%および未知成分は7.4
重量%であつた。
Example 5 The reaction was carried out in the same manner as in Example 1 except that granular palladium/carbon was used as a catalyst. As a result, the decomposition rate of BPE was 91%, and the composition of the liquid decomposition product was is paraethylphenol 36.4% by weight, paravinylphenol 6.2% by weight, phenol 50.0% by weight and unknown components are 7.4% by weight.
It was in weight%.

実施例 6 実施例1において、触媒として粒状の酸化第2
鉄を用い、反応温度を420℃とした以外は実施例
1と同様にして反応を行なつた結果、BPEの分
解率は84%であり、液状分解生成物の組成はパラ
エチルフエノール27.4重量%、パラビニルフエノ
ール13.4重量%、フエノール52.0重量%および未
知成分は7.2重量%であつた。
Example 6 In Example 1, granular oxidized secondary
The reaction was carried out in the same manner as in Example 1 except that iron was used and the reaction temperature was 420°C. As a result, the decomposition rate of BPE was 84%, and the composition of the liquid decomposition product was 27.4% by weight of para-ethylphenol. , paravinylphenol was 13.4% by weight, phenol was 52.0% by weight, and unknown components were 7.2% by weight.

実施例 7 実施例1において、BPE10gと水20gとの混
合溶液の代りにBPE10g、水15gおよび酢酸5
gの混合液を用い、触媒として酸化銅/酸化亜鉛
混合触媒を用いた以外は実施例1と同様にして反
応を行なつた結果、BPEの分解率は86%であり、
液状分解生成物の組成はパラエチルフエノール
32.1重量%、パラビニルフエノール15.0重量%、
フエノール50.0重量%および未知成分は9.2重量
%であつた。
Example 7 In Example 1, instead of the mixed solution of 10 g of BPE and 20 g of water, 10 g of BPE, 15 g of water, and 5 g of acetic acid were used.
The reaction was carried out in the same manner as in Example 1 except that a mixed solution of g was used and a copper oxide/zinc oxide mixed catalyst was used as a catalyst. As a result, the decomposition rate of BPE was 86%,
The composition of the liquid decomposition product is paraethylphenol.
32.1% by weight, paravinylphenol 15.0% by weight,
Phenol was 50.0% by weight and unknown components were 9.2% by weight.

実施例 8 実施例1において、水素とBPEのモル比が500
となるようにした以外は実施例1と同様にして反
応を行なつた結果、BPEの分解率は58.4%であ
り、液状分解生成物の組成はパラエチルフエノー
ル46.8重量%、パラビニルフエノール1.3重量%、
フエノール49.0重量%および未知成分は2.9重量
%であつた。
Example 8 In Example 1, the molar ratio of hydrogen and BPE is 500.
The reaction was carried out in the same manner as in Example 1, except that the decomposition rate of BPE was 58.4%, and the composition of the liquid decomposition product was 46.8% by weight of paraethylphenol and 1.3% by weight of paravinylphenol. %,
Phenol was 49.0% by weight and unknown components were 2.9% by weight.

実施例 9 実施例1において、純粋な水素の代りに水素
65.4容量%、二酸化炭素14.5容量%、窒素19.6容
量%、アルゴン0.4容量%およびメタン0.1容量%
からなる混合ガスを用い、水素とBPEのモル比
が50となるようにした以外は実施例1と同様にし
て反応を行なつた結果、BPEの分解率は89.3%で
あり、液状分解生成物の組成はパラエチルフエノ
ール45.8重量%、パラビニルフエノール1.7重量
%、フエノール48.3重量%および未知成分は4.2
重量%であつた。
Example 9 In Example 1, hydrogen instead of pure hydrogen
65.4 vol%, carbon dioxide 14.5 vol%, nitrogen 19.6 vol%, argon 0.4 vol% and methane 0.1 vol%
The reaction was carried out in the same manner as in Example 1, except that the molar ratio of hydrogen and BPE was 50 using a mixed gas consisting of The composition is 45.8% by weight of paraethylphenol, 1.7% by weight of paravinylphenol, 48.3% by weight of phenol, and 4.2% of unknown components.
It was in weight%.

実施例 10 BPE10gと酢酸1gおよび触媒としてシリ
カ・アルミナ0.1gを温度計、還流冷却器および
撹拌機付き四つ口フラスコに入れ、常圧下で水素
ガスを10/hrの速度で吹込みながら反応温度
220℃において3時間反応させた。得られた反応
混合物は温度280℃以下において、20〜25mmHgの
圧力で減圧蒸留を行ない、留出物の分析を行なつ
た結果、BPEの分解率は85%であり、留出物の
組成はパラエチルフエノール43.8重量%、フエノ
ール53.2重量%および未知成分は3.0重量%であ
つて、パラビニルフエノールは含まれなかつた。
Example 10 10 g of BPE, 1 g of acetic acid, and 0.1 g of silica/alumina as a catalyst were placed in a four-necked flask equipped with a thermometer, reflux condenser, and stirrer, and the reaction temperature was increased while blowing hydrogen gas at a rate of 10/hr under normal pressure.
The reaction was carried out at 220°C for 3 hours. The resulting reaction mixture was subjected to vacuum distillation at a temperature of 280°C or lower and a pressure of 20 to 25 mmHg, and the distillate was analyzed. As a result, the decomposition rate of BPE was 85%, and the composition of the distillate was Paraethylphenol was 43.8% by weight, phenol was 53.2% by weight, and unknown components were 3.0% by weight, and paravinylphenol was not included.

Claims (1)

【特許請求の範囲】 1 一般式 (式中、nは0、1、2、3、4または5を表わ
す。) で表わされるフエノール誘導体を触媒の存在下で
熱分解してエチルフエノールおよびビニルフエノ
ールを製造する方法において、反応を水素気流下
で行なうことを特徴とするエチルフエノールおよ
びビニルフエノールの製造方法。
[Claims] 1. General formula (In the formula, n represents 0, 1, 2, 3, 4 or 5.) In a method for producing ethylphenol and vinylphenol by thermally decomposing a phenol derivative represented by A method for producing ethylphenol and vinylphenol, which is carried out under an air flow.
JP55118875A 1980-08-27 1980-08-27 Production of ethylphenol and vinylphenol Granted JPS5742644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55118875A JPS5742644A (en) 1980-08-27 1980-08-27 Production of ethylphenol and vinylphenol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55118875A JPS5742644A (en) 1980-08-27 1980-08-27 Production of ethylphenol and vinylphenol

Publications (2)

Publication Number Publication Date
JPS5742644A JPS5742644A (en) 1982-03-10
JPH0115489B2 true JPH0115489B2 (en) 1989-03-17

Family

ID=14747274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55118875A Granted JPS5742644A (en) 1980-08-27 1980-08-27 Production of ethylphenol and vinylphenol

Country Status (1)

Country Link
JP (1) JPS5742644A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995011211A1 (en) * 1993-10-22 1995-04-27 Ihara Chemical Industry Co., Ltd. 2,2-bis(3,5-disubstituted-4-hydroxyphenyl)propane derivative, process for producing the same, and process for producing pyrogallol therefrom

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59181231A (en) * 1983-03-29 1984-10-15 Cosmo Co Ltd Production of p-ethylphenol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995011211A1 (en) * 1993-10-22 1995-04-27 Ihara Chemical Industry Co., Ltd. 2,2-bis(3,5-disubstituted-4-hydroxyphenyl)propane derivative, process for producing the same, and process for producing pyrogallol therefrom

Also Published As

Publication number Publication date
JPS5742644A (en) 1982-03-10

Similar Documents

Publication Publication Date Title
RU2058286C1 (en) Method for production of phenol or its derivatives
US8420868B2 (en) Process for the preparation of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
JP2004536147A (en) Method for producing isopropanol
CA2650550A1 (en) Method for producing 3-methyl-1,5-pentanediol
JPH0533211B2 (en)
Ndou et al. Self-condensation of propanol over solid-base catalysts
JP4902931B2 (en) Method of recovering physical value from bisphenol tar
JPS60208935A (en) Conversion of meta/para-cresol mixture
JPH0115489B2 (en)
CA1185619A (en) Preparation of resorcinol and substituted resorcinols by liquid-phase dehydrogenation of 1,3-cyclic diones derived from vapor-phase cyclization of delta- keto carboxylic acid esters
US3935265A (en) Vapor phase conversion of aromatic esters to aromatic aldehydes
US4154965A (en) Process for the preparation of resorcinol or alkylsubstituted derivatives thereof
JPS5858334B2 (en) resorcinnoseiho
US3819719A (en) Production of alkoxy phenolic compounds
JPH02504510A (en) Synthesis of phenylhydroquinone
JPS63225335A (en) Production of alpha-(3-benzoylphenyl)propionic acid or ester thereof
JPH0115488B2 (en)
JP2005095872A (en) Catalyst for synthesizing formate and ethanol, and method for producing formate and ethanol
GB2037769A (en) Preparation of methyl-nonyl-acetaldehyde
CN115466199B (en) Method for dehydrogenating and esterifying aldehyde and aryl phenol through light/nickel double-catalytic system
JP4951190B2 (en) Production of 3-alkylcycloalkanols
US3288853A (en) Method for the preparation of dicyclohexyl ketone
JPH0131491B2 (en)
JP2000103754A (en) Production of aromatic-based carbinols
JPS5885829A (en) Preparation of 2-trifluoromethylpropanol