WO2010101120A1 - Apparatus for producing aromatic hydrocarbons or ketone compounds, apparatus for producing levulinic acid, apparatus for separating levulinic acid, and apparatus for producing hydrocarbons from levulinic acid - Google Patents

Apparatus for producing aromatic hydrocarbons or ketone compounds, apparatus for producing levulinic acid, apparatus for separating levulinic acid, and apparatus for producing hydrocarbons from levulinic acid Download PDF

Info

Publication number
WO2010101120A1
WO2010101120A1 PCT/JP2010/053255 JP2010053255W WO2010101120A1 WO 2010101120 A1 WO2010101120 A1 WO 2010101120A1 JP 2010053255 W JP2010053255 W JP 2010053255W WO 2010101120 A1 WO2010101120 A1 WO 2010101120A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
biomass
levulinic acid
reactor
reaction
Prior art date
Application number
PCT/JP2010/053255
Other languages
French (fr)
Japanese (ja)
Inventor
俊雄 筒井
Original Assignee
国立大学法人 鹿児島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009048439A external-priority patent/JP5504494B2/en
Priority claimed from JP2009048421A external-priority patent/JP5504493B2/en
Application filed by 国立大学法人 鹿児島大学 filed Critical 国立大学法人 鹿児島大学
Publication of WO2010101120A1 publication Critical patent/WO2010101120A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/061Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing metallic elements added to the zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper

Definitions

  • the aspect of the present invention I relates to an apparatus (method) for producing an aromatic hydrocarbon or a ketone compound.
  • the aspect of the present invention II relates to an apparatus (method) for producing levulinic acid from biomass, an adsorption / separation apparatus (method) for levulinic acid, and an apparatus (method) for producing hydrocarbons from levulinic acid.
  • Biomass conversion techniques such as thermochemical conversion methods such as decomposition with subcritical water (Patent Publication 2008-249207) and methane fermentation and ethanol fermentation (Patent Publication 2008-182925) have been known as biomass conversion techniques. It has been.
  • thermochemical conversion method in the case of gasification, it is generally converted to a gas containing hydrogen or carbon monoxide at a high temperature of 700 ° C. or higher.
  • This gasification product is further separated from CO 2 and purified to be used as a methanol synthesis raw material, and further through dimethyl ether as a chemical raw material for aromatics and olefins.
  • a complicated and multi-step process is required to convert it into a chemical raw material, which is not economical.
  • Supercritical water decomposition can be converted into oxygen-containing hydrocarbon compounds such as hydroxymethylfurfural, furfural, dihydroxyacetone and glyceraldehyde, but its use is limited, and basic chemical substances are not necessarily produced.
  • methane and CO 2 can be obtained in methane fermentation, but since it is a mixture, the calorific value is low.
  • ethanol fermentation ethanol obtained together with CO 2 is expected as a gasoline alternative fuel. It is difficult to say that it is a high value-added product for the energy consumption and production cost required for separation, and more steps are required to make it a high-value-added chemical raw material.
  • a method for producing a high chemical substance in a short process has not been sufficiently established. Therefore, there is still an urgent need to develop a method for directly producing chemical raw materials that are high-value-added basic chemical substances using biomass.
  • decomposition with supercritical water produces various decomposition products such as 5-hydroxymethylfurfural and oxygenated tar, but these products are not necessarily basic chemical substances and have little utility value. Also when the excessive reaction in supercritical water to produce large quantities of CO 2, not achieve the reduction of CO 2.
  • ethanol fermentation is expected as an alternative to gasoline, but there are problems such as low added value to cost and the need for enormous energy input to separate ethanol and water. Accordingly, there is a need to realize a method for producing a basic chemical substance from biomass that suppresses excessive energy consumption and extremely suppresses CO 2 emission.
  • levulinic acid can be obtained by treating the sugar with an acid.
  • a carbonaceous material is easily produced as a by-product, and a method for selectively producing levulinic acid in a high yield has not been clarified.
  • the use of levulinic acid is not known except as a raw material for aminolevulinic acid, an agrochemical, and if levulinic acid can be converted and industrial hydrocarbons can be obtained efficiently, it will be epoch-making. Technology.
  • the present invention is an apparatus for producing an aromatic hydrocarbon or ketone compound,
  • a reactor for reacting an organic acid with a zeolite catalyst (preferably a ZSM-5 type zeolite catalyst) is provided.
  • the present invention also proposes a method for producing an aromatic hydrocarbon or ketone compound, which comprises reacting an organic acid with a zeolite catalyst (preferably a ZSM-5 type zeolite catalyst). To do.
  • an apparatus for producing an aromatic hydrocarbon or a ketone compound from biomass A first feeder for supplying biomass and acid-fermenting bacteria to the first reactor; A first reactor for fermenting the biomass with the acid-fermenting bacteria to produce an organic acid; A second feeder for feeding the produced organic acid and a zeolite catalyst (preferably a ZSM-5 type zeolite catalyst) to the second reactor; It comprises a second reactor for reacting the organic acid with a zeolite catalyst (preferably a ZSM-5 type zeolite catalyst) under heating.
  • a zeolite catalyst preferably a ZSM-5 type zeolite catalyst
  • Another aspect of the present invention is a method for producing an aromatic hydrocarbon or ketone compound from biomass, Prepare biomass and acid-fermenting bacteria, Fermenting the biomass with the acid-fermenting bacteria to produce an organic acid, And reacting the produced organic acid with a zeolite catalyst (preferably a ZSM-5 type zeolite catalyst) under heating.
  • a zeolite catalyst preferably a ZSM-5 type zeolite catalyst
  • the present invention is an essential chemical substance necessary for human society using an organic acid (preferably obtained from biomass), and can produce a high value-added chemical raw material in a high yield. More preferably, in the present invention, each process from biomass as a raw material to a product can be performed with low energy (or without using energy), and the production cost can be significantly reduced, It becomes possible to achieve production efficiency (yield improvement).
  • “levulinic acid” obtained by the method (apparatus) of the embodiment II of the present invention can be used as a raw material. Therefore, in a preferred embodiment of the present invention, it is possible to propose a hydrocarbon production method (manufacturing apparatus) that combines the embodiment of the present invention II and the embodiment of the present invention I.
  • Embodiment of Invention II First Embodiment of Invention II
  • the present inventor carried out a reaction (preferably a hydrothermal reaction) with biomass using an acid catalyst, and thus, the basic chemistry was performed under low energy. It was found that levulinic acid, which is one of the substances, can be selectively obtained in high yield.
  • the first aspect of the present invention II has been made based on such findings.
  • the first aspect of the present invention II proposes a production apparatus for producing levulinic acid from biomass, A feeder for supplying biomass, an acid catalyst and water to the reactor; The biomass, the acid catalyst, and a reactor for reacting the water are provided.
  • a method for producing levulinic acid from biomass is proposed, Prepare biomass, acid catalyst and water, Reacting the biomass, the acid catalyst, and the water.
  • the first aspect of the present invention II is a production apparatus that uses biomass and is a basic chemical substance necessary in the human society and produces high-value-added chemical raw materials in high yield and with low energy consumption in the production process. (Method) is provided.
  • Second aspect of Invention II At the time of the present invention, the present inventor made contact with the composition comprising a significant amount of levulinic acid under heating with an adsorbent under low energy. It was found that one levulinic acid can be efficiently separated from the composition by adsorbing it to the adsorbent. The second aspect of the present invention II has been made based on such findings.
  • the second aspect of the present invention II is an apparatus for separating levulinic acid from a composition comprising levulinic acid, and proposes the apparatus.
  • a feeder for supplying the adsorber with a composition comprising levulinic acid and an adsorbent;
  • An adsorber for bringing the composition into contact with the adsorbent and adsorbing levulinic acid to the adsorbent is provided.
  • a method for separating levulinic acid from a composition comprising levulinic acid is proposed.
  • the composition comprising levulinic acid and an adsorbent are brought into contact under heating, and levulinic acid is adsorbed from the composition onto the adsorbent.
  • the second aspect of the present invention II is adsorbed on the adsorbent, does not evaporate a solvent such as water, and the amount of adsorbed water is very small. It is extremely small, which is good in terms of both production cost reduction and production efficiency.
  • the distillation method used for concentration and separation of levulinic acid requires a very large amount of energy to evaporate a large amount of water. Therefore, it can be said that the second aspect of the present invention II is a very effective production technique as compared with the distillation method.
  • the present inventor made a reaction between levulinic acid and a zeolite catalyst or an adsorbent adsorbing levulinic acid by heating to produce industrial raw materials under low energy. The knowledge that it can produce efficiently (conversion) to a certain hydrocarbon was acquired. The third aspect of the present invention II has been made based on this finding.
  • the third aspect of the present invention II proposes an apparatus for obtaining hydrocarbons from levulinic acid, A feeder for supplying levulinic acid and a zeolite catalyst to the reactor; A reactor for reacting the levulinic acid with the zeolite catalyst is provided.
  • a method for producing a hydrocarbon from levulinic acid is proposed, Prepare levulinic acid and zeolite catalyst, It comprises reacting levulinic acid with the zeolite catalyst.
  • Preferred Embodiment of Invention II According to a preferred embodiment of Invention II, a combination of the first embodiment of Invention II and the second embodiment of Invention II, the second embodiment of Invention II and the invention II A production apparatus or production method according to the combination of the third aspect and the first aspect of the present invention II to the combination of the third aspect of the present invention II (fourth aspect of the present invention II) is proposed.
  • hydrothermal reaction can be fully utilized, so that each process from biomass as a raw material to hydrocarbons generated can be performed with low energy (or without using energy). It is possible to achieve a significant reduction in production cost and excellent production ease and production efficiency (yield improvement).
  • Embodiment I of the Invention (Catalyst) Reaction: Conversion Reaction (Second Reactor)
  • a zeolite catalyst preferably a ZSM-5 type zeolite catalyst
  • the reactor (second reactor) can be suitable for solid catalytic reactions such as a fixed bed, fluidized bed, moving bed, etc., and has sufficient resistance even when heated and pressurized at about 500 ° C. Use things.
  • the reactor may be a multi-stage reactor in which a first stage for supplying raw materials and a second stage in which a zeolite catalyst (preferably a ZSM-5 type zeolite catalyst) is present are arranged in series.
  • a reactor is equipped with a heating apparatus and reaction is performed under heating. Specifically, heating is performed at a temperature of 370 ° C. or higher and 500 ° C. or lower.
  • a reactor provided with a part for supplying a carrier gas and a part for supplying other components. Their presence makes it possible to introduce nitrogen, steam, hydrogen, and a gas containing them, preferably hydrogen or a hydrogen-containing gas, as carrier gases into the reactor in accordance with the target product.
  • a compound capable of generating hydrogen in the reactor such as formic acid
  • the reactor can be set in multiple stages as necessary, and set to different temperatures within the above temperature range for each stage, and introduce different carrier gases for each stage. These combined reactions can be realized. And it becomes possible to select advantageously the chemical raw material produced
  • the present invention uses an organic acid.
  • the organic acid is an organic acid having 2 to 4 carbon atoms, particularly a carboxylic acid having 2 to 4 carbon atoms, and in particular, acetic acid, propionic acid, lactic acid and butyric acid are preferably used. Further, it may be a mixture or solution containing one or more of these acids, for example, an aqueous solution.
  • levulinic acid can be used, and according to a more preferred embodiment, one obtained by the embodiment of the present invention II can be used. Accordingly, the “levulinic acid” used in the aspect of the present invention I naturally includes not only the general description but also those prepared and explained in the aspect of the present invention II.
  • an organic acid obtained by fermenting with an acid-fermenting bacterium is used.
  • the acid-fermenting bacteria any fermenting bacteria capable of generating an organic acid can be used. Examples include methane-fermenting bacteria, acetic acid-fermenting bacteria, lactic acid-fermenting bacteria, butyric acid-fermenting bacteria, mixtures thereof, and fermented sludge containing one or more of them.
  • methane-fermenting bacteria or a mixture or sludge containing it it is necessary to ferment without making it anaerobic.
  • the raw material for obtaining an organic acid by fermenting with an acid-fermenting bacterium may be any material as long as it generates a significant amount of the organic acid, but preferably biomass is used. Any biomass may be used. According to a preferred aspect of the present invention, it is preferable to use saccharide biomass capable of producing a significant amount of organic acid.
  • carbohydrate biomass include monosaccharides (glucose, fructose, etc.), disaccharides (sucrose, maltose, cellobiose, etc.), oligosaccharides and glycosides condensed with 10 or less monosaccharides, starch, alginic acid, etc. Examples include carbohydrates, biomass containing one or more of these, and processed products thereof.
  • Biomass is, for example, all plant biomass such as trees, grasses, cereals, fruits, seaweeds, etc., and includes roots, stems, bulbs, leaves, and the like.
  • processed product of biomass means that a part or all of biomass is subjected to physical treatment such as heating, pressurization, explosion, dissolution, extraction, grinding and mechanical separation; biological treatment such as fermentation and enzyme treatment. Examples of treatments: those subjected to one or more chemical treatments such as hydrolysis, thermal decomposition, solvent decomposition, hydrothermal treatment, cooking, alkali treatment, acid treatment, and catalyst treatment.
  • bagasse which is a pomace of sugarcane
  • cooked foods such as edible grains, wastes and processed products thereof Wood sawn waste, acid digests such as alkaline digestion and concentrated sulfuric acid.
  • Zeolite catalyst As the zeolite catalyst, zeolites such as crystalline aluminosilicate, silicate, metallosilicate are used.
  • crystalline aluminosilicate examples include ZSM-5, ZSM-11, beta, mordenite, X-type and Y-type faujasite, MCM-22, and MCM-68.
  • crystalline silicate examples include silicalite.
  • crystalline metallosilicate examples include metallosilicates in which metal elements other than Si are Fe, Ga, B, Ti and the like.
  • the zeolite catalyst may contain, as a cation, one or more of protons, ammonium ions, alkaline earths such as Ca, Ba, and Mg, and rare earth metal cations such as La and Ce.
  • Preferable specific examples of the zeolite catalyst include ZSM-5 type zeolites having pores having a 10-membered oxygen ring.
  • Examples of the ZSM-5 type zeolite catalyst include ZSM-5, ZSM-11, silicalite, metallosilicates in which metal elements other than Si are Fe, Ga, B, Ti and the like.
  • ZSM-5 having an Si / Al atomic ratio of 50 or more
  • ZSM-11 having an Si / Al atomic ratio of 50 or more
  • M is Fe, Ga, B, Ti
  • these ZSM-5 type zeolites may contain, as cations, one or more of protons, ammonium ions, alkaline earths such as Ca, Ba and Mg and rare earth metal cations such as La and Ce.
  • these ZSM-5 type zeolites may carry transition metals such as Ni, Fe, W, Pt, Rh, Re, Pd, and metals such as Mo in the form of elements or compounds such as oxides. .
  • the apparatus of the present invention is preferably provided with a fermentation reactor (first reactor) before the catalytic reaction (reactor) (second reactor). .
  • the fermentation reaction (equipment) is provided with a first supply device for supplying biomass and the like.
  • the fermentation reaction is performed in the first reactor while preferably stirring the biomass supplied from the first supplier and the acid-fermenting bacteria. Fermentation using acid-fermenting bacteria is preferably performed at a temperature of 30 ° C. or higher and 60 ° C. or lower.
  • organic acids in particular, acetic acid, propionic acid, lactic acid and butyric acid are obtained.
  • As the reactor one capable of using either batch or continuous operation is used.
  • the manufacturing apparatus (manufacturing method) according to the present invention preferably supplies biomass and acid-fermenting bacteria to the first reactor via the first feeder and performs a fermentation reaction at 30 ° C. or higher and 60 ° C. or lower.
  • the organic acid obtained by the fermentation reaction and the ZSM-5 type zeolite catalyst are supplied to the second reactor via the second feeder, at a temperature (350 ° C. or higher and 550 ° C. or lower) at which the desired compound is obtained. React.
  • the products are hydrocarbons, and by using the reaction according to the present invention, water and products by-produced by the entrainment or reaction are separated into two phases which hardly mix, Separation with high energy consumption such as distillation is basically unnecessary, and as a result, it can be said to be an economical and highly efficient production method.
  • aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene and trimethylbenzene; lower olefin hydrocarbons such as propylene, butene, isobutene and ethylene; acetone and ethyl methyl ketone
  • a ketone compound such as dimethyl ketone can be obtained as a product.
  • Embodiment of Invention II First Embodiment of Invention II according to the first embodiment of Invention II, an apparatus and method for producing levulinic acid from biomass is proposed.
  • the raw material may be any biomass as long as it can produce levulinic acid.
  • saccharide biomass capable of producing a significant amount of levulinic acid.
  • carbohydrate biomass include monosaccharides (glucose, fructose, etc.), disaccharides (sucrose, maltose, cellobiose, etc.), oligosaccharides and glycosides condensed with 10 or less monosaccharides, starch, alginic acid, etc.
  • Examples include carbohydrates, biomass containing one or more of these, and processed products thereof.
  • Biomass is, for example, all plant biomass such as trees, grasses, cereals, fruits, seaweeds, etc., and includes roots, stems, bulbs, leaves, and the like.
  • processed product of biomass means that a part or all of biomass is subjected to physical treatment such as heating, pressurization, explosion, dissolution, extraction, grinding and mechanical separation; biological treatment such as fermentation and enzyme treatment. Examples of treatments: those subjected to one or more chemical treatments such as hydrolysis, thermal decomposition, solvent decomposition, hydrothermal treatment, cooking, alkali treatment, acid treatment, and catalyst treatment.
  • bagasse which is a pomace of sugarcane
  • cooked foods such as edible grains and wastes and their processed products
  • wood Sawmill wastes acid digests such as alkaline cooking and concentrated sulfuric acid.
  • the acid catalyst acid catalyst examples include inorganic and organic liquid acids such as hydrochloric acid, sulfuric acid, nitric acid, and acetic acid; and zeolites such as ZSM-5, faujasite, and beta; and amorphous composite oxides such as silica alumina.
  • hydrochloric acid, sulfuric acid, and ZSM-5 zeolite are preferably used.
  • the reactor can use either batch or continuous operation, and a reactor having sufficient resistance even in a heated and pressurized state of about 400 ° C is used.
  • the pressure in the reaction vessel is about 0.49 to 11.5 MPa, and therefore it is preferable that it can withstand such a reaction environment.
  • the “hydrothermal reaction” is a reaction in high-temperature water held in a liquid under pressure. For example, at 2 MPa, 200 ° C. water can be kept in a liquid, and in such water, 100 ° C. It is said that a higher ion product can be obtained than the following water and water under supercritical conditions.
  • Manufacturing equipment Water and acid catalyst are introduced from the feeder into the closed hydrothermal reactor, and saccharide biomass is also introduced from the feeder.
  • Carbohydrate biomass is reacted in water containing an acid catalyst.
  • the reaction is carried out under heating, preferably at a temperature of 150 ° C. or higher and 320 ° C. or lower according to the time corresponding to the temperature.
  • a temperature of 150 ° C. or higher and 320 ° C. or lower By making it react at the temperature of 320 degrees C or less, it becomes possible to suppress effectively that the inside of a reactor approaches the critical temperature vicinity of water, and it becomes possible to prevent material corrosion of a reactor effectively.
  • by reacting at a temperature of about 320 ° C. or less it is possible to effectively suppress the reaction pressure from becoming high, and reduce the cost of the entire apparatus without using a large amount of expensive corrosion-resistant material. It is preferable because it can reduce the ion product of water effectively and can improve the reactivity.
  • the reactivity can be improved, the yield of levulinic acid as a product can be improved, and the reaction time can be shortened.
  • the reaction can be carried out at a temperature of 150 ° C. or higher and 240 ° C. or lower which is a low temperature region.
  • the reaction time is slightly longer, but it becomes possible to suppress the by-product of the carbonaceous material to a very small amount and to improve the yield of levulinic acid.
  • it can react at the temperature of 240 degreeC or more and 320 degrees C or less which is a high temperature range.
  • a side reaction may produce a little carbonaceous material.
  • the reaction rate is high and the reaction can be carried out in a short time. It becomes possible to manufacture in a yield. Therefore, in the present invention, it is possible to suitably perform both the reaction in the low temperature region and the high temperature region.
  • the reaction is preferably performed by stirring the mixed solution in the reactor.
  • it can be carried out by either batch operation or continuous operation.
  • the batch operation can be performed, for example, by introducing the raw sugar biomass into the hydrothermal reactor at a time and reacting for a predetermined time.
  • the reaction time can be appropriately determined according to the reaction temperature.
  • the continuous operation for example, the raw material sugar biomass is continuously supplied to the hydrothermal reactor that holds the water maintained at the reaction temperature and the acid catalyst, and the reaction solution is allowed to react continuously or intermittently. Also good.
  • the energy required is only the energy to replenish the supplemented water, the acid catalyst, and the raw material biomass up to the reaction temperature.
  • regenerate suitably the water and acid catalyst of a hydrothermal reactor as needed.
  • Second aspect of Invention II According to the second aspect of Invention II, a production apparatus and method for separating levulinic acid from a composition comprising (significant amount) levulinic acid is proposed.
  • the raw material is a composition (preferably a liquid composition) comprising levulinic acid.
  • the product solution comprising a significant amount of levulinic acid obtained in the first embodiment of the present invention II can be preferably used.
  • the adsorbent adsorbent may be any as long as it can adsorb levulinic acid from the above composition, and examples thereof include zeolite such as ZSM-5, faujasite, beta, and activated carbon. Zeolite such as ZSM-5 is preferable.
  • the adsorber adsorber can be used for either batch or continuous operation, and an adsorber having sufficient resistance even in a heated and pressurized state of about 300 ° C. is used.
  • Manufacturing equipment (manufacturing method) Separation in the present invention is performed by reacting a composition comprising levulinic acid with an adsorbent.
  • This adsorption operation can be performed at any temperature from room temperature to the hydrothermal reaction temperature (first aspect of the present invention II), preferably 30 ° C. or higher and 320 ° C. or lower, more preferably the lower limit is 80 ° C. or higher.
  • the upper limit can be set to 240 ° C. or lower.
  • This step is important for separating levulinic acid at low cost from a composition comprising levulinic acid.
  • Levulinic acid is obtained, for example, in the form of an aqueous solution as in the first embodiment of the present invention II.
  • water having a boiling point lower than that of levulinic acid is used.
  • adsorptive separation is performed under conditions where water is not substantially evaporated.
  • Desorption of levulinic acid from the adsorbent can be performed in various ways. For example, a method of desorbing the adsorbent at a high temperature (for example, 240 ° C. or higher), a method of desorbing at a reduced pressure, a method of desorbing through water, steam, carrier gas, solvent or vapor thereof.
  • the first aspect (generation) of the present invention II can be carried out by either a batch operation or a continuous operation.
  • the batch operation for example, after the raw material biomass is introduced into the hydrothermal reactor at a time and reacted for a predetermined time, the second aspect (separation) of the present invention II is repeated.
  • the reactor of the first aspect of the present invention II is also used as the adsorber of the second aspect of the present invention II.
  • the raw material biomass is continuously supplied to a hydrothermal reactor having water and an acid catalyst maintained at the reaction temperature, and the reaction liquid is continuously or intermittently used. Send to the second operation for separation. A semi-batch operation combining both of these may be used.
  • the hydrothermal reaction raw material can be supplied to the previous residual liquid and the reaction can be repeated again.
  • the acid catalyst used in the hydrothermal reaction is not adsorbed by the adsorption operation, and most of it returns with the remaining liquid, so that it is possible to reduce the acid catalyst added when repeating the hydrothermal reaction. Further, since the high-temperature liquid is returned to the hydrothermal reactor, the heating energy input to the hydrothermal reactor is extremely small.
  • separation can be reduced significantly.
  • the purpose of the regeneration is to separate and remove the substance produced in the first aspect (production) of the present invention II and remaining without being adsorbed by the adsorbent in the first aspect (separation) of the present invention II.
  • By exchanging heat between the extracted liquid and the regenerated liquid it is preferable because energy loss can be extremely small.
  • the adsorption of levulinic acid by the adsorbent in the second embodiment (separation) of the present invention II is the product of the hydrothermal reactor of the first embodiment (production) of the present invention II.
  • a method of separating the adsorbent adsorbed with levulinic acid from the product liquid, or after completion of the hydrothermal reaction in the first aspect (production) of the present invention II or during the reaction Any of the methods may be used in which the product liquid containing is sent to an adsorption tank filled with an adsorbent and the residual liquid after adsorption is returned to the reactor.
  • the former method is suitable when the first embodiment (production) of the present invention II is carried out by batch operation, and the latter method is suitable for the first embodiment (production) of the present invention II by batch operation or continuous operation. Suitable for performing.
  • a production apparatus for producing and separating levulinic acid from biomass can be proposed,
  • the biomass, the acid catalyst, and water are reacted under heating, and after the reaction, a composition comprising levulinic acid and an adsorber that contacts the adsorbent under heating are provided. It will be.
  • This aspect is suitable for a batch operation method.
  • a method for producing and separating levulinic acid from biomass can be proposed, Prepare biomass, acid catalyst, water and adsorbent, Supplying the biomass, the acid catalyst, the water, and the adsorbent; Reacting the biomass, the acid catalyst, and the water in the presence of the adsorbent; Contacting the adsorbent with a composition comprising the produced levulinic acid, Adsorbing and separating the levulinic acid from the composition.
  • a production apparatus for producing and separating levulinic acid from biomass can be proposed, A first feeder for supplying biomass, an acid catalyst, and water to the reactor; A reactor for reacting the biomass, the acid catalyst, and water; A second feeder for feeding a composition comprising levulinic acid produced in the reactor to the adsorber along with an adsorbent; It comprises an adsorber formed by bringing the composition into contact with the adsorbent (suitable for batch operation method / continuous operation method).
  • a method for producing and separating levulinic acid from biomass can be proposed, Prepare biomass, acid catalyst, water and adsorbent, Reacting the biomass, the acid catalyst, and water; Contacting the adsorbent with a composition comprising the produced levulinic acid, Adsorbing and separating the levulinic acid from the composition.
  • aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, and trimethylbenzene
  • lower olefin hydrocarbons such as propylene, butene, isobutene, and ethylene
  • propane, butane, isobutane, and ethane It is possible to obtain lower paraffin hydrocarbons such as oxygen-containing hydrocarbons such as ethyl methyl ketone, acetone, vinyl methyl ketone, and acetic acid as products.
  • the raw material is levulinic acid, whether it is itself (including levulinic acid desorbed from the adsorbent), levulinic acid adsorbed on the adsorbent, or previously contacted with a zeolite catalyst Good.
  • the one obtained by the second aspect of the present invention II or the one obtained by the apparatus or method combining the first aspect of the present invention II and the second aspect of the present invention II is preferably used. Can do.
  • Zeolite catalyst As the zeolite catalyst, zeolites such as crystalline aluminosilicate, silicate, metallosilicate are used. Examples of the crystalline aluminosilicate include ZSM-5, ZSM-11, beta, mordenite, X-type and Y-type faujasite, MCM-22, and MCM-68. Examples of the crystalline silicate include silicalite. Examples of the crystalline metallosilicate include metallosilicates in which metal elements other than Si are Fe, Ga, B, Ti and the like. Preferred zeolite catalysts include zeolites having 10-membered oxygen pores such as ZSM-5, ZSM-11, silicalite, and metallosilicate.
  • the zeolite catalyst may contain, as a cation, one or more of protons, ammonium ions, alkaline earths such as Ca, Ba, and Mg, and rare earth metal cations such as La and Ce.
  • Zeolite catalysts carry transition metals such as Ni, Fe, W, Pt, Rh, Re, Pd, etc., and metals having hydrogenation activity such as Mo in elements or compounds (for example, in the form of oxides). Those are more preferably used. Examples of such preferred examples include ZSM-5, ZSM-11, silicalite, and metallosilicate supporting the above metals, and in particular, ZSM-5, ZSM-11, silica supporting Ni or Pt. Light and metallosilicate are preferably exemplified.
  • the reactor reactor can be one that is suitable for solid catalytic reactions, such as a fixed bed, fluidized bed, moving bed, etc., and uses a reactor that has sufficient resistance even when heated and pressurized at about 600 ° C. .
  • the reactor may be a multistage reactor in which a first stage for supplying a raw material and a second stage in which a zeolite catalyst is present are arranged in series.
  • the reactor is equipped with a warming device, and the reaction is carried out under warming. Specifically, heating is performed at a temperature of 300 ° C. or higher and 550 ° C. or lower. Further, it is preferable to use a reactor provided with a part for supplying a carrier gas and a part for supplying other components.
  • the reactor can be set in multiple stages as necessary, and set to different temperatures within the above temperature range for each stage, and introduce different carrier gases for each stage. These combined reactions can be realized. And it becomes possible to select advantageously the chemical raw material produced
  • the production apparatus (production method) supplies, as a raw material, levulinic acid desorbed from an adsorbent, an adsorbent adsorbed with levulinic acid, or a zeolite catalyst adsorbed with levulinic acid to a (catalyst) reactor.
  • the zeolite catalyst (used in this reaction) is reacted at a temperature of 300 ° C. or higher and 550 ° C. or lower, preferably a lower limit of 350 ° C. or higher and an upper limit of 500 ° C. or lower.
  • the product is a hydrocarbon
  • the water-insoluble hydrocarbon the water and the product by-produced by entrainment or reaction are separated into two phases that hardly mix, Separation with high energy consumption such as distillation is basically unnecessary, and as a result, it can be said to be an economical and highly efficient production method.
  • an apparatus or combined method that combines the second embodiment of Invention II and the third embodiment of Invention II.
  • the adsorbent adsorbed with levulinic acid is introduced into the third embodiment (desorption / conversion) of the present invention II, and desorption is performed in the reactor.
  • a method for carrying out the reactions simultaneously is proposed.
  • the zeolite catalyst used in the third aspect of the present invention II is also used as the adsorbent used in the second aspect of the present invention II, so that the zeolite catalyst adsorbed with levulinic acid is converted into the second aspect of the present invention II.
  • desorption and reaction can be carried out simultaneously.
  • the production process is omitted, and beneficial hydrocarbons can be obtained by adsorption separation of levulinic acid and desorption / conversion of levulinic acid, which is effective.
  • an adsorbent adsorbing levulinic acid or a zeolite catalyst adsorbing levulinic acid is used as a reactor.
  • the adsorbent is introduced into the first stage with two reactors in series, and the adsorbent is recovered after the reaction.
  • the adsorbent or the zeolite catalyst used for the adsorption is replaced with another zeolite catalyst.
  • An apparatus (method) that can be easily separated from (used in this reaction) and can be recovered after the reaction can be employed. In that case, for example, it is preferable to separate the adsorbent from another zeolite catalyst (used in this reaction) with a different particle size.
  • a production apparatus for obtaining hydrocarbons from a composition comprising levulinic acid can be proposed.
  • the reactor comprises a reactor for reacting the composition with the adsorbent and reacting the levulinic acid adsorbed on the adsorbent with the zeolite catalyst under heating.
  • a production method for obtaining hydrocarbons from a composition comprising levulinic acid can be proposed.
  • the method comprises reacting levulinic acid adsorbed on the adsorbent (zeolite catalyst) under heating.
  • acetone, acetic acid, and hydroxyethyl methyl ketone were obtained.
  • the conversion from levulinic acid was 80% or more, and the selectivities of acetone, acetic acid and hydroxyethyl methyl ketone were each about 15 to 20%.
  • hydroxyethyl methyl ketone was converted to vinyl methyl ketone, but when reacted with Ni / ZSM-5 in a hydrogen atmosphere, in addition to ethyl methyl ketone, benzene, toluene, xylene, Converted to propylene.
  • Acetic acid and acetone were converted to benzene, toluene, xylene, propylene, and the like. It can be said that the conversion from acetic acid and the like to aromatics was a surprising technical achievement.
  • the fourth aspect of the present invention II proposes a combination of all the manufacturing apparatuses (manufacturing methods) in the first to third aspects of the present invention II.
  • An apparatus and method for producing the above beneficial hydrocarbons is proposed. Therefore, the fourth aspect of the present invention II is an apparatus for producing hydrocarbons from biomass, Biomass, an acid catalyst, water, an adsorbent, and a feeder for supplying a zeolite catalyst to the reactor as required;
  • the biomass, the acid catalyst and water are reacted, the composition comprising levulinic acid is brought into contact with the adsorbent, and the levulinic acid adsorbed on the adsorbent, and if necessary, the zeolite catalyst Is provided with a reactor that reacts with.
  • an apparatus for producing hydrocarbons from biomass A first feeder for supplying biomass as raw materials, an acid catalyst, and water to the reactor; A reactor for reacting the biomass with an acid catalyst under heating; A second feeder for feeding a composition comprising levulinic acid produced in the reactor to the adsorber with an adsorbent and optionally a zeolite catalyst; The composition, the adsorbent, and an adsorber for obtaining hydrocarbons by reacting the zeolite catalyst as necessary.
  • another preferable aspect of the present invention II is a method for producing hydrocarbons from biomass, Prepare the biomass as raw materials, acid catalyst, water, adsorbent, and zeolite catalyst if necessary, Reacting the biomass with an acid catalyst and water to obtain a composition comprising levulinic acid; Contacting the composition with the adsorbent, adsorbing levulinic acid to the adsorbent; The adsorbent adsorbed with levulinic acid is reacted with the zeolite catalyst, if necessary, under heating to obtain hydrocarbons.
  • Aspect 1 of the present invention 1) After storing raw sludge collected from a methane fermentation tank of acid fermented garbage of sugar solution at about 5 ° C in a refrigerator, separating the amount used for the experiment and leaving it at room temperature for 24 hours The acid-fermenting bacteria sludge was used in the experiment. A 200 mL aqueous solution containing a predetermined amount of acid-fermenting bacteria sludge and a raw sugar at a predetermined concentration was placed in a 300 mL Erlenmeyer flask, and a rubber stopper with a gas outflow tube and a liquid sampling tube was attached. A Tedlar bag was attached to the outlet of the gas sampling tube, and a rubber cap was attached to the outlet of the liquid sampling tube.
  • This conical flask was placed in a shaking water tank whose water temperature was controlled at 35 ° C. or 55 ° C., and the experiment was started. After elapse of a predetermined number of days, the Erlenmeyer flask was taken out from the water tank, the fermentation broth was filtered and separated from sludge, and the components in the fermentation broth were analyzed. Analysis was performed using a high-performance liquid chromatograph (Shimadzu LC-06) equipped with Shimpack SCR-102H as the separation column and differential refractive index detector RID-6A as the detector, and 5 mmol / L perchloric acid water as the moving bed. And the column temperature was 50 ° C.
  • Examples F-1 to 2 The results when using 20-40 g / L of acid-fermenting bacterial sludge using 2% glucose and sucrose aqueous solutions as raw materials are shown below.
  • the product yield is expressed in terms of C yield (carbon number of product / carbon number of raw material ⁇ 100). After 9-14 days, the sugar was converted to organic acid in high yield and the total organic acid yield was about 63%. Acetic acid, lactic acid and butyric acid were mainly produced as organic acids. The results were as described in Table I-1 below.
  • Examples F3-6 The results when using glucose and fructose aqueous solutions with a concentration of 1 to 3.33% as raw materials and using 20 to 200 g / L of acid-fermenting bacteria sludge are shown below. The total organic acid yield after 6-14 days was about 12 to about 61%. As produced organic acids, butyric acid was mainly produced in Example F-3, butyric acid and acetic acid were produced in F-4, lactic acid and butyric acid were produced in F-5, and acetic acid was produced in F-6. The results were as described in Table I-2 below.
  • Example F7 A fermentation experiment was conducted using a glucose aqueous solution with a concentration of 1% as a raw material and 50 g / L of acid-fermenting bacterial sludge.
  • F-7a had a total organic acid yield of about 60% after 14 days in the first fermentation, and the main products were butyric acid and acetic acid.
  • an aqueous glucose solution was again added thereto, and the second fermentation was performed.
  • F-7b is the second result. After 12 days, the total organic acid yield was about 51%, and butyric acid and acetic acid were obtained as the main products as in the first time. This shows that it is possible to perform repeated fermentation.
  • the results were as described in Table I-3 below.
  • Examples F8-9 A fermentation experiment was conducted using a glucose aqueous solution having a concentration of 10% as a raw material and 75-100 g / L of acid-fermenting bacteria sludge. After 12 days, the total organic acid yield was about 20% and the main products were lactic acid and butyric acid. From this, it can be seen that even an extremely high concentration sugar solution can be converted into an organic acid as compared with ordinary fermentation. The results were as described in Table I-4 below.
  • a predetermined amount of zeolite catalyst was packed in a SUS-316 reaction tube with an inner diameter of 6 mm and a length of 600 mm, and the tube was placed in an electric furnace equipped with a temperature controller.
  • a raw material liquid was introduced into the upper inlet of the reaction tube using a plunger pump, and a carrier gas was introduced from a cylinder.
  • a condenser cooled with ice water was connected to the outlet at the bottom of the reaction tube, and the product liquid was recovered.
  • a Tedlar bag was attached to the outlet of the condenser to collect the generated gas.
  • the composition of the product solution was analyzed using a gas chromatograph with an FID detector (6890 manufactured by Agilent) equipped with a capillary column and a gas chromatograph mass spectrometer (JEOL JMS9000GC) equipped with the same kind of capillary column.
  • the composition of the product gas was analyzed using a gas chromatograph equipped with Cimalite / SM-6, Molecular Sieve 13X, and Porapak-Q as packed columns.
  • Example ZA-1 Using the organic acid mixture produced in Example F-2 as a raw material liquid and using ZSM-5 pellets (containing 20% alumina as a binder) having a Si / Al ratio of 27 as a catalyst, the conversion reaction was carried out for 1 hour. went. Reaction conditions and product yields are shown in Table I-5. As a result, an aromatic compound mainly composed of benzene, toluene and xylene and a hydrocarbon gas mainly composed of ethylene, propylene and butene are obtained from a mixture of acetic acid, lactic acid and butyric acid obtained by acid fermentation of the sugar solution. A high yield could be obtained.
  • aromatics mainly consisted of benzene, toluene and xylene, which are important as chemical raw materials, and the production of heavy aromatics could be suppressed.
  • Trimethylbenzene is characterized by a high yield of 1,2,4-trimethylbenzene, which is an important starting material for polyimide
  • methylnaphthalene is characterized by a high yield of 2-methylnaphthalene, which is used for many purposes.
  • the high selectivity of these useful products is considered to be due to the fact that the shape selectivity of the ZSM-5 used was exhibited in this reaction. The results were as described in Table I-5 below.
  • Examples ZA-2 to 4 A conversion reaction was carried out for 1 hour using a 50% aqueous solution of lactic acid as a raw material solution, commercially available butyric acid and acetic acid, and ZSM-5 as a catalyst. Reaction conditions and product yields are shown in Table I-6. As a result, similar to Example ZA-1, an aromatic compound mainly composed of benzene, toluene and xylene and a hydrocarbon gas mainly composed of ethylene, propylene and butene could be obtained in high yield. The results were as described in Table I-6 below.
  • Examples ZA-5 to 11 The conversion reaction was carried out for 1 hour using commercially available acetic acid as a raw material liquid, various zeolites as catalysts and ZSM-5 having a different Si / Al ratio. Y is a Y-type fauger site. A non-catalytic reaction was also carried out. The results were as described in Table I-7 below.
  • Examples ZA-12 to 14 The reactions of Examples ZA-5 to 7 are continued, and the reaction results after about 7 hours are shown as Examples ZA-12 to 14. As can be seen from Table I-8, when ZSM-5 having a Si / Al ratio of 80 or more is used, the reactivity is maintained even after a long period of time, and a high activity and aromatic yield are obtained in a long-time reaction. I understood it. The results were as described in Table I-8 below.
  • Embodiment II of Invention II First Embodiment of Invention II A hydrothermal reaction tube made of SUS316 having an inner diameter of 7.5 mm, a length of 20 mm, and an internal volume of 8.8 mL was prepared. The reaction tube was charged with 7 mL of an aqueous raw material solution and an acid catalyst, and a reaction tube cap was attached and sealed. The reaction was performed by immersing the reactor in a sand bath heated to a predetermined temperature. Since the temperature of the raw material liquid in the reaction tube reached the temperature of the sand bath 50 seconds after the reaction tube was immersed, this time was taken as the reaction start time.
  • the reaction tube was taken out of the sand bath and quenched, and the product was filtered to separate the product liquid and the carbonaceous material.
  • the components in the product liquid were analyzed by a high performance liquid chromatograph.
  • the amount of organic carbon in the product liquid and the raw material liquid was measured using an organic carbon analyzer, and the difference was defined as the amount of by-product carbonaceous material.
  • Product yields are expressed on a carbon basis.
  • Example H-1 to Comparative Example H-4-R (Effect of acid catalyst and influence of reaction temperature) The reaction was carried out at various temperatures using hydrochloric acid as the acid catalyst. In order to investigate the effect of the acid catalyst, an experiment was also conducted in the case where no acid catalyst was added. The results were as described in Table II-1 below. When an acid catalyst is used, a high conversion rate and a high levulinic acid yield can be obtained in a short time of several minutes to 10 minutes at a high temperature of 250 ° C. or 300 ° C. and a reaction time of 30 min or more at a low temperature of 180 ° C. It was.
  • levulinic acid and formic acid are obtained in a C yield of 5: 1.
  • the levulinic acid in the product is less than 5 times that of formic acid, and most of it is retained in the zeolite catalyst. it is conceivable that. Therefore, the levulinic acid actually produced is estimated to be larger than the values in the table.
  • the adsorbing tube was immersed in a sand bath heated to a predetermined temperature and adsorbed for a predetermined time, and then the adsorbing tube was taken out to recover the liquid.
  • the concentration of levulinic acid in this solution was measured with a high performance liquid chromatograph and an organic carbon analyzer, and the adsorption rate of levulinic acid was determined.
  • the results were as described in Table II-5 below. Examples A-1 to A-3 show the results at various adsorption temperatures. In Example A-1, adsorption was performed at room temperature, and levulinic acid could be adsorbed and separated at a high adsorption rate.
  • Examples A-2 and A-3 when adsorption was performed in a heated state, adsorption could be performed in a shorter adsorption time than at normal temperature. In the case of 180 ° C, the pressure in the adsorber was about 1 MPa.
  • Example A-4 Using the same adsorber as in Example A-1, two sand baths were prepared, and the first step was performed at 180 ° C., and the second step was performed at 30 ° C.
  • Example A-5 The hydrothermal reaction tube in the first aspect of the present invention II, the adsorption tube filled with the adsorbent, and the hydrothermal reaction product liquid from the hydrothermal reaction tube to the adsorption tube, and if necessary, from the adsorption tube to hydrothermal
  • the adsorption operation was performed following the hydrothermal reaction in the first aspect of the present invention II using an apparatus comprising a pipe that can be sent to the reaction tube.
  • the product solution is sent from the reaction tube to the adsorption tube, and is adsorbed by contacting the adsorbent with the adsorption tube for a predetermined time.
  • the reaction in the first aspect of the present invention II was carried out under the same conditions as in Example H-7, that is, 7 mL of reaction solution, 1.8 wt% glucose concentration, 0.5 mol / L hydrochloric acid concentration of acid catalyst, reaction temperature 300 ° C., reaction time It took 3 minutes.
  • the adsorption tube was filled with 2 g of the same ZSM-5 pellets as in Example A-4 as an adsorbent. The adsorption rate was calculated by measuring the amount of levulinic acid in the product solution after adsorbed on the adsorbent and comparing it with the amount of levulinic acid in the product solution of Example H-7.
  • the adsorption rate of levulinic acid was 51% when adsorption was performed at an adsorption temperature of 180 ° C. and an adsorption time of 5 minutes.
  • the first step is adsorption temperature 180 ° C, adsorption time 31 minutes
  • the second step is adsorption temperature 90 ° C, adsorption time 30 minutes
  • the adsorption rate of levulinic acid is 87% Met. In this way, levulinic acid was adsorbed and separated at a high temperature without distilling the reaction solution, and the reaction solution could be used again for the hydrothermal reaction.
  • a fixed bed reactor comprising a reaction tube made of SUS-306 having an inner diameter of 6 mm, an outer diameter of 10 mm, and a length of 600 mm installed in an electric furnace was used, and this was filled with a catalyst.
  • a preheating tube is connected upstream of the fixed bed reactor.
  • the adsorbent that adsorbs the raw material liquid or the raw material liquid and hydrogen or nitrogen as the carrier gas are fed into this, and the raw material liquid is heated to about 300 ° C. Vaporized.
  • a product recovery unit was connected downstream of the reactor, cooled to 0 ° C. with ice water, and the liquid component in the product was condensed and recovered.
  • a gas bag was attached downstream of the product collector to collect the generated gas.
  • the liquid product was analyzed with a gas chromatograph with FID detector (using capillary column DB-1) and a gas chromatograph mass spectrometer (using capillary columns DB-1 and DB-FFAP).
  • the product gas was analyzed with a gas chromatograph equipped with a TCD detector (using Polapack Q and molecular sieve 13X in the packed column).
  • Example C-1 The product obtained from the hydrothermal reaction of Example H-12 (glucose concentration 36%, hydrochloric acid 0.1 mol / L, reaction temperature 300 ° C., reaction time 3 minutes) was adsorbed on ZSM-5 at 90 ° C. Desorption was carried out at 0 ° C. to obtain an aqueous solution containing 50% levulinic acid. This was supplied to the preheating tube of the fixed bed reactor of the previous period packed with ZSM-5 pellets. Nitrogen was used as a carrier gas and reacted at 450 ° C. As shown in Table II-7, as a result of this reaction, oxygen-containing hydrocarbons such as hydroxyethyl methyl ketone, acetone, and acetic acid were obtained in high yield as the hydrocarbon products.
  • Example C-1 The product obtained from the hydrothermal reaction of Example H-12 (glucose concentration 36%, hydrochloric acid 0.1 mol / L, reaction temperature 300 ° C., reaction time 3 minutes) was adsorbed on Z
  • Example C-2 Examples C-2 to C-6 Using hydroxyethyl methyl ketone, acetone, and acetic acid obtained in Example C-1, the previous catalyst reaction apparatus was used, and the reaction was further performed with the zeolite catalysts and reaction conditions shown in Table II-7. The results were as described in Table II-7 below.
  • oxygen-containing hydrocarbons such as ethyl methyl ketone, ethyl vinyl ketone, acetone, and acetic acid are obtained in high yield from hydroxyethyl methyl ketone under low hydrogen pressure, and benzene, toluene, Monocyclic aromatic hydrocarbons such as xylene and bicyclic aromatic hydrocarbons such as methylnaphthalene and dimethylnaphthalene were obtained in high yield.
  • monocyclic aromatic hydrocarbons such as benzene, toluene and xylene, bicyclic aromatic hydrocarbons such as methylnaphthalene and dimethylnaphthalene, lower olefin hydrocarbons such as ethylene, propylene and butene, propane, etc.
  • lower paraffin hydrocarbon was obtained in high yield. When this reaction was continued for a longer time, the lower olefin hydrocarbon / lower paraffin hydrocarbon ratio increased.
  • hydrocarbon compounds obtained by these reactions are basic chemical substances used in the chemical industry. That is, monocyclic aromatic hydrocarbons such as benzene, toluene and xylene and lower olefin hydrocarbons such as ethylene, propylene and butene are the most important compounds as starting materials necessary for the petrochemical industry. Bicyclic aromatic compounds such as methylnaphthalene and dimethylnaphthalene are extremely important compounds as dyes, pharmaceuticals, and functional polymer raw materials.
  • oxygen-containing hydrocarbons such as acetone, ethyl methyl ketone, and acetic acid are important intermediate compounds in the chemical industry
  • vinyl methyl ketone is an important compound as an insecticide, a polymerization agent, and a steroid synthesis intermediate.

Abstract

The present invention proposes an apparatus and process for producing aromatic hydrocarbons or ketone compounds, and an apparatus and process for producing key chemicals from biomass at a low cost and in a high yield. The present invention is attained by a production apparatus which is provided with a reactor for reacting an organic acid with a zeolite catalyst. Alternatively, the present invention is attained by an apparatus for producing levulinic acid from biomass which is provided with both a feeding device for feeding a biomass, an acid catalyst, and water into a reactor, and a reactor for reacting the biomass with the acid catalyst and the water while heating.

Description

芳香族炭化水素又はケトン化合物を製造する装置/レブリン酸の製造装置、レブリン酸の分離装置及びレブリン酸から炭化水素を製造する装置Apparatus for producing aromatic hydrocarbons or ketone compounds / levulinic acid production apparatus, levulinic acid separation apparatus, and apparatus for producing hydrocarbons from levulinic acid 関連出願Related applications
 本願は、日本国特許出願2009-048421号及び日本国特許出願2009-048439号を基礎としたパリ条約の優先権主張を伴った出願である。よって、本願は、これら日本国特許出願に開示された内容の全てを包含するものである。 This application is an application accompanied by priority claim of the Paris Convention based on Japanese Patent Application No. 2009-048421 and Japanese Patent Application No. 2009-048439. Therefore, this application includes all the contents disclosed in these Japanese patent applications.
 本発明Iの態様は、芳香族炭化水素又はケトン化合物を製造する装置(方法)に関する。本発明IIの態様は、バイオマスからレブリン酸を製造する装置(方法)、レブリン酸の吸着分離装置(方法)、及びレブリン酸から炭化水素を製造する装置(方法)に関する。 The aspect of the present invention I relates to an apparatus (method) for producing an aromatic hydrocarbon or a ketone compound. The aspect of the present invention II relates to an apparatus (method) for producing levulinic acid from biomass, an adsorption / separation apparatus (method) for levulinic acid, and an apparatus (method) for producing hydrocarbons from levulinic acid.
 本発明Iの態様
 現代社会は、エネルギー資源や化学物質資源として石油に大きく依存してきた。しかし、COによる地球温暖化問題及び原油価格の高騰を背景に、再生可能資源の利用によって石油への依存度を低減し、持続可能な社会を構築する必要が高まっている。種々の再生可能資源の中でもバイオマスは、自然界の炭素サイクルを利用する為、大気中のCO濃度を増大させることがなく(カーボンニュートラルという)、また物質資源としても利用可能であるため、その有効な活用が望まれている。
Aspects of Invention I Modern society has relied heavily on petroleum as an energy resource or chemical resource. However, against the background of the global warming problem caused by CO 2 and soaring crude oil prices, there is a growing need to reduce the dependence on oil by using renewable resources and to build a sustainable society. Among various renewable resources, biomass uses the natural carbon cycle, so it does not increase the CO 2 concentration in the atmosphere (called carbon neutral), and it can be used as a material resource. Utilization is desired.
 石油に代わる資源としてバイオマスを利用するためには、人類社会で必要な基幹化学物質をバイオマスから低コストで高収率に製造する必要がある。また、バイオマスから化学物質への転化過程において、多量の石油エネルギーを消費しては石油の代替とならず、またCOの削減を達成することはできない。従って、過度のエネルギー消費を抑制した、バイオマスの利用を実現することが必要である。 In order to use biomass as a resource to replace petroleum, it is necessary to produce a basic chemical substance necessary for human society from biomass at a low cost and in a high yield. Also, in the process of conversion from biomass to chemicals, consuming a large amount of petroleum energy does not replace petroleum, and CO 2 reduction cannot be achieved. Therefore, it is necessary to realize utilization of biomass while suppressing excessive energy consumption.
 バイオマスの転化技術として、これまで例えば、亜臨界水による分解などの熱化学的変換法(特許公開2008-249207)、メタン発酵やエタノール発酵(特許公開2008-182925)などの生物的変換法が知られている。 Biomass conversion techniques such as thermochemical conversion methods such as decomposition with subcritical water (Patent Publication 2008-249207) and methane fermentation and ethanol fermentation (Patent Publication 2008-182925) have been known as biomass conversion techniques. It has been.
 熱化学的変換法では、ガス化の場合、一般に700℃以上の高温で水素や一酸化炭素を含むガスに転化する。このガス化生成物はさらにCOとの分離や精製を経て、メタノール合成原料とし、さらにジメチルエーテルを経て芳香族やオレフィンなどの化学原料となる。このようなガス化法では、化学原料に変換するためには複雑かつ多段階な工程が必要となり経済的ではない。また、超臨界水分解ではヒドロキシメチルフルフラール、フルフラール、ジヒドロキシアセトン、グリセルアルデヒドなどの含酸素炭化水素化合物に転化できるが、その用途は限られ、必ずしも基幹化学物質が製造されるわけではない。 In the thermochemical conversion method, in the case of gasification, it is generally converted to a gas containing hydrogen or carbon monoxide at a high temperature of 700 ° C. or higher. This gasification product is further separated from CO 2 and purified to be used as a methanol synthesis raw material, and further through dimethyl ether as a chemical raw material for aromatics and olefins. In such a gasification method, a complicated and multi-step process is required to convert it into a chemical raw material, which is not economical. Supercritical water decomposition can be converted into oxygen-containing hydrocarbon compounds such as hydroxymethylfurfural, furfural, dihydroxyacetone and glyceraldehyde, but its use is limited, and basic chemical substances are not necessarily produced.
 生物的変換法では、メタン発酵ではメタンとCOが得られるが混合物であるため発熱量が低く、エタノール発酵ではCOとともに得られるエタノールがガソリン代替燃料として期待されているが、エタノールと水の分離に必要なエネルギー消費と生産コストに対して高付加価値生成物とは言いがたく、高付加価値の化学原料とするにはさらに多くの工程が必要となるこのように、バイオマスから付加価値の高い化学物質を短い工程で製造する方法がいまだ十分に確立されていないのが現状である。
 従って、今尚、バイオマスを用いて、付加価値の高い基幹化学物質である化学原料を直接製造する方法の開発が急務とされている。
In the biotransformation method, methane and CO 2 can be obtained in methane fermentation, but since it is a mixture, the calorific value is low. In ethanol fermentation, ethanol obtained together with CO 2 is expected as a gasoline alternative fuel. It is difficult to say that it is a high value-added product for the energy consumption and production cost required for separation, and more steps are required to make it a high-value-added chemical raw material. At present, a method for producing a high chemical substance in a short process has not been sufficiently established.
Therefore, there is still an urgent need to develop a method for directly producing chemical raw materials that are high-value-added basic chemical substances using biomass.
 本発明IIの態様
 現代社会は、エネルギー資源や化学物質資源として石油に大きく依存してきた。しかし、COによる地球温暖化問題及び原油価格の高騰を背景に、再生可能資源の利用によって石油への依存度を低減し、持続可能な社会を構築する必要が高まっている。種々の再生可能資源の中でもバイオマスは、自然界の炭素サイクルを利用する為、大気中のCO濃度を増大させることがなく(カーボンニュートラルという)、また物質資源としても利用可能であるため、その有効な活用が望まれている。
Aspects of Invention II Modern society has relied heavily on petroleum as an energy resource or chemical resource. However, against the background of the global warming problem caused by CO 2 and soaring crude oil prices, there is a growing need to reduce the dependence on oil by using renewable resources and to build a sustainable society. Among various renewable resources, biomass uses the natural carbon cycle, so it does not increase the CO 2 concentration in the atmosphere (called carbon neutral), and it can be used as a material resource. Utilization is desired.
 石油に代わる資源としてバイオマスを利用するためには、人類社会で必要な基幹化学物質をバイオマスから低コストで高収率に製造する必要がある。また、バイオマスから化学物質への転化過程において、多量の石油エネルギーを消費しては石油の代替とならず、またCOの削減を達成することはできない。従って、過度のエネルギー消費を抑制した、バイオマスの利用を実現することが必要である。 In order to use biomass as a resource to replace petroleum, it is necessary to produce a basic chemical substance necessary for human society from biomass at a low cost and in a high yield. Also, in the process of conversion from biomass to chemicals, consuming a large amount of petroleum energy does not replace petroleum, and CO 2 reduction cannot be achieved. Therefore, it is necessary to realize utilization of biomass while suppressing excessive energy consumption.
 バイオマスの転化技術として、これまで例えば超臨界水による分解(特許公開2008-249207)、並びに、エタノール発酵(特許公開2008-182925)などが知られている。しかしながら、超臨界水による分解では、5-ヒドロキシメチルフルフラール及び含酸素タールなどさまざまな分解物が生成するが、これらの生成物は必ずしも基幹化学物質とはいえず、その利用価値は少ない。また超臨界水で過度に反応させると多量のCOを生成し、COの削減を達成し得ない。また、エタノール発酵はガソリンの代替として期待されているが、コストに対する付加価値が低く、また、エタノールと水の分離に多大なエネルギーの投入が必要となる等の問題がある。
 従って、過度のエネルギー消費を抑制し、COの排出を極めて抑制した、バイオマスからの基幹化学物質の製造方法の実現が必要とされている。
As biomass conversion technologies, for example, decomposition with supercritical water (Patent Publication 2008-249207) and ethanol fermentation (Patent Publication 2008-182925) are known. However, decomposition with supercritical water produces various decomposition products such as 5-hydroxymethylfurfural and oxygenated tar, but these products are not necessarily basic chemical substances and have little utility value. Also when the excessive reaction in supercritical water to produce large quantities of CO 2, not achieve the reduction of CO 2. In addition, ethanol fermentation is expected as an alternative to gasoline, but there are problems such as low added value to cost and the need for enormous energy input to separate ethanol and water.
Accordingly, there is a need to realize a method for producing a basic chemical substance from biomass that suppresses excessive energy consumption and extremely suppresses CO 2 emission.
 糖の転化については酸で処理することによりレブリン酸が得られることが知られている。しかし、その場合に炭素質物質が副生しやすく、高収率かつ選択的にレブリン酸を生成させる方法については明確にされていない。
 また、レブリン酸の用途は農薬のアミノレブリン酸の原料となる他は知られていないのが現状であり、レブリン酸を転換して産業原料としての炭化水素を効率的に得ることができれば画期的な技術ということができる。
It is known that levulinic acid can be obtained by treating the sugar with an acid. However, in that case, a carbonaceous material is easily produced as a by-product, and a method for selectively producing levulinic acid in a high yield has not been clarified.
The use of levulinic acid is not known except as a raw material for aminolevulinic acid, an agrochemical, and if levulinic acid can be converted and industrial hydrocarbons can be obtained efficiently, it will be epoch-making. Technology.
 本発明Iの態様
 本発明者は、本発明時において、有機酸をゼオライト触媒で反応させることにより、低エネルギーの下、基幹化学物質の一つである芳香族炭化水素又はケトン化合物が得られるとの知見を得た。本発明はかかる知見に基づいてなされたものである。
Aspect of Invention I In the present invention, the present inventor obtained an aromatic hydrocarbon or ketone compound which is one of basic chemical substances under low energy by reacting an organic acid with a zeolite catalyst. I got the knowledge. The present invention has been made based on such findings.
 よって、本発明は、芳香族炭化水素又はケトン化合物を製造する装置であって、
 有機酸を、ゼオライト触媒(好ましくはZSM-5型ゼオライト触媒)と反応させる反応器を備えてなるものである。また、本発明は、芳香族炭化水素又はケトン化合物を製造する方法であって、有機酸を、ゼオライト触媒(好ましくはZSM-5型ゼオライト触媒)と反応させることを含んでなる、製造方法を提案するものである。
Therefore, the present invention is an apparatus for producing an aromatic hydrocarbon or ketone compound,
A reactor for reacting an organic acid with a zeolite catalyst (preferably a ZSM-5 type zeolite catalyst) is provided. The present invention also proposes a method for producing an aromatic hydrocarbon or ketone compound, which comprises reacting an organic acid with a zeolite catalyst (preferably a ZSM-5 type zeolite catalyst). To do.
 また、本発明の好ましい態様によれば、バイオマスから芳香族炭化水素又はケトン化合物を製造する装置であって、
 バイオマスと、酸発酵菌とを第1反応器に供給する第1供給器と、
 前記バイオマスを、前記酸発酵菌により発酵させて、有機酸を生成する第1反応器と、
 生成した有機酸と、ゼオライト触媒(好ましくはZSM-5型ゼオライト触媒)を第2反応器に供給する第2供給器と、
 前記有機酸を、ゼオライト触媒(好ましくはZSM-5型ゼオライト触媒)と加温下で反応させる第2反応器を備えてなるものである。
According to a preferred aspect of the present invention, an apparatus for producing an aromatic hydrocarbon or a ketone compound from biomass,
A first feeder for supplying biomass and acid-fermenting bacteria to the first reactor;
A first reactor for fermenting the biomass with the acid-fermenting bacteria to produce an organic acid;
A second feeder for feeding the produced organic acid and a zeolite catalyst (preferably a ZSM-5 type zeolite catalyst) to the second reactor;
It comprises a second reactor for reacting the organic acid with a zeolite catalyst (preferably a ZSM-5 type zeolite catalyst) under heating.
 また、本発明の別の態様は、バイオマスから芳香族炭化水素又はケトン化合物を製造する方法であって、
 バイオマスと、酸発酵菌とを用意し、
 前記バイオマスを、前記酸発酵菌により発酵させて、有機酸を生成し、
 生成した有機酸と、ゼオライト触媒(好ましくはZSM-5型ゼオライト触媒)とを加温下で反応させることを含んでなるものである。
Another aspect of the present invention is a method for producing an aromatic hydrocarbon or ketone compound from biomass,
Prepare biomass and acid-fermenting bacteria,
Fermenting the biomass with the acid-fermenting bacteria to produce an organic acid,
And reacting the produced organic acid with a zeolite catalyst (preferably a ZSM-5 type zeolite catalyst) under heating.
 本発明は、有機酸(好ましくはバイオマスから得たもの)を用いて、人類社会で必要な基幹化学物質であり、付加価値の高い化学原料を高収率に製造することができる。より好ましくは、本発明においては、原料であるバイオマスから生成物までの各工程を低エネルギ(又はエネルギを使用せず)で行うことができ、生産コストの著しい低減と、優れた生産容易性及び生産効率(収率向上)を達成することが可能となる。 The present invention is an essential chemical substance necessary for human society using an organic acid (preferably obtained from biomass), and can produce a high value-added chemical raw material in a high yield. More preferably, in the present invention, each process from biomass as a raw material to a product can be performed with low energy (or without using energy), and the production cost can be significantly reduced, It becomes possible to achieve production efficiency (yield improvement).
 本発明Iの好ましい態様によれば、本発明のIIの態様の方法(装置)によって得られる「レブリン酸」を原料として用いることができる。従って、本発明の好ましい態様においては、本発明IIの態様と、本発明Iの態様とを組み合わせた炭化水素の製造方法(製造装置)を提案することができる。 According to a preferred embodiment of the present invention I, “levulinic acid” obtained by the method (apparatus) of the embodiment II of the present invention can be used as a raw material. Therefore, in a preferred embodiment of the present invention, it is possible to propose a hydrocarbon production method (manufacturing apparatus) that combines the embodiment of the present invention II and the embodiment of the present invention I.
 本発明IIの態様
 本発明IIの第一の態様
 本発明者は、本発明時において、バイオマスに酸触媒を用いて反応(好ましくは水熱反応)を行うことにより、低エネルギーの下、基幹化学物質の一つであるレブリン酸が高収率かつ選択的に得られるとの知見を得た。本発明IIの第一の態様はかかる知見に基づいてなされたものである。
Embodiment of Invention II First Embodiment of Invention II In the present invention, the present inventor carried out a reaction (preferably a hydrothermal reaction) with biomass using an acid catalyst, and thus, the basic chemistry was performed under low energy. It was found that levulinic acid, which is one of the substances, can be selectively obtained in high yield. The first aspect of the present invention II has been made based on such findings.
 よって、本発明IIの第一の態様はバイオマスからレブリン酸を生成する製造装置を提案するものであり、該装置は、
 バイオマスと、酸触媒と、水とを反応器に供給する供給器と、
 前記バイオマスと、前記酸触媒と、前記水を反応させる反応器とを備えてなるものである。
Therefore, the first aspect of the present invention II proposes a production apparatus for producing levulinic acid from biomass,
A feeder for supplying biomass, an acid catalyst and water to the reactor;
The biomass, the acid catalyst, and a reactor for reacting the water are provided.
 また、本発明IIの第一の態様においては、バイオマスからレブリン酸を生成する方法を提案するものであり、該方法は、
 バイオマスと、酸触媒と、水とを用意し、
 前記バイオマスと、前記酸触媒と、前記水とを反応させることを含んでなるものである。
In the first aspect of the present invention II, a method for producing levulinic acid from biomass is proposed,
Prepare biomass, acid catalyst and water,
Reacting the biomass, the acid catalyst, and the water.
 本発明IIの第一の態様は、バイオマスを用いて、人類社会で必要な基幹化学物質であり、付加価値の高い化学原料を高収率に製造するとともに、製造過程でエネルギー消費の少ない製造装置(方法)を提供するものである。 The first aspect of the present invention II is a production apparatus that uses biomass and is a basic chemical substance necessary in the human society and produces high-value-added chemical raw materials in high yield and with low energy consumption in the production process. (Method) is provided.
 本発明IIの第二の態様
 本発明者は、本発明時において、レブリン酸を有意量含んでなる組成物と、吸着剤を加熱下で接触させることにより、低エネルギーの下、基幹化学物質の一つであるレブリン酸をこの組成物から吸着剤に吸着させて効率よく分離することができるとの知見を得た。本発明IIの第二の態様はかかる知見に基づいてなされたものである。
Second aspect of Invention II At the time of the present invention, the present inventor made contact with the composition comprising a significant amount of levulinic acid under heating with an adsorbent under low energy. It was found that one levulinic acid can be efficiently separated from the composition by adsorbing it to the adsorbent. The second aspect of the present invention II has been made based on such findings.
 よって、本発明IIの第二の態様はレブリン酸を含んでなる組成物からレブリン酸を分離する装置であって、該装置を提案するものであり、該装置は、
 レブリン酸を含んでなる組成物と、吸着剤とを吸着器に供給する供給器と、
 前記組成物と、前記吸着剤とを接触させ、前記吸着剤にレブリン酸を吸着させる吸着器とを備えてなるものである。
Therefore, the second aspect of the present invention II is an apparatus for separating levulinic acid from a composition comprising levulinic acid, and proposes the apparatus.
A feeder for supplying the adsorber with a composition comprising levulinic acid and an adsorbent;
An adsorber for bringing the composition into contact with the adsorbent and adsorbing levulinic acid to the adsorbent is provided.
 また、本発明IIの第二の態様においては、レブリン酸を含んでなる組成物からレブリン酸を分離する方法を提案するものであり、該方法は、
 レブリン酸を含んでなる組成物と、吸着剤とを加温下で接触させ、前記組成物からレブリン酸を前記吸着剤に吸着させることを含んでなるものである。
In the second aspect of the present invention II, a method for separating levulinic acid from a composition comprising levulinic acid is proposed.
The composition comprising levulinic acid and an adsorbent are brought into contact under heating, and levulinic acid is adsorbed from the composition onto the adsorbent.
 本発明IIの第二の態様は、吸着剤に吸着するものであり、水などの溶媒を蒸発させず、また、同伴される水の吸着量も極めて少ないことから、吸着分離に要するエネルギー消費は極めて少ないものとなり、生産コスト減と生産効率の両方の点で良好である。特に、レブリン酸の濃縮分離に使用される蒸留法は多量の水を蒸発させるため極めて多量のエネルギーを必要とする。従って、本発明IIの第二の態様は、蒸留法と比較して、極めて有効な生産技術といえる。 The second aspect of the present invention II is adsorbed on the adsorbent, does not evaporate a solvent such as water, and the amount of adsorbed water is very small. It is extremely small, which is good in terms of both production cost reduction and production efficiency. In particular, the distillation method used for concentration and separation of levulinic acid requires a very large amount of energy to evaporate a large amount of water. Therefore, it can be said that the second aspect of the present invention II is a very effective production technique as compared with the distillation method.
 本発明IIの第三の態様
 本発明者は、本発明時において、レブリン酸と、ゼオライト触媒を、又は、レブリン酸を吸着した吸着剤を加熱反応させることにより、低エネルギーの下、産業原料である炭化水素に効率よく(転換)製造することができるとの知見を得た。本発明IIの第三の態様はかかる知見に基づいてなされたものである。
Third aspect of the present invention II In the present invention, the present inventor made a reaction between levulinic acid and a zeolite catalyst or an adsorbent adsorbing levulinic acid by heating to produce industrial raw materials under low energy. The knowledge that it can produce efficiently (conversion) to a certain hydrocarbon was acquired. The third aspect of the present invention II has been made based on this finding.
 よって、本発明IIの第三の態様は、レブリン酸から炭化水素を得る装置を提案するものであり、該装置は、
 レブリン酸と、ゼオライト触媒とを反応器に供給する供給器と、
 前記レブリン酸と、前記ゼオライト触媒とを反応させる反応器とを備えてなるものである。
Therefore, the third aspect of the present invention II proposes an apparatus for obtaining hydrocarbons from levulinic acid,
A feeder for supplying levulinic acid and a zeolite catalyst to the reactor;
A reactor for reacting the levulinic acid with the zeolite catalyst is provided.
 また、本発明IIの第二の態様においては、レブリン酸から炭化水素を製造する方法を提案するものであり、該方法は、
 レブリン酸と、ゼオライト触媒とを用意し、
 前期レブリン酸と、前記ゼオライト触媒とを反応させることを含んでなるものである。
In the second aspect of the present invention II, a method for producing a hydrocarbon from levulinic acid is proposed,
Prepare levulinic acid and zeolite catalyst,
It comprises reacting levulinic acid with the zeolite catalyst.
 本発明IIの好ましい態様
 本発明IIの好ましい態様によれば、本発明IIの第一の態様と本発明IIの第二の態様との組み合わせ、本発明IIの第二の態様と本発明IIの第三の態様の組み合わせ、そして、本発明IIの第一の態様乃至本発明IIの第三の態様の組み合わせ(本発明IIの第四の態様)、による製造装置又は製造方法が提案される。
Preferred Embodiment of Invention II According to a preferred embodiment of Invention II, a combination of the first embodiment of Invention II and the second embodiment of Invention II, the second embodiment of Invention II and the invention II A production apparatus or production method according to the combination of the third aspect and the first aspect of the present invention II to the combination of the third aspect of the present invention II (fourth aspect of the present invention II) is proposed.
 本発明による態様を組み合わせることにより、水熱反応を十分活用することができるので、原料であるバイオマスから生成される炭化水素までの各工程を低エネルギ(又はエネルギを使用せず)で行うことができ、生産コストの著し低減と、優れた生産容易性及び生産効率(収率向上)を達成することが可能となる。 By combining aspects according to the present invention, hydrothermal reaction can be fully utilized, so that each process from biomass as a raw material to hydrocarbons generated can be performed with low energy (or without using energy). It is possible to achieve a significant reduction in production cost and excellent production ease and production efficiency (yield improvement).
発明の詳細な説明Detailed Description of the Invention
  本発明Iの態様
 (触媒)反応:転換反応(第2反応器)
 本発明による装置及び方法は、有機酸を、ゼオライト触媒(好ましくはZSM-5型ゼオライト触媒)と反応させるものであり、その反応は反応器(第2反応器)で行われる。
 反応器(第2反応器)は、固定層、流動層、移動層等、固体触媒反応に適したものとすることでき、500℃程度の加温、加圧状態であっても十分耐性を有するものを使用する。反応器は、原料を供給する第1段と、ゼオライト触媒(好ましくはZSM-5型ゼオライト触媒)が存在してなる第2段とを直列に配列した多段階の反応器であってもよい。また、反応器は加温装置を備えてなり、反応が加温下で行われることが好ましい。具体的には、370℃以上500℃以下の温度で加熱される。さらに、反応器はキャリアーガスを供給する部位、他の成分を供給する部位を備えてなるものが好ましくは用いることができる。これらの存在により、反応器にはキャリアーガスとして窒素、スチーム、水素、及びこれらを含有するガス、好ましくは、水素又は水素含有ガスが目的生成物に合わせて導入することが可能となる。また、反応器には、反応器内で水素を発生することのできる化合物、例えば、ギ酸を供給することができる。そして、これらの機器を備えてなることにより、反応器は、必要により多段として、段毎に上記温度範囲内において、異なった温度に設定すること、また、段毎に異なるキャリアーガスを導入すること、これらの組み合わせた反応を実現することができる。そして、反応条件及び供給キャリアーガス、水素供給源等により生成する化学原料を有利に選択することが可能となる。
Embodiment I of the Invention (Catalyst) Reaction: Conversion Reaction (Second Reactor)
In the apparatus and method according to the present invention, an organic acid is reacted with a zeolite catalyst (preferably a ZSM-5 type zeolite catalyst), and the reaction is carried out in a reactor (second reactor).
The reactor (second reactor) can be suitable for solid catalytic reactions such as a fixed bed, fluidized bed, moving bed, etc., and has sufficient resistance even when heated and pressurized at about 500 ° C. Use things. The reactor may be a multi-stage reactor in which a first stage for supplying raw materials and a second stage in which a zeolite catalyst (preferably a ZSM-5 type zeolite catalyst) is present are arranged in series. Moreover, it is preferable that a reactor is equipped with a heating apparatus and reaction is performed under heating. Specifically, heating is performed at a temperature of 370 ° C. or higher and 500 ° C. or lower. Further, it is preferable to use a reactor provided with a part for supplying a carrier gas and a part for supplying other components. Their presence makes it possible to introduce nitrogen, steam, hydrogen, and a gas containing them, preferably hydrogen or a hydrogen-containing gas, as carrier gases into the reactor in accordance with the target product. In addition, a compound capable of generating hydrogen in the reactor, such as formic acid, can be supplied to the reactor. By providing these devices, the reactor can be set in multiple stages as necessary, and set to different temperatures within the above temperature range for each stage, and introduce different carrier gases for each stage. These combined reactions can be realized. And it becomes possible to select advantageously the chemical raw material produced | generated by reaction conditions, supply carrier gas, a hydrogen supply source, etc.
 原料
 有機酸
 本発明は、有機酸を使用する。有機酸は、炭素数2~4の有機酸であり、特に、炭素数2~4のカルボン酸であり、特に、酢酸、プロピオン酸、乳酸、酪酸が好ましくは用いられる。また、これらの酸の一つ以上を含む混合物や溶液たとえば水溶液であってよい。本発明の好ましい態様によれば、レブリン酸を使用することができ、より好ましい態様によれば、本発明IIの態様により得られたものを使用することができる。よって、本発明Iの態様において使用される「レブリン酸」は一般的な記述のみならず、本発明IIの態様において製造され、説明されるものも当然に包含するものである。
Raw Organic Acid The present invention uses an organic acid. The organic acid is an organic acid having 2 to 4 carbon atoms, particularly a carboxylic acid having 2 to 4 carbon atoms, and in particular, acetic acid, propionic acid, lactic acid and butyric acid are preferably used. Further, it may be a mixture or solution containing one or more of these acids, for example, an aqueous solution. According to a preferred embodiment of the present invention, levulinic acid can be used, and according to a more preferred embodiment, one obtained by the embodiment of the present invention II can be used. Accordingly, the “levulinic acid” used in the aspect of the present invention I naturally includes not only the general description but also those prepared and explained in the aspect of the present invention II.
 有機酸の調製
 本発明の好ましい態様によれば、有機酸が酸発酵菌により発酵させて得られたものが用いられる。
 酸発酵菌
 酸発酵菌として、有機酸を生成させることのできるいずれの発酵菌も用いることができる。例えば、メタン発酵菌、酢酸発酵菌、乳酸発酵菌、酪酸発酵菌、それらの混合物、それらの一つ以上を含む発酵汚泥が挙げられる。メタン発酵菌あるいはそれを含む混合物や汚泥を用いる場合、嫌気状態にすることなく発酵させることが必要である。
Preparation of Organic Acid According to a preferred embodiment of the present invention, an organic acid obtained by fermenting with an acid-fermenting bacterium is used.
As the acid-fermenting bacteria, any fermenting bacteria capable of generating an organic acid can be used. Examples include methane-fermenting bacteria, acetic acid-fermenting bacteria, lactic acid-fermenting bacteria, butyric acid-fermenting bacteria, mixtures thereof, and fermented sludge containing one or more of them. When using a methane-fermenting bacterium or a mixture or sludge containing it, it is necessary to ferment without making it anaerobic.
 酸発酵菌により発酵させて有機酸を得る場合の原料は、有機酸を有意量発生させるものであればいずれのものであってもよいが、好ましくはバイオマスが用いられる。バイオマスはいずれのものであってもよい。本発明の好ましい態様によれば、バイオマスは有機酸を有意量生成しうる糖質バイオマスの利用が好ましい。糖質バイオマスの具体例としては、単糖類(グルコース、フルクトース等)、二糖類(スクロース、マルトース、セルビオース等)、10個以下の単糖が縮合したオリゴ糖及び配糖体、でんぷん及びアルギン酸等の炭水化物、これらの一つ以上を含むバイオマス及びその処理物が挙げられる。 The raw material for obtaining an organic acid by fermenting with an acid-fermenting bacterium may be any material as long as it generates a significant amount of the organic acid, but preferably biomass is used. Any biomass may be used. According to a preferred aspect of the present invention, it is preferable to use saccharide biomass capable of producing a significant amount of organic acid. Specific examples of carbohydrate biomass include monosaccharides (glucose, fructose, etc.), disaccharides (sucrose, maltose, cellobiose, etc.), oligosaccharides and glycosides condensed with 10 or less monosaccharides, starch, alginic acid, etc. Examples include carbohydrates, biomass containing one or more of these, and processed products thereof.
 「バイオマス」は、例えば、樹木類、草類、穀類、果実類、海藻類等の全ての植物性バイオマスであり、その根、茎、球根、葉なども包含するものである。また、「バイオマスの処理物」とは、バイオマスの一部または全部を、加熱、加圧、爆砕、溶解、抽出、磨砕、機械的分離等の物理的処理;発酵、酵素処理等の生物的処理;加水分解、熱分解、溶媒分解、水熱処理、蒸解、アルカリ処理、酸処理、触媒処理等の化学的処理の一つ以上を施したものが例示される。その具体例としては、サトウキビの搾りかすであるバガス;イネや麦の籾殻や藁およびそれらの酸、加水分解、酵素分解等による処理物;食用穀物などの調理物や廃棄物およびそれらの処理物;木材の製材廃棄物やアルカリ蒸解や濃硫酸などの酸処理物などが挙げられる。 “Biomass” is, for example, all plant biomass such as trees, grasses, cereals, fruits, seaweeds, etc., and includes roots, stems, bulbs, leaves, and the like. In addition, the “processed product of biomass” means that a part or all of biomass is subjected to physical treatment such as heating, pressurization, explosion, dissolution, extraction, grinding and mechanical separation; biological treatment such as fermentation and enzyme treatment. Examples of treatments: those subjected to one or more chemical treatments such as hydrolysis, thermal decomposition, solvent decomposition, hydrothermal treatment, cooking, alkali treatment, acid treatment, and catalyst treatment. Specific examples include bagasse, which is a pomace of sugarcane; rice husks and straw of rice and wheat and their processed products by acid, hydrolysis, enzymatic decomposition, etc .; cooked foods such as edible grains, wastes and processed products thereof Wood sawn waste, acid digests such as alkaline digestion and concentrated sulfuric acid.
 ゼオライト触媒
 ゼオライト触媒は、結晶性のアルミノシリケート、シリケート、メタロシリケートなどのゼオライト類が使用される。結晶性アルミノシリケートは、例えば、ZSM-5、ZSM-11、ベータ、モルデナイト、X型およびY型のフォージャサイト、MCM-22、MCM-68等が挙げられる。結晶性シリケートはシリカライト等が挙げられる。結晶性メタロシリケートは、Si以外の金属元素がFe、Ga、B、Tiなどのメタロシリケートが挙げられる。ゼオライト触媒はカチオンとして、プロトン、アンモニウムイオン、Ca、Ba、Mgなどのアルカリ土類、並びにLa、Ceなどの希土類金属のカチオンの一つ以上を含んでいてもよい。
 ゼオライト触媒の好ましい具体例としては、酸素10員環の細孔を有するZSM-5型ゼオライト類が挙げられる。

ZSM-5型ゼオライト触媒は、例えば、ZSM-5、ZSM-11、シリカライト、Si以外の金属元素がFe、Ga、B、Tiなどのメタロシリケート等が挙げられる。好ましくは、Si/Al原子比が50以上のZSM-5、Si/Al原子比が50以上のZSM-11、シリカライト、Si/M原子比が50以上のメタロシリケート(MはFe、Ga、B、Ti)、これらのZSM-5型ゼオライトはカチオンとして、プロトン、アンモニウムイオン、Ca、Ba、Mgなどのアルカリ土類やLa、Ceなどの希土類金属のカチオンの一つ以上を含んでいてよい。また、これらのZSM-5型ゼオライトは、Ni、Fe、W、Pt、Rh、Re、Pd、などの遷移金属やMoなどの金属を、元素あるいは化合物たとえば酸化物の形で担持していてよい。
Zeolite catalyst As the zeolite catalyst, zeolites such as crystalline aluminosilicate, silicate, metallosilicate are used. Examples of the crystalline aluminosilicate include ZSM-5, ZSM-11, beta, mordenite, X-type and Y-type faujasite, MCM-22, and MCM-68. Examples of the crystalline silicate include silicalite. Examples of the crystalline metallosilicate include metallosilicates in which metal elements other than Si are Fe, Ga, B, Ti and the like. The zeolite catalyst may contain, as a cation, one or more of protons, ammonium ions, alkaline earths such as Ca, Ba, and Mg, and rare earth metal cations such as La and Ce.
Preferable specific examples of the zeolite catalyst include ZSM-5 type zeolites having pores having a 10-membered oxygen ring.

Examples of the ZSM-5 type zeolite catalyst include ZSM-5, ZSM-11, silicalite, metallosilicates in which metal elements other than Si are Fe, Ga, B, Ti and the like. Preferably, ZSM-5 having an Si / Al atomic ratio of 50 or more, ZSM-11 having an Si / Al atomic ratio of 50 or more, silicalite, metallosilicate having an Si / M atomic ratio of 50 or more (M is Fe, Ga, B, Ti), these ZSM-5 type zeolites may contain, as cations, one or more of protons, ammonium ions, alkaline earths such as Ca, Ba and Mg and rare earth metal cations such as La and Ce. . Further, these ZSM-5 type zeolites may carry transition metals such as Ni, Fe, W, Pt, Rh, Re, Pd, and metals such as Mo in the form of elements or compounds such as oxides. .
 (発酵反応)第1反応器
 本発明の装置は好ましくは、上記触媒反応(器)(第2反応器)の前に、発酵反応器(第1反応器)を備えてなるものが提案される。発酵反応(器)は、バイオマス等を供給する第1供給器を備えてなるものである。第1供給器から供給されたバイオマスと、酸発酵菌とを好ましくは攪拌しながら、発酵反応を第1反応器で行う。酸発酵菌を用いた発酵は、30℃以上60℃以下の温度で行うことが好ましい。この発酵反応により、有機酸、特に、酢酸、プロピオン酸、乳酸、酪酸が得られる。反応器は、回分又は連続操作のいずれの方法をも使用することができるものを使用する。
(Fermentation Reaction) First Reactor The apparatus of the present invention is preferably provided with a fermentation reactor (first reactor) before the catalytic reaction (reactor) (second reactor). . The fermentation reaction (equipment) is provided with a first supply device for supplying biomass and the like. The fermentation reaction is performed in the first reactor while preferably stirring the biomass supplied from the first supplier and the acid-fermenting bacteria. Fermentation using acid-fermenting bacteria is preferably performed at a temperature of 30 ° C. or higher and 60 ° C. or lower. By this fermentation reaction, organic acids, in particular, acetic acid, propionic acid, lactic acid and butyric acid are obtained. As the reactor, one capable of using either batch or continuous operation is used.
 本発明の好ましい態様
 製造装置(方法)
 本願発明による製造装置(製造方法)は、好ましくは、第1反応器に、バイオマスと、酸発酵菌とを第1供給器を介して供給し30℃以上60℃以下で発酵反応を行う。発酵反応で得た有機酸と、ZSM-5型ゼオライト触媒とを第2供給器を介して、第2反応器に供給して、所望の化合物が得られる温度(350℃以上550℃以下)で反応させる。本発明にあっては、生成物が炭化水素類であり、本発明による反応を利用することにより、同伴または反応で副生する水と生成物はほとんど混じりあわない2相に分離されるため、蒸留などのエネルギー消費の大きい分離は基本的に不要であり、その結果として、経済的で効率の高い製造方法ということができる。
Preferred embodiment production apparatus (method) of the present invention
The manufacturing apparatus (manufacturing method) according to the present invention preferably supplies biomass and acid-fermenting bacteria to the first reactor via the first feeder and performs a fermentation reaction at 30 ° C. or higher and 60 ° C. or lower. The organic acid obtained by the fermentation reaction and the ZSM-5 type zeolite catalyst are supplied to the second reactor via the second feeder, at a temperature (350 ° C. or higher and 550 ° C. or lower) at which the desired compound is obtained. React. In the present invention, the products are hydrocarbons, and by using the reaction according to the present invention, water and products by-produced by the entrainment or reaction are separated into two phases which hardly mix, Separation with high energy consumption such as distillation is basically unnecessary, and as a result, it can be said to be an economical and highly efficient production method.
 生成物
 本発明による製造装置(方法)によれば、ベンゼン、トルエン、キシレン、エチルベンゼン、トリメチルベンゼン等の芳香族炭化水素;プロピレン、ブテン、イソブテン、エチレン等の低級オレフィン炭化水素;アセトン、エチルメチルケトン、ジメチルケトン等のケトン化合物が生成物として得ることが可能である。
Products According to the production apparatus (method) according to the present invention, aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene and trimethylbenzene; lower olefin hydrocarbons such as propylene, butene, isobutene and ethylene; acetone and ethyl methyl ketone A ketone compound such as dimethyl ketone can be obtained as a product.
本発明IIの態様
 本発明IIの第一の態様
 本発明IIの第一の態様によれば、バイオマスからレブリン酸を生成する装置及び方法が提案される。
Embodiment of Invention II First Embodiment of Invention II According to the first embodiment of Invention II, an apparatus and method for producing levulinic acid from biomass is proposed.
 原料
 原料はレブリン酸を生成しうるバイオマスであればいずれのものであってもよい。本発明IIの好ましい態様によれば、バイオマスはレブリン酸を有意量生成しうる糖質バイオマスの利用が好ましい。糖質バイオマスの具体例としては、単糖類(グルコース、フルクトース等)、二糖類(スクロース、マルトース、セルビオース等)、10個以下の単糖が縮合したオリゴ糖及び配糖体、でんぷん及びアルギン酸等の炭水化物、これらの一つ以上を含むバイオマス及びその処理物が挙げられる。
The raw material may be any biomass as long as it can produce levulinic acid. According to a preferred embodiment of the present invention II, it is preferable to use saccharide biomass capable of producing a significant amount of levulinic acid. Specific examples of carbohydrate biomass include monosaccharides (glucose, fructose, etc.), disaccharides (sucrose, maltose, cellobiose, etc.), oligosaccharides and glycosides condensed with 10 or less monosaccharides, starch, alginic acid, etc. Examples include carbohydrates, biomass containing one or more of these, and processed products thereof.
 「バイオマス」は、例えば、樹木類、草類、穀類、果実類、海藻類等の全ての植物性バイオマスであり、その根、茎、球根、葉なども包含するものである。また、「バイオマスの処理物」とは、バイオマスの一部または全部を、加熱、加圧、爆砕、溶解、抽出、磨砕、機械的分離等の物理的処理;発酵、酵素処理等の生物的処理;加水分解、熱分解、溶媒分解、水熱処理、蒸解、アルカリ処理、酸処理、触媒処理等の化学的処理の一つ以上を施したものが例示される。その具体例としては、サトウキビの搾りかすであるバガス;イネや麦の籾殻およびそれらの酸、加水分解、酵素分解等による処理物;食用穀物などの調理物や廃棄物およびそれらの処理物;木材の製材廃棄物やアルカリ蒸解や濃硫酸などの酸処理物などが挙げられる。 “Biomass” is, for example, all plant biomass such as trees, grasses, cereals, fruits, seaweeds, etc., and includes roots, stems, bulbs, leaves, and the like. In addition, the “processed product of biomass” means that a part or all of biomass is subjected to physical treatment such as heating, pressurization, explosion, dissolution, extraction, grinding and mechanical separation; biological treatment such as fermentation and enzyme treatment. Examples of treatments: those subjected to one or more chemical treatments such as hydrolysis, thermal decomposition, solvent decomposition, hydrothermal treatment, cooking, alkali treatment, acid treatment, and catalyst treatment. Specific examples include bagasse, which is a pomace of sugarcane; rice and wheat husks and their processed products by acid, hydrolysis, enzymatic decomposition, etc .; cooked foods such as edible grains and wastes and their processed products; wood Sawmill wastes, acid digests such as alkaline cooking and concentrated sulfuric acid.
 酸触媒
 酸触媒としては、塩酸、硫酸、硝酸、酢酸などの無機および有機の液体酸;並びに、ZSM-5、フォージャサイト、ベータ等のゼオライト、及びシリカアルミナ等の非晶質複合酸化物等の固体酸(好ましい)が例示され、本発明にあっては、塩酸、硫酸、ZSM-5ゼオライトが好ましくは利用される。
Examples of the acid catalyst acid catalyst include inorganic and organic liquid acids such as hydrochloric acid, sulfuric acid, nitric acid, and acetic acid; and zeolites such as ZSM-5, faujasite, and beta; and amorphous composite oxides such as silica alumina. In the present invention, hydrochloric acid, sulfuric acid, and ZSM-5 zeolite are preferably used.
 (水熱)反応器
 反応器は、回分又は連続操作のいずれの方法をも使用することができ、400℃程度の加温、加圧状態であっても十分耐性を有するものを使用する。例えば、150℃以上320℃以下で反応させる場合、反応容器内の圧力は、0.49~11.5MPa程度となることから、このような反応環境に耐えうるものであることが好ましい。また、「水熱反応」とは、加圧下で液体に保持した高温の水中での反応であり、例えば2MPaでは200℃の水を液体に保つことができ、そのような水の中では100℃以下の水や超臨界条件での水に比べ高いイオン積を得ることができるとされている。
(Hydrothermal) reactor The reactor can use either batch or continuous operation, and a reactor having sufficient resistance even in a heated and pressurized state of about 400 ° C is used. For example, when the reaction is carried out at 150 ° C. or more and 320 ° C. or less, the pressure in the reaction vessel is about 0.49 to 11.5 MPa, and therefore it is preferable that it can withstand such a reaction environment. In addition, the “hydrothermal reaction” is a reaction in high-temperature water held in a liquid under pressure. For example, at 2 MPa, 200 ° C. water can be kept in a liquid, and in such water, 100 ° C. It is said that a higher ion product can be obtained than the following water and water under supercritical conditions.
 製造装置(製造方法)
 水と酸触媒を供給器から密閉水熱反応器に導入し、糖質バイオマスもまた供給器から導入する。
Manufacturing equipment (manufacturing method)
Water and acid catalyst are introduced from the feeder into the closed hydrothermal reactor, and saccharide biomass is also introduced from the feeder.
 酸触媒を含む水中で、糖質バイオマスを反応させる。反応は加温下において、好ましくは150℃以上320℃以下の温度で、温度に応じた時間に合致させて反応させる。320℃以下の温度で反応させることより、反応器内が水の臨界温度近傍に近づくことを有効に抑制し、反応器の材料腐食を有効に防止することが可能となる。また、320℃程度以下の温度で反応させることより、また反応圧力が高圧になることを有効に抑制し、高価な耐腐食性材料を多量に使用することなく装置全体のコストを低減することができ、かつ、水のイオン積の減少を有効に抑制し、反応性の向上を図ることができるので好ましい。さらに、150℃程度以上で反応させることにより、反応性の向上を図ることができ、生成物たるレブリン酸の収率を向上させることができ、かつ、反応時間を短縮することが可能となる。 Carbohydrate biomass is reacted in water containing an acid catalyst. The reaction is carried out under heating, preferably at a temperature of 150 ° C. or higher and 320 ° C. or lower according to the time corresponding to the temperature. By making it react at the temperature of 320 degrees C or less, it becomes possible to suppress effectively that the inside of a reactor approaches the critical temperature vicinity of water, and it becomes possible to prevent material corrosion of a reactor effectively. In addition, by reacting at a temperature of about 320 ° C. or less, it is possible to effectively suppress the reaction pressure from becoming high, and reduce the cost of the entire apparatus without using a large amount of expensive corrosion-resistant material. It is preferable because it can reduce the ion product of water effectively and can improve the reactivity. Further, by reacting at about 150 ° C. or higher, the reactivity can be improved, the yield of levulinic acid as a product can be improved, and the reaction time can be shortened.
 また、本発明IIの好ましい態様によれば、低温度領域である150℃以上240℃以下の温度で反応を行うことができる。後に述べる高温度領域における反応と比較して、反応時間が若干長くなるが、炭素質物質の副生をきわめて少量に抑制することが可能となり、レブリン酸の収率を向上させることが可能となる。さらに、本発明IIの好ましい態様によれば、高温度領域である240℃以上320℃以下の温度で反応を行うことができる。先に述べた低温度領域における反応と比較して、副反応により炭素質物質が若干生成することがあるが、反応速度が高く短時間で反応させることが可能となり、レブリン酸を効率的かつ高収率に製造することが可能となる。従って、本発明においては、低温度領域及び高温度領域における反応のいずれも好適に行うことが可能である。 Further, according to a preferred embodiment of the present invention II, the reaction can be carried out at a temperature of 150 ° C. or higher and 240 ° C. or lower which is a low temperature region. Compared to the reaction in the high temperature region described later, the reaction time is slightly longer, but it becomes possible to suppress the by-product of the carbonaceous material to a very small amount and to improve the yield of levulinic acid. . Furthermore, according to the preferable aspect of this invention II, it can react at the temperature of 240 degreeC or more and 320 degrees C or less which is a high temperature range. Compared with the reaction in the low temperature region described above, a side reaction may produce a little carbonaceous material. However, the reaction rate is high and the reaction can be carried out in a short time. It becomes possible to manufacture in a yield. Therefore, in the present invention, it is possible to suitably perform both the reaction in the low temperature region and the high temperature region.
 反応は、反応器内において、混合液を攪拌して行うことが好ましい。
 反応工程では、回分操作あるいは連続操作のいずれかの方法で行なうことができる。回分操作では、例えば、原料の糖質バイオマスを水熱反応器に一時に導入し、所定時間反応させることにより行うことができる。反応時間は反応温度に応じて適宜定めることが可能である。また、連続操作では、例えば、反応温度に保たれた水と酸触媒を保有する水熱反応器に原料の糖質バイオマスを連続的に供給し、反応液を連続的あるいは断続的に反応させてもよい。また、また、この両方を組み合わせた半回分操作を用いてもよい。本発明にあっては、必要なエネルギーは補給する水と酸触媒および原料のバイオマスを反応温度まで加熱するエネルギーのみで足りるとの利点を有する。また、必要に応じて水熱反応器の水と酸触媒を適宜再生してもよい。
The reaction is preferably performed by stirring the mixed solution in the reactor.
In the reaction step, it can be carried out by either batch operation or continuous operation. The batch operation can be performed, for example, by introducing the raw sugar biomass into the hydrothermal reactor at a time and reacting for a predetermined time. The reaction time can be appropriately determined according to the reaction temperature. In the continuous operation, for example, the raw material sugar biomass is continuously supplied to the hydrothermal reactor that holds the water maintained at the reaction temperature and the acid catalyst, and the reaction solution is allowed to react continuously or intermittently. Also good. Moreover, you may use semi-batch operation which combined both. In the present invention, there is an advantage that the energy required is only the energy to replenish the supplemented water, the acid catalyst, and the raw material biomass up to the reaction temperature. Moreover, you may reproduce | regenerate suitably the water and acid catalyst of a hydrothermal reactor as needed.
 本発明IIの第二の態様
 本発明IIの第二の態様によれば、レブリン酸を(有意量)含んでなる組成物からレブリン酸を分離する製造装置及び方法が提案される。
Second aspect of Invention II According to the second aspect of Invention II, a production apparatus and method for separating levulinic acid from a composition comprising (significant amount) levulinic acid is proposed.
 原料
 原料はレブリン酸を含んでなる組成物(好ましくは液体組成物)である。本発明IIの好ましい態様によれば、本発明IIの第一の態様で得られた有意量のレブリン酸を含んでなる生成液を好ましくは利用することができる。
The raw material is a composition (preferably a liquid composition) comprising levulinic acid. According to a preferred embodiment of the present invention II, the product solution comprising a significant amount of levulinic acid obtained in the first embodiment of the present invention II can be preferably used.
 吸着剤
 吸着剤は、先の組成物からレブリン酸を吸着しうるものであればいずれのものであってもよく、例えば、ZSM-5、フォージャサイト、ベータ等のゼオライト、活性炭などが挙げられ、好ましくは、ZSM-5などのゼオライトである。
The adsorbent adsorbent may be any as long as it can adsorb levulinic acid from the above composition, and examples thereof include zeolite such as ZSM-5, faujasite, beta, and activated carbon. Zeolite such as ZSM-5 is preferable.
 吸着器
 吸着器は、回分又は連続操作のいずれの方法をも使用することができ、300℃程度の加温、加圧状態であっても十分耐性を有するものを使用する。
The adsorber adsorber can be used for either batch or continuous operation, and an adsorber having sufficient resistance even in a heated and pressurized state of about 300 ° C. is used.
 製造装置(製造方法)
 本発明における分離は、レブリン酸を含んでなる組成物と、吸着剤とを反応させることにより行われる。この吸着操作は常温から水熱反応温度(本発明IIの第一の態様)までのいずれかの温度で行うことができ、好ましくは30℃以上320℃以下、さらに好ましくは下限値が80℃以上であり上限値が240℃以下で行うことができる。
Manufacturing equipment (manufacturing method)
Separation in the present invention is performed by reacting a composition comprising levulinic acid with an adsorbent. This adsorption operation can be performed at any temperature from room temperature to the hydrothermal reaction temperature (first aspect of the present invention II), preferably 30 ° C. or higher and 320 ° C. or lower, more preferably the lower limit is 80 ° C. or higher. And the upper limit can be set to 240 ° C. or lower.
 この工程は、レブリン酸を含んでなる組成物からレブリン酸を低コストで分離するために重要である。レブリン酸は、たとえば本発明IIの第一の態様のように水溶液の形態で得られるが、レブリン酸を通常の方法、たとえば蒸留によって分離回収する場合には、レブリン酸よりも低沸点の水を多量に蒸発させなければならない。水は蒸発潜熱が大きいため蒸発には多量の熱を投入する必要があり、レブリン酸の蒸留分離には多大のコストがかかる問題がある。本発明によるレブリン酸の分離では、水を実質的に蒸発させない条件で吸着分離を行う。すなわち、100℃未満であれば常圧で、また、100℃以上であれば加圧下で、好ましくは水の飽和蒸気圧以上の圧力下で操作する。このことにより、蒸留法に比べ投入エネルギーを大幅に低減することができる。また、吸着後の高温の残液を水熱反応の媒体として使用できるため、水熱反応工程において加熱に要するエネルギーを低減ないし削減することができる。 This step is important for separating levulinic acid at low cost from a composition comprising levulinic acid. Levulinic acid is obtained, for example, in the form of an aqueous solution as in the first embodiment of the present invention II. However, when levulinic acid is separated and recovered by an ordinary method such as distillation, water having a boiling point lower than that of levulinic acid is used. Must be evaporated in large quantities. Since water has a large latent heat of vaporization, it is necessary to input a large amount of heat to evaporate, and there is a problem that a large amount of cost is required for distillation separation of levulinic acid. In the separation of levulinic acid according to the present invention, adsorptive separation is performed under conditions where water is not substantially evaporated. That is, it is operated at normal pressure if it is less than 100 ° C., or under pressure if it is 100 ° C. or higher, preferably under a pressure equal to or higher than the saturated vapor pressure of water. This makes it possible to significantly reduce the input energy compared to the distillation method. Moreover, since the high temperature residual liquid after adsorption | suction can be used as a medium of a hydrothermal reaction, the energy required for a heating in a hydrothermal reaction process can be reduced thru | or reduced.
 レブリン酸を含んでなる組成物から吸着剤に吸着させてレブリン酸を分離することが可能であるが、吸着剤からレブリン酸を脱着することにより、レブリン酸を単品として使用することが可能となる。吸着剤からのレブリン酸の脱着は、さまざまな方法で行なうことができる。例えば、吸着剤の温度を高温(例えば240℃以上)にして脱離させる方法、減圧にして脱離させる方法、水、スチーム、キャリアーガス、あるいは溶媒またはその蒸気を通じて脱離させる方法が挙げられる。 It is possible to separate levulinic acid from the composition comprising levulinic acid by adsorbing it onto the adsorbent, but by desorbing levulinic acid from the adsorbent, it becomes possible to use levulinic acid as a single product. . Desorption of levulinic acid from the adsorbent can be performed in various ways. For example, a method of desorbing the adsorbent at a high temperature (for example, 240 ° C. or higher), a method of desorbing at a reduced pressure, a method of desorbing through water, steam, carrier gas, solvent or vapor thereof.
 本発明IIの好ましい態様
 本発明IIの好ましい態様によれば、本発明IIの第一の態様と本発明IIの第二の態様とを組み合わせた装置(又は組み合わせた方法)が提案される。
 従って、本発明IIの第一の態様(生成)は、回分操作あるいは連続操作のいずれかの方法で行なうことができる。回分操作では、例えば、原料のバイオマスを水熱反応器に一時に導入し、所定時間反応させた後、本発明IIの第二の態様(分離)を行なうことを繰り返す。この場合、本発明IIの第一の態様の反応器を本発明IIの第二の態様の吸着器としても使用する。また、連続操作では、例えば、反応温度に保たれた水と酸触媒を保有する水熱反応器に原料のバイオマスを連続的に供給し、反応液を連続的あるいは断続的に、本発明IIの第二の操作に送って分離を行なう。また、この両方を組み合わせた半回分操作を用いてもよい。
Preferred Embodiment of Invention II According to a preferred embodiment of Invention II, an apparatus (or combined method) is proposed that combines the first embodiment of Invention II and the second embodiment of Invention II.
Therefore, the first aspect (generation) of the present invention II can be carried out by either a batch operation or a continuous operation. In the batch operation, for example, after the raw material biomass is introduced into the hydrothermal reactor at a time and reacted for a predetermined time, the second aspect (separation) of the present invention II is repeated. In this case, the reactor of the first aspect of the present invention II is also used as the adsorber of the second aspect of the present invention II. In the continuous operation, for example, the raw material biomass is continuously supplied to a hydrothermal reactor having water and an acid catalyst maintained at the reaction temperature, and the reaction liquid is continuously or intermittently used. Send to the second operation for separation. A semi-batch operation combining both of these may be used.
 上記の回分操作あるいは連続操作において、水熱反応と吸着を同じ温度で行う場合は吸着後の残液を水熱反応器に戻すことが好ましい。また、吸着温度が水熱反応温度より低い場合には、吸着後の残液と水熱反応の生成液とを熱交換して、吸着後の残液を水熱反応温度に近い温度にして水熱反応器に戻すことができる。このような操作(工程)により、先の残液に水熱反応原料を供給して再度反応を繰り返すことができる。すなわち、水熱反応で使用する酸触媒は吸着操作で吸着されず多くが残液とともに戻るため、水熱反応を繰り返す際に追加する酸触媒を少なくすることができる。また、高温の液を水熱反応器にもどすため、水熱反応器の投入する加熱エネルギーは極めて少量となる。このように本発明IIの好ましい態様によれば、水熱反応と分離との組み合わせによるレブリン酸の製造に必要なエネルギーコストや酸触媒コストを大幅に低減することができる。 In the batch operation or the continuous operation, when the hydrothermal reaction and the adsorption are performed at the same temperature, it is preferable to return the residual liquid after the adsorption to the hydrothermal reactor. In addition, when the adsorption temperature is lower than the hydrothermal reaction temperature, the residual liquid after adsorption and the hydrothermal reaction product liquid are subjected to heat exchange so that the residual liquid after adsorption is brought to a temperature close to the hydrothermal reaction temperature. Can be returned to the thermal reactor. By such an operation (step), the hydrothermal reaction raw material can be supplied to the previous residual liquid and the reaction can be repeated again. That is, the acid catalyst used in the hydrothermal reaction is not adsorbed by the adsorption operation, and most of it returns with the remaining liquid, so that it is possible to reduce the acid catalyst added when repeating the hydrothermal reaction. Further, since the high-temperature liquid is returned to the hydrothermal reactor, the heating energy input to the hydrothermal reactor is extremely small. Thus, according to the preferable aspect of this invention II, the energy cost and acid catalyst cost which are required for manufacture of levulinic acid by the combination of a hydrothermal reaction and isolation | separation can be reduced significantly.
 いずれの操作においても、本発明IIの第二の態様(分離)に付随して出て行く水と酸触媒はわずかであり、このわずかな量の水と酸触媒のみを補給することで反応を維持することが可能となる。従って、本発明IIの好ましい態様にあっては、必要なエネルギーは補給する水と酸触媒および原料の糖質バイオマスを反応温度まで加熱するエネルギーのみであり、きわめて少量のエネルギー消費に抑えることができるとの効果を有する。また、必要に応じて水熱反応器の水と酸触媒を適宜再生してもよい。再生の目的は、本発明IIの第一の態様(生成)で生成し、本発明IIの第一の態様(分離)において吸着剤に吸着されずに残留する物質を分離除去することであり、抜き出す液と再生液の熱交換を行なうことで、エネルギーの損失はきわめて少量とすることができるので好ましい。 In any operation, only a small amount of water and acid catalyst exits in connection with the second embodiment (separation) of the present invention II, and the reaction is carried out by replenishing only this small amount of water and acid catalyst. Can be maintained. Therefore, in the preferred embodiment of the present invention II, the energy required is only the water to be replenished, the acid catalyst, and the energy for heating the raw sugar biomass to the reaction temperature, and can be suppressed to a very small amount of energy consumption. And has the effect. Moreover, you may reproduce | regenerate suitably the water and acid catalyst of a hydrothermal reactor as needed. The purpose of the regeneration is to separate and remove the substance produced in the first aspect (production) of the present invention II and remaining without being adsorbed by the adsorbent in the first aspect (separation) of the present invention II. By exchanging heat between the extracted liquid and the regenerated liquid, it is preferable because energy loss can be extremely small.
 本発明IIの好ましい態様によれば、本発明IIの第二の態様(分離)における吸着剤によるレブリン酸の吸着は、本発明IIの第一の態様(生成)の水熱反応器の生成液中に吸着剤を導入し、レブリン酸を吸着した吸着剤を生成液と分離する方法、或いは、本発明IIの第一の態様(生成)における水熱反応が終了した後または反応中にレブリン酸を含む生成液を、吸着剤を充填した吸着槽に送り、吸着後の残液を反応器にもどす方法のいずれであってもよい。前者の方法は、本発明IIの第一の態様(生成)を回分操作で行なう場合に適しており、また後者の方法は本発明IIの第一の態様(生成)を回分操作あるいは連続操作で行なう場合に適している。 According to a preferred embodiment of the present invention II, the adsorption of levulinic acid by the adsorbent in the second embodiment (separation) of the present invention II is the product of the hydrothermal reactor of the first embodiment (production) of the present invention II. A method of separating the adsorbent adsorbed with levulinic acid from the product liquid, or after completion of the hydrothermal reaction in the first aspect (production) of the present invention II or during the reaction Any of the methods may be used in which the product liquid containing is sent to an adsorption tank filled with an adsorbent and the residual liquid after adsorption is returned to the reactor. The former method is suitable when the first embodiment (production) of the present invention II is carried out by batch operation, and the latter method is suitable for the first embodiment (production) of the present invention II by batch operation or continuous operation. Suitable for performing.
 よって、本発明IIの別の好ましい態様としては、バイオマスからレブリン酸を生成分離する製造装置を提案することができ、該装置は、
 バイオマスと、酸触媒と、水と、吸着剤を反応器に供給する供給器と、
 前記バイオマスと、前記酸触媒と、水とを加温下で反応させ、かつ、反応後に、レブリン酸を含んでなる組成物と、前記吸着剤とを加温下で接触させる吸着器とを備えてなるものである。この態様は、回分操作方法に好適である。
Therefore, as another preferred embodiment of the present invention II, a production apparatus for producing and separating levulinic acid from biomass can be proposed,
A feeder for supplying biomass, acid catalyst, water and adsorbent to the reactor;
The biomass, the acid catalyst, and water are reacted under heating, and after the reaction, a composition comprising levulinic acid and an adsorber that contacts the adsorbent under heating are provided. It will be. This aspect is suitable for a batch operation method.
 さらに、本発明IIの別の態様としては、バイオマスからレブリン酸を生成分離する方法を提案することができ、該方法は、
 バイオマスと、酸触媒と、水と、吸着剤を用意し、
 前記バイオマスと、前記酸触媒と、前記水と、前記吸着剤を供給し、
 前記吸着剤の存在下で、前記バイオマスと、前記酸触媒と、前記水とを反応させ、
 生成されたレブリン酸を含んでなる組成物と、前記吸着剤とを接触させ、
 前記組成物から前記レブリン酸を吸着し分離することを含んでなるものである。
Furthermore, as another aspect of the present invention II, a method for producing and separating levulinic acid from biomass can be proposed,
Prepare biomass, acid catalyst, water and adsorbent,
Supplying the biomass, the acid catalyst, the water, and the adsorbent;
Reacting the biomass, the acid catalyst, and the water in the presence of the adsorbent;
Contacting the adsorbent with a composition comprising the produced levulinic acid,
Adsorbing and separating the levulinic acid from the composition.
 また、本発明IIの別の好ましい態様としては、バイオマスからレブリン酸を生成分離する製造装置を提案することができ、該装置は、
 バイオマスと、酸触媒と、水とを反応器に供給する第1供給器と、
 前記バイオマスと、前記酸触媒と、水とを反応させる反応器とを備えてなり、
 反応器で生成されたレブリン酸を含んでなる組成物を、吸着剤と共に吸着器に供給する第2供給器と、
 前記組成物と、前記吸着剤とを接触させてなる吸着器とを備えてなるものである(回分操作方法/連続操作方法に好適である)。
As another preferred embodiment of the present invention II, a production apparatus for producing and separating levulinic acid from biomass can be proposed,
A first feeder for supplying biomass, an acid catalyst, and water to the reactor;
A reactor for reacting the biomass, the acid catalyst, and water;
A second feeder for feeding a composition comprising levulinic acid produced in the reactor to the adsorber along with an adsorbent;
It comprises an adsorber formed by bringing the composition into contact with the adsorbent (suitable for batch operation method / continuous operation method).
 さらに、本発明IIの別の態様としては、バイオマスからレブリン酸を生成分離する方法を提案することができ、該方法は、
 バイオマスと、酸触媒と、水と、吸着剤を用意し、
 前記バイオマスと、酸触媒と、水とを反応させ、
 生成されたレブリン酸を含んでなる組成物と、前記吸着剤とを接触させ、
 前記組成物から前記レブリン酸を吸着し分離することを含んでなるものである。
Furthermore, as another aspect of the present invention II, a method for producing and separating levulinic acid from biomass can be proposed,
Prepare biomass, acid catalyst, water and adsorbent,
Reacting the biomass, the acid catalyst, and water;
Contacting the adsorbent with a composition comprising the produced levulinic acid,
Adsorbing and separating the levulinic acid from the composition.
 本発明IIの第三の態様
 本発明に第三の態様によれば、レブリン酸から炭化水素を得る製造装置及び方法が提案される。
Third aspect of Invention II According to the third aspect of the present invention, a production apparatus and method for obtaining hydrocarbons from levulinic acid is proposed.
 生成物(炭化水素)
 本発明による製造方法(装置)によれば、ベンゼン、トルエン、キシレン、エチルベンゼン、トリメチルベンゼン等の芳香族炭化水素;プロピレン、ブテン、イソブテン、エチレン等の低級オレフィン炭化水素;プロパン、ブタン、イソブタン、エタン等の低級パラフィン炭化水素;エチルメチルケトン、アセトン、ビニルメチルケトン、酢酸等の含酸素炭化水素等を生成物として得ることが可能である。
Product (hydrocarbon)
According to the production method (apparatus) of the present invention, aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, and trimethylbenzene; lower olefin hydrocarbons such as propylene, butene, isobutene, and ethylene; propane, butane, isobutane, and ethane It is possible to obtain lower paraffin hydrocarbons such as oxygen-containing hydrocarbons such as ethyl methyl ketone, acetone, vinyl methyl ketone, and acetic acid as products.
 原料
 原料はレブリン酸であり、その物自体であっても(吸着剤から脱離させたレブリン酸を含む)、吸着剤に吸着させたレブリン酸、予めゼオライト触媒に接触させたものであってもよい。例えば、本発明IIの第二の態様により得られたもの、又は本発明IIの第一の態様と本発明IIの第二の態様を組み合わせた装置又は方法により得られたものを好ましくは用いることができる。
The raw material is levulinic acid, whether it is itself (including levulinic acid desorbed from the adsorbent), levulinic acid adsorbed on the adsorbent, or previously contacted with a zeolite catalyst Good. For example, the one obtained by the second aspect of the present invention II or the one obtained by the apparatus or method combining the first aspect of the present invention II and the second aspect of the present invention II is preferably used. Can do.
 ゼオライト触媒
 ゼオライト触媒は、結晶性のアルミノシリケート、シリケート、メタロシリケートなどのゼオライト類が使用される。結晶性アルミノシリケートは、例えば、ZSM-5、ZSM-11、ベータ、モルデナイト、X型およびY型のフォージャサイト、MCM-22、MCM-68等が挙げられる。結晶性シリケートはシリカライト等が挙げられる。結晶性メタロシリケートは、Si以外の金属元素がFe、Ga、B、Tiなどのメタロシリケートが挙げられる。好ましいゼオライト触媒としては、ZSM-5、ZSM-11、シリカライト、メタロシリケートなどの酸素10員環の細孔を有するゼオライト類が挙げられる。
Zeolite catalyst As the zeolite catalyst, zeolites such as crystalline aluminosilicate, silicate, metallosilicate are used. Examples of the crystalline aluminosilicate include ZSM-5, ZSM-11, beta, mordenite, X-type and Y-type faujasite, MCM-22, and MCM-68. Examples of the crystalline silicate include silicalite. Examples of the crystalline metallosilicate include metallosilicates in which metal elements other than Si are Fe, Ga, B, Ti and the like. Preferred zeolite catalysts include zeolites having 10-membered oxygen pores such as ZSM-5, ZSM-11, silicalite, and metallosilicate.
 ゼオライト触媒はカチオンとして、プロトン、アンモニウムイオン、Ca、Ba、Mgなどのアルカリ土類、並びにLa、Ceなどの希土類金属のカチオンの一つ以上を含んでいてもよい。
 ゼオライト触媒は、Ni、Fe、W、Pt、Rh、Re、Pd、などの遷移金属、Moなどの水素化活性のある金属を、元素あるいは化合物(例えば、酸化物の形態)で担持しているものがより好ましくは用いられる。そのような好ましい具体例としては、上記金属を担持しているZSM-5、ZSM-11、シリカライト、メタロシリケートが挙げられ、特に、NiまたはPtを担持したZSM-5、ZSM-11、シリカライト、メタロシリケートが好ましくは例示される。
The zeolite catalyst may contain, as a cation, one or more of protons, ammonium ions, alkaline earths such as Ca, Ba, and Mg, and rare earth metal cations such as La and Ce.
Zeolite catalysts carry transition metals such as Ni, Fe, W, Pt, Rh, Re, Pd, etc., and metals having hydrogenation activity such as Mo in elements or compounds (for example, in the form of oxides). Those are more preferably used. Examples of such preferred examples include ZSM-5, ZSM-11, silicalite, and metallosilicate supporting the above metals, and in particular, ZSM-5, ZSM-11, silica supporting Ni or Pt. Light and metallosilicate are preferably exemplified.
 反応器
 反応器は、固定層、流動層、移動層等、固体触媒反応に適したものとすることでき、600℃程度の加温、加圧状態であっても十分耐性を有するものを使用する。反応器は、原料を供給する第1段と、ゼオライト触媒が存在してなる第2段とを直列に配列した多段階の反応器であってもよい。また、反応器は加温装置を備えてなり、反応が加温下で行われる。具体的には、300℃以上550℃以下の温度で加熱される。さらに、反応器はキャリアーガスを供給する部位、他の成分を供給する部位を備えてなるものが好ましくは用いることができる。これらの存在により、反応器にはキャリアーガスとして窒素、スチーム、水素、及びこれらを含有するガス、好ましくは、水素又は水素含有ガスが目的生成物に合わせて導入することが可能となる。また、反応器には、反応器内で水素を発生することのできる化合物、例えば、ギ酸を供給することができる。そして、これらの機器を備えてなることにより、反応器は、必要により多段として、段毎に上記温度範囲内において、異なった温度に設定すること、また、段毎に異なるキャリアーガスを導入すること、これらの組み合わせた反応を実現することができる。そして、反応条件及び供給キャリアーガス、水素供給源等により生成する化学原料を有利に選択することが可能となる。
The reactor reactor can be one that is suitable for solid catalytic reactions, such as a fixed bed, fluidized bed, moving bed, etc., and uses a reactor that has sufficient resistance even when heated and pressurized at about 600 ° C. . The reactor may be a multistage reactor in which a first stage for supplying a raw material and a second stage in which a zeolite catalyst is present are arranged in series. The reactor is equipped with a warming device, and the reaction is carried out under warming. Specifically, heating is performed at a temperature of 300 ° C. or higher and 550 ° C. or lower. Further, it is preferable to use a reactor provided with a part for supplying a carrier gas and a part for supplying other components. Their presence makes it possible to introduce nitrogen, steam, hydrogen, and a gas containing them, preferably hydrogen or a hydrogen-containing gas, as carrier gases into the reactor in accordance with the target product. In addition, a compound capable of generating hydrogen in the reactor, such as formic acid, can be supplied to the reactor. By providing these devices, the reactor can be set in multiple stages as necessary, and set to different temperatures within the above temperature range for each stage, and introduce different carrier gases for each stage. These combined reactions can be realized. And it becomes possible to select advantageously the chemical raw material produced | generated by reaction conditions, supply carrier gas, a hydrogen supply source, etc.
 製造装置(方法)
 本願発明による製造装置(製造方法)は、原料として、吸着剤から脱離させたレブリン酸、レブリン酸を吸着した吸着剤、あるいはレブリン酸を吸着したゼオライト触媒を(触媒)反応器に供給して、300℃以上550℃以下、好ましくは下限値が350℃以上であり上限値が500℃以下の温度で、ゼオライト触媒(本反応で使用するもの)に反応させる。本発明にあっては、生成物が炭化水素類であり、非水溶性の炭化水素類の場合、同伴または反応で副生する水と生成物はほとんど混じりあわない二相に分離されるため、蒸留などのエネルギー消費の大きい分離は基本的に不要であり、その結果として、経済的で効率の高い製造方法ということができる。
Manufacturing equipment (method)
The production apparatus (production method) according to the present invention supplies, as a raw material, levulinic acid desorbed from an adsorbent, an adsorbent adsorbed with levulinic acid, or a zeolite catalyst adsorbed with levulinic acid to a (catalyst) reactor. The zeolite catalyst (used in this reaction) is reacted at a temperature of 300 ° C. or higher and 550 ° C. or lower, preferably a lower limit of 350 ° C. or higher and an upper limit of 500 ° C. or lower. In the present invention, when the product is a hydrocarbon, and the water-insoluble hydrocarbon, the water and the product by-produced by entrainment or reaction are separated into two phases that hardly mix, Separation with high energy consumption such as distillation is basically unnecessary, and as a result, it can be said to be an economical and highly efficient production method.
 本発明IIの好ましい態様
 本発明IIの好ましい態様によれば、本発明IIの第二の態様と本発明IIの第三の態様とを組み合わせた装置(又は組み合わせた方法)が提案される。具体的には、本発明IIの第二の態様(吸着)において、レブリン酸が吸着した吸着剤を本発明IIの第三の態様(脱着・転換)に導入し、反応器内において、脱着と反応を同時に行なう方法が提案される。特に、本発明IIの第三の態様で用いるゼオライト触媒を本発明IIの第二の態様で用いられる吸着剤としても使用し兼務させることにより、レブリン酸を吸着したゼオライト触媒を本発明IIの第三の態様に導入し、脱着と反応を同時に行なうことができる。この結果、生産工程が省かれ、レブリン酸の吸着分離及びレブリン酸の脱着・転換により、有益な炭化水素を得ることができるので効果的である。
Preferred Embodiment of Invention II According to a preferred embodiment of Invention II, an apparatus (or combined method) is proposed that combines the second embodiment of Invention II and the third embodiment of Invention II. Specifically, in the second embodiment (adsorption) of the present invention II, the adsorbent adsorbed with levulinic acid is introduced into the third embodiment (desorption / conversion) of the present invention II, and desorption is performed in the reactor. A method for carrying out the reactions simultaneously is proposed. In particular, the zeolite catalyst used in the third aspect of the present invention II is also used as the adsorbent used in the second aspect of the present invention II, so that the zeolite catalyst adsorbed with levulinic acid is converted into the second aspect of the present invention II. Introduced in the third embodiment, desorption and reaction can be carried out simultaneously. As a result, the production process is omitted, and beneficial hydrocarbons can be obtained by adsorption separation of levulinic acid and desorption / conversion of levulinic acid, which is effective.
 本発明IIの第二の態様と本発明IIの第三の態様とを組み合わせた製造装置(製造方法)にあっては、レブリン酸を吸着した吸着剤又はレブリン酸を吸着したゼオライト触媒を反応器に供給する場合、好ましくは、反応器を2段直列として1段目にこの吸着剤を導入し、反応後に吸着剤を回収する方法、吸着剤あるいは吸着に用いられたゼオライト触媒を別のゼオライト触媒(本反応で使用するもの)と容易に分離できるようにして反応後に回収することができる装置(方法)を採用することができる。その場合、例えば吸着剤と別のゼオライト触媒(本反応で使用するもの)と異なる粒径として分離し易くしておくことが好ましい。 In the production apparatus (production method) combining the second aspect of the present invention II and the third aspect of the present invention II, an adsorbent adsorbing levulinic acid or a zeolite catalyst adsorbing levulinic acid is used as a reactor. Preferably, the adsorbent is introduced into the first stage with two reactors in series, and the adsorbent is recovered after the reaction. The adsorbent or the zeolite catalyst used for the adsorption is replaced with another zeolite catalyst. An apparatus (method) that can be easily separated from (used in this reaction) and can be recovered after the reaction can be employed. In that case, for example, it is preferable to separate the adsorbent from another zeolite catalyst (used in this reaction) with a different particle size.
 よって、本発明IIの別の好ましい態様としては、レブリン酸を含んでなる組成物から炭化水素を得る製造装置を提案することができ、該装置は、
 レブリン酸を含んでなる組成物と、前記吸着剤と、ゼオライト触媒を反応器に供給する供給器と、
 前記組成物と、前記吸着剤とを反応させ、かつ、前記吸着剤に吸着されたレブリン酸と、前記ゼオライト触媒とを加温下で反応させる反応器を備えてなるものである。
Therefore, as another preferred embodiment of the present invention II, a production apparatus for obtaining hydrocarbons from a composition comprising levulinic acid can be proposed.
A composition comprising levulinic acid, the adsorbent, and a feeder for supplying a zeolite catalyst to the reactor;
The reactor comprises a reactor for reacting the composition with the adsorbent and reacting the levulinic acid adsorbed on the adsorbent with the zeolite catalyst under heating.
 また、本発明IIの別の好ましい態様としては、レブリン酸を含んでなる組成物から炭化水素を得る製造方法を提案することができ、該方法は、
 レブリン酸を含んでなる組成物と、ゼオライト触媒を用意し、
 前記組成物と、吸着剤としての前記ゼオライト触媒とを接触させ、前記吸着剤にレブリン酸を吸着させ、
 前記吸着剤(前記ゼオライト触媒)に吸着されたレブリン酸を加温下で反応させることを含んでなるものである。
As another preferred embodiment of the present invention II, a production method for obtaining hydrocarbons from a composition comprising levulinic acid can be proposed.
Preparing a composition comprising levulinic acid and a zeolite catalyst;
Contacting the composition with the zeolite catalyst as an adsorbent to adsorb levulinic acid to the adsorbent;
The method comprises reacting levulinic acid adsorbed on the adsorbent (zeolite catalyst) under heating.
 本発明IIの第三の態様によれば、例えば、ゼオライト触媒として、ZSM-5単独を用いた場合、アセトン、酢酸、ヒドロキシエチルメチルケトンが得られた。レブリン酸からの転化率は80%以上であり、アセトン、酢酸、ヒドロキシエチルメチルケトンの選択率はそれぞれ15~20%程度であった。さらに、ZSM-5で継続反応させたところ、ヒドロキシエチルメチルケトンはビニルメチルケトンに転化したが、水素雰囲気でNi/ZSM-5で反応させると、エチルメチルケトンのほか、ベンゼン、トルエン、キシレン、プロピレンなどに転化した。そして、酢酸及びアセトンはベンゼン、トルエン、キシレン、プロピレンなどに転化した。酢酸などから芳香族などへの転化は驚くべき技術的成果であったことが云いうる。 According to the third aspect of the present invention II, for example, when ZSM-5 alone was used as the zeolite catalyst, acetone, acetic acid, and hydroxyethyl methyl ketone were obtained. The conversion from levulinic acid was 80% or more, and the selectivities of acetone, acetic acid and hydroxyethyl methyl ketone were each about 15 to 20%. Furthermore, when continued reaction with ZSM-5, hydroxyethyl methyl ketone was converted to vinyl methyl ketone, but when reacted with Ni / ZSM-5 in a hydrogen atmosphere, in addition to ethyl methyl ketone, benzene, toluene, xylene, Converted to propylene. Acetic acid and acetone were converted to benzene, toluene, xylene, propylene, and the like. It can be said that the conversion from acetic acid and the like to aromatics was a surprising technical achievement.
 本発明IIの第四の態様
 本発明IIの第四の態様は、本発明IIの第一の態様から第三の態様における製造装置(製造方法)を全て組み合わせたものが提案され、バイオマスから産業上有益な炭化水素を製造する装置及び方法が提案される。
 よって、本発明IIの第四の態様は、バイオマスから炭化水素を製造する装置であって、
 バイオマスと、酸触媒と、水と、吸着剤と、必要に応じてゼオライト触媒を反応器に供給する供給器と、
 前記バイオマスと、酸触媒と水を反応させ、レブリン酸を含んでなる組成物と、前記吸着剤とを接触させ、そして、前記吸着剤に吸着されたレブリン酸と、必要に応じて前記ゼオライト触媒とを反応させる反応器を備えてなるものである。
Fourth aspect of the present invention II The fourth aspect of the present invention II proposes a combination of all the manufacturing apparatuses (manufacturing methods) in the first to third aspects of the present invention II. An apparatus and method for producing the above beneficial hydrocarbons is proposed.
Therefore, the fourth aspect of the present invention II is an apparatus for producing hydrocarbons from biomass,
Biomass, an acid catalyst, water, an adsorbent, and a feeder for supplying a zeolite catalyst to the reactor as required;
The biomass, the acid catalyst and water are reacted, the composition comprising levulinic acid is brought into contact with the adsorbent, and the levulinic acid adsorbed on the adsorbent, and if necessary, the zeolite catalyst Is provided with a reactor that reacts with.
 また、本発明IIの別の態様では、バイオマスから炭化水素を製造する装置であって、
 原料としてのバイオマスと、酸触媒と、水とを反応器に供給する第1供給器と、
 前記バイオマスと、酸触媒とを加温下で反応させる反応器とを備えてなり、
 前記反応器で生成されたレブリン酸を含んでなる組成物を、吸着剤と、必要に応じてゼオライト触媒と共に吸着器に供給する第2供給器と、
 前記組成物と、前記吸着剤と、必要に応じて前記ゼオライト触媒を反応させて炭化水素を得る吸着器とを備えてなるものである。
Further, in another aspect of the present invention II, an apparatus for producing hydrocarbons from biomass,
A first feeder for supplying biomass as raw materials, an acid catalyst, and water to the reactor;
A reactor for reacting the biomass with an acid catalyst under heating;
A second feeder for feeding a composition comprising levulinic acid produced in the reactor to the adsorber with an adsorbent and optionally a zeolite catalyst;
The composition, the adsorbent, and an adsorber for obtaining hydrocarbons by reacting the zeolite catalyst as necessary.
 さらに、本発明IIの好ましい別の態様は、バイオマスから炭化水素を製造する方法であって、
 原料としてのバイオマスと、酸触媒と、水と、吸着剤と、必要に応じてゼオライト触媒を用意し、
 前記バイオマスと、酸触媒と水を反応させ、レブリン酸を含んでなる組成物を得てなり、
 前記組成物を前記吸着剤に接触させ、前記吸着剤にレブリン酸を吸着させ、
 レブリン酸が吸着された前記吸着剤を、必要に応じて前記ゼオライト触媒と共に加温下で反応させて炭化水素を得ることを含んでなるものである。
Furthermore, another preferable aspect of the present invention II is a method for producing hydrocarbons from biomass,
Prepare the biomass as raw materials, acid catalyst, water, adsorbent, and zeolite catalyst if necessary,
Reacting the biomass with an acid catalyst and water to obtain a composition comprising levulinic acid;
Contacting the composition with the adsorbent, adsorbing levulinic acid to the adsorbent;
The adsorbent adsorbed with levulinic acid is reacted with the zeolite catalyst, if necessary, under heating to obtain hydrocarbons.
発明の実施態様(実施例)Embodiment of the Invention (Example)
 本発明Iの態様
 1)糖液の酸発酵
 生ごみのメタン発酵槽から採取した生汚泥を冷蔵庫で約5℃で保管し、実験に使用する量を分取して24時間室温で放置した後、酸発酵菌汚泥として実験に使用した。所定量の酸発酵菌汚泥と原料の糖を所定濃度含む水溶液200mLを容積300mLの三角フラスコに入れ、ガスの流出管と液の採取管のついたゴム栓を取り付けた。ガスの採取管の出口にはテドラーバッグを、また、液の採取管の出口はゴム製のキャップを取り付けた。三角フラスコ内のガスとしては空気を用いた。この三角フラスコを水温を35℃または55℃に制御した振とう式水槽に設置し、実験を開始した。所定の日数経過後に三角フラスコを水槽から取り出し、発酵液を汚泥からろ過分離し、発酵液中の成分の分析を行った。分析は分離カラムにShimpack SCR-102H、検出器に示差屈折率検出器RID-6Aを装着した高速液体クロマトグラフ(島津製作所製LC-06)を使用し、5mmol/L過塩素酸水を移動層とし、カラム温度50℃にて行った。
Aspect 1 of the present invention 1) After storing raw sludge collected from a methane fermentation tank of acid fermented garbage of sugar solution at about 5 ° C in a refrigerator, separating the amount used for the experiment and leaving it at room temperature for 24 hours The acid-fermenting bacteria sludge was used in the experiment. A 200 mL aqueous solution containing a predetermined amount of acid-fermenting bacteria sludge and a raw sugar at a predetermined concentration was placed in a 300 mL Erlenmeyer flask, and a rubber stopper with a gas outflow tube and a liquid sampling tube was attached. A Tedlar bag was attached to the outlet of the gas sampling tube, and a rubber cap was attached to the outlet of the liquid sampling tube. Air was used as the gas in the Erlenmeyer flask. This conical flask was placed in a shaking water tank whose water temperature was controlled at 35 ° C. or 55 ° C., and the experiment was started. After elapse of a predetermined number of days, the Erlenmeyer flask was taken out from the water tank, the fermentation broth was filtered and separated from sludge, and the components in the fermentation broth were analyzed. Analysis was performed using a high-performance liquid chromatograph (Shimadzu LC-06) equipped with Shimpack SCR-102H as the separation column and differential refractive index detector RID-6A as the detector, and 5 mmol / L perchloric acid water as the moving bed. And the column temperature was 50 ° C.
 I:実施例F-1~2
 原料として濃度2%のグルコースおよびスクロース水溶液を用い、酸発酵菌汚泥を20~40g/L使用したときの結果を以下に示す。生成物収率はC収率(生成物の炭素数/原料の炭素数x100)で表す。9~14日後、糖は有機酸に高収率に転化し、総有機酸収率は約63%であった。有機酸として酢酸、乳酸および酪酸が主に生成した。その結果は下記表I-1に記載した通りであった。
Figure JPOXMLDOC01-appb-T000001
I: Examples F-1 to 2
The results when using 20-40 g / L of acid-fermenting bacterial sludge using 2% glucose and sucrose aqueous solutions as raw materials are shown below. The product yield is expressed in terms of C yield (carbon number of product / carbon number of raw material × 100). After 9-14 days, the sugar was converted to organic acid in high yield and the total organic acid yield was about 63%. Acetic acid, lactic acid and butyric acid were mainly produced as organic acids. The results were as described in Table I-1 below.
Figure JPOXMLDOC01-appb-T000001
 I:実施例F3~6
 原料として濃度1~3.33%のグルコースおよびフルクトース水溶液を用い、酸発酵菌汚泥を20~200g/L使用したときの結果を以下に示す。6~14日後の総有機酸収率は約12~約61%であった。生成有機酸として、実施例F-3では酪酸が、F-4では酪酸と酢酸が、F-5では乳酸と酪酸が、F-6では酢酸が主に生成した。その結果は下記表I-2に記載した通りであった。
Figure JPOXMLDOC01-appb-T000002
I: Examples F3-6
The results when using glucose and fructose aqueous solutions with a concentration of 1 to 3.33% as raw materials and using 20 to 200 g / L of acid-fermenting bacteria sludge are shown below. The total organic acid yield after 6-14 days was about 12 to about 61%. As produced organic acids, butyric acid was mainly produced in Example F-3, butyric acid and acetic acid were produced in F-4, lactic acid and butyric acid were produced in F-5, and acetic acid was produced in F-6. The results were as described in Table I-2 below.
Figure JPOXMLDOC01-appb-T000002
 I:実施例F7
 原料として濃度1%のグルコース水溶液を用い、酸発酵菌汚泥を50g/L使用して発酵実験を行った。F-7aは1回目の発酵で14日後に総有機酸収率は約60%であり、主生成物は酪酸と酢酸であった。このとき生成液から分離した酸発酵菌汚泥を用いてこれに再度グルコース水溶液を加え、2回目の発酵を行った。F-7bは2回目の結果であり、12日後に総有機酸収率約51%、主生成物として1回目と同様に酪酸と酢酸を得た。このことにより、繰り返し発酵を行うことができることがわかる。その結果は下記表I-3に記載した通りであった。
Figure JPOXMLDOC01-appb-T000003
I: Example F7
A fermentation experiment was conducted using a glucose aqueous solution with a concentration of 1% as a raw material and 50 g / L of acid-fermenting bacterial sludge. F-7a had a total organic acid yield of about 60% after 14 days in the first fermentation, and the main products were butyric acid and acetic acid. At this time, using the acid-fermenting bacteria sludge separated from the product solution, an aqueous glucose solution was again added thereto, and the second fermentation was performed. F-7b is the second result. After 12 days, the total organic acid yield was about 51%, and butyric acid and acetic acid were obtained as the main products as in the first time. This shows that it is possible to perform repeated fermentation. The results were as described in Table I-3 below.
Figure JPOXMLDOC01-appb-T000003
 I:実施例F8~9
 原料として濃度10%のグルコース水溶液を用い、酸発酵菌汚泥を75~100g/L使用して発酵実験を行った。12日後、総有機酸収率は約20%であり、主生成物は乳酸と酪酸であった。このことにより、通常の発酵と比べきわめて高濃度の糖液を用いても有機酸に転化できることがわかる。その結果は下記表I-4に記載した通りであった。
Figure JPOXMLDOC01-appb-T000004
I: Examples F8-9
A fermentation experiment was conducted using a glucose aqueous solution having a concentration of 10% as a raw material and 75-100 g / L of acid-fermenting bacteria sludge. After 12 days, the total organic acid yield was about 20% and the main products were lactic acid and butyric acid. From this, it can be seen that even an extremely high concentration sugar solution can be converted into an organic acid as compared with ordinary fermentation. The results were as described in Table I-4 below.
Figure JPOXMLDOC01-appb-T000004
 2)有機酸のゼオライト転化
 内径6mm、長さ600mmのSUS-316製の反応管にゼオライト触媒を所定量充填し、温度コントローラーの付いた電気炉内に設置した。反応管の上部の入口には、プランジャーポンプを用いて原料液を、またボンベからキャリアーガスを導入した。反応管の下部の出口には氷水で冷却した凝縮器を接続し、生成液を回収した。また凝縮器の出口にはテドラーバッグを取り付け、生成ガスを回収した。 生成液の組成はキャピラリカラムを装着したFID検出器付きのガスクロマトグラフ(アジレント製6890)と、同種のキャピラリカラムを装着したガスクロマトグラフ質量分析計(日本電子製JMS9000GC)を用いて分析した。また、生成ガスの組成は、充填カラムとしてシマライト/SM-6、Molecular Sieve 13X、Porapak-Qをそれぞれ装着したガスクロマトグラフを用いて分析した。
2) Zeolite conversion of organic acid A predetermined amount of zeolite catalyst was packed in a SUS-316 reaction tube with an inner diameter of 6 mm and a length of 600 mm, and the tube was placed in an electric furnace equipped with a temperature controller. A raw material liquid was introduced into the upper inlet of the reaction tube using a plunger pump, and a carrier gas was introduced from a cylinder. A condenser cooled with ice water was connected to the outlet at the bottom of the reaction tube, and the product liquid was recovered. A Tedlar bag was attached to the outlet of the condenser to collect the generated gas. The composition of the product solution was analyzed using a gas chromatograph with an FID detector (6890 manufactured by Agilent) equipped with a capillary column and a gas chromatograph mass spectrometer (JEOL JMS9000GC) equipped with the same kind of capillary column. The composition of the product gas was analyzed using a gas chromatograph equipped with Cimalite / SM-6, Molecular Sieve 13X, and Porapak-Q as packed columns.
 I:実施例ZA-1
 原料液として実施例F-2で生成した有機酸混合物を用い、触媒としてSi/Al比が27のZSM-5のペレット(バインダーとしてアルミナを20%含有)を使用して、転化反応を1時間行った。反応条件と生成物収率を表I-5に示す。この結果、糖液の酸発酵で得られた酢酸、乳酸、酪酸混合液から、ベンゼン、トルエン、キシレンを主成分とする芳香族化合物と、エチレン、プロピレン、ブテンを主成分とする炭化水素ガスを高収率に得ることができた。 とくに、芳香族は化学原料として重要なベンゼン、トルエン、キシレンが主体であり、重質な芳香族の生成は抑制することができた。また、トリメチルベンゼンではポリイミドの原料として重要な出発物質である1,2,4-トリメチルベンゼンの収率が高く、また、メチルナフタレンでは用途の大きい2-メチルナフタレンの収率が高い特徴を有する。これらの有用な生成物の選択性の高さは、使用したZSM-5の形状選択性が本反応で発揮されたものと考えられる。その結果は下記表I-5に記載した通りであった。
Figure JPOXMLDOC01-appb-T000005
I: Example ZA-1
Using the organic acid mixture produced in Example F-2 as a raw material liquid and using ZSM-5 pellets (containing 20% alumina as a binder) having a Si / Al ratio of 27 as a catalyst, the conversion reaction was carried out for 1 hour. went. Reaction conditions and product yields are shown in Table I-5. As a result, an aromatic compound mainly composed of benzene, toluene and xylene and a hydrocarbon gas mainly composed of ethylene, propylene and butene are obtained from a mixture of acetic acid, lactic acid and butyric acid obtained by acid fermentation of the sugar solution. A high yield could be obtained. In particular, aromatics mainly consisted of benzene, toluene and xylene, which are important as chemical raw materials, and the production of heavy aromatics could be suppressed. Trimethylbenzene is characterized by a high yield of 1,2,4-trimethylbenzene, which is an important starting material for polyimide, and methylnaphthalene is characterized by a high yield of 2-methylnaphthalene, which is used for many purposes. The high selectivity of these useful products is considered to be due to the fact that the shape selectivity of the ZSM-5 used was exhibited in this reaction. The results were as described in Table I-5 below.
Figure JPOXMLDOC01-appb-T000005
 I:実施例ZA-2~4
 原料液として、市販の乳酸の50%水溶液、市販の酪酸、酢酸を用い、触媒としてZSM-5を用いて、転化反応を1時間行った。反応条件と生成物収率を表I-6に示す。この結果、実施例ZA-1と同様、ベンゼン、トルエン、キシレンを主成分とする芳香族化合物と、エチレン、プロピレン、ブテンを主成分とする炭化水素ガスを高収率に得ることができた。その結果は下記表I-6に記載した通りであった。
I: Examples ZA-2 to 4
A conversion reaction was carried out for 1 hour using a 50% aqueous solution of lactic acid as a raw material solution, commercially available butyric acid and acetic acid, and ZSM-5 as a catalyst. Reaction conditions and product yields are shown in Table I-6. As a result, similar to Example ZA-1, an aromatic compound mainly composed of benzene, toluene and xylene and a hydrocarbon gas mainly composed of ethylene, propylene and butene could be obtained in high yield. The results were as described in Table I-6 below.
 I:実施例ZA-5~11
 原料液として市販の酢酸を用い、触媒として種々のゼオライトと、Si/Al比の異なるZSM-5を用いて、転化反応を1時間行った。YはY型フォージャサイトである。また、無触媒での反応も行った。その結果は下記表I-7に記載した通りであった。
Figure JPOXMLDOC01-appb-T000007
I: Examples ZA-5 to 11
The conversion reaction was carried out for 1 hour using commercially available acetic acid as a raw material liquid, various zeolites as catalysts and ZSM-5 having a different Si / Al ratio. Y is a Y-type fauger site. A non-catalytic reaction was also carried out. The results were as described in Table I-7 below.
Figure JPOXMLDOC01-appb-T000007
 この結果、無触媒では酢酸はほとんど転化せず、Y型フォージャサイトやモルデナイトではアセトン、メチルエチルケトン(MEK)、ブテン(C4’)は生成したが芳香族は生成しなかった。また、ZSM-5とZSM-5を用いた場合、いずれも、ベンゼン、トルエン、キシレンを主成分とする芳香族化合物と、エチレン、プロピレン、ブテンを主成分とする炭化水素ガスを高収率に得ることができた。とくに、Si/Al比が50以下のZSM-5では高い芳香族収率が得られた。 As a result, acetic acid was hardly converted without catalyst, and Y-type faujasite and mordenite produced acetone, methyl ethyl ketone (MEK) and butene (C4 '), but no aromatics. In addition, when ZSM-5 and ZSM-5 are used, both aromatic compounds mainly composed of benzene, toluene and xylene and hydrocarbon gases mainly composed of ethylene, propylene and butene are obtained in high yield. I was able to get it. In particular, a high aromatic yield was obtained with ZSM-5 having a Si / Al ratio of 50 or less.
 I:実施例ZA-12~14
 実施例ZA-5~7の反応を継続し、約7時間経過後の反応結果を実施例ZA-12~14として示す。表I-8からわかるように、Si/Al比が80以上のZSM-5を用いると、長時間経過後も反応性が維持され、長時間の反応では高い活性と芳香族収率が得られることがわかった。その結果は下記表I-8に記載した通りであった。
Figure JPOXMLDOC01-appb-T000008
I: Examples ZA-12 to 14
The reactions of Examples ZA-5 to 7 are continued, and the reaction results after about 7 hours are shown as Examples ZA-12 to 14. As can be seen from Table I-8, when ZSM-5 having a Si / Al ratio of 80 or more is used, the reactivity is maintained even after a long period of time, and a high activity and aromatic yield are obtained in a long-time reaction. I understood it. The results were as described in Table I-8 below.
Figure JPOXMLDOC01-appb-T000008
本発明IIの態様
 II:本発明IIの第一の態様
 内径7.5mm、長さ20mm、内容積8.8mLのSUS316製の水熱反応管を用意した。この反応管に原料の水溶液7mLと酸触媒を入れ、反応管のキャップを取り付け密閉した。所定温度に加熱したサンドバスにこの反応器を浸すことにより反応を行った。反応管を浸してから50秒後に反応管内の原料液の温度がサンドバスの温度に達するので、この時刻を反応開始時刻とした。所定の反応時間経過後、反応管をサンドバスから取り出して急冷し、生成物をろ過して生成液と炭素質物質を分離した。生成液中の成分の分析は高速液体クロマトグラフで行った。また、有機炭素分析計を用いて生成液と原料液の有機炭素量を測定し、その差を副生炭素質物質量とした。生成物の収率は炭素量基準で表す。
Embodiment II of Invention II : First Embodiment of Invention II A hydrothermal reaction tube made of SUS316 having an inner diameter of 7.5 mm, a length of 20 mm, and an internal volume of 8.8 mL was prepared. The reaction tube was charged with 7 mL of an aqueous raw material solution and an acid catalyst, and a reaction tube cap was attached and sealed. The reaction was performed by immersing the reactor in a sand bath heated to a predetermined temperature. Since the temperature of the raw material liquid in the reaction tube reached the temperature of the sand bath 50 seconds after the reaction tube was immersed, this time was taken as the reaction start time. After a predetermined reaction time, the reaction tube was taken out of the sand bath and quenched, and the product was filtered to separate the product liquid and the carbonaceous material. The components in the product liquid were analyzed by a high performance liquid chromatograph. Moreover, the amount of organic carbon in the product liquid and the raw material liquid was measured using an organic carbon analyzer, and the difference was defined as the amount of by-product carbonaceous material. Product yields are expressed on a carbon basis.
[規則26に基づく補充 30.04.2010] 
 II:実施例H-1乃至比較例H-4-R(酸触媒の効果および反応温度の影響)
 酸触媒として塩酸を用いて様々な温度で反応を行った。酸触媒の効果を調べるため、酸触媒を加えない場合の実験も行った。その結果は下記表II-1に記載した通りであった。
 酸触媒を用いた場合、250℃や300℃の高温では数分から10分程度の短時間で、また180℃の低温では30min以上の反応時間で高い転化率と、高いレブリン酸収率が得られた。一方、酸触媒を加えなかった場合には300℃の高温でも転化率は低く、また、レブリン酸はほとんど生成しなかった。
 これらの結果から、酸触媒として塩酸の効果が著しいことがわかる。また、高温では炭素質物質が20%程度副生するが、低温では炭素質物質の生成が抑制されることがわかった。
Figure WO-DOC-TABLE-II-1
[Supplement under rule 26 30.04.2010]
II: Example H-1 to Comparative Example H-4-R (Effect of acid catalyst and influence of reaction temperature)
The reaction was carried out at various temperatures using hydrochloric acid as the acid catalyst. In order to investigate the effect of the acid catalyst, an experiment was also conducted in the case where no acid catalyst was added. The results were as described in Table II-1 below.
When an acid catalyst is used, a high conversion rate and a high levulinic acid yield can be obtained in a short time of several minutes to 10 minutes at a high temperature of 250 ° C. or 300 ° C. and a reaction time of 30 min or more at a low temperature of 180 ° C. It was. On the other hand, when no acid catalyst was added, the conversion was low even at a high temperature of 300 ° C., and almost no levulinic acid was produced.
From these results, it can be seen that the effect of hydrochloric acid as an acid catalyst is remarkable. It was also found that the carbonaceous material by-produces about 20% at high temperatures, but the production of carbonaceous materials is suppressed at low temperatures.
Figure WO-DOC-TABLE-II-1
[規則26に基づく補充 30.04.2010] 
 II:実施例H-6乃至H-10(酸濃度および酸の種類の効果)
 酸触媒の濃度と酸触媒の種類を変えて反応を行った。その結果は、下記表II-2に記載した通りであった。塩酸や硫酸などの液体酸を0.01mol/L以上の濃度で用いたとき、高い転化率と高いレブリン酸収率が得られた。とくに約0.05から約3mol/Lの濃度がきわめて高いレブリン酸収率を得るのに有効であった。
 また、酸触媒としてゼオライト触媒たとえばZSM-5も液体酸と同様、レブリン酸の収率を高める効果がある。一般にレブリン酸とギ酸は5:1のC収率で得られるが、ゼオライト触媒を用いた場合は生成液中のレブリン酸はギ酸の5倍より少なく、その多くがゼオライト触媒内に保持されていると考えられる。したがって実際に生成したレブリン酸は表中の値より大きいものと推定される。
Figure WO-DOC-TABLE-II-2
[Supplement under rule 26 30.04.2010]
II: Examples H-6 to H-10 (effect of acid concentration and acid type)
The reaction was carried out by changing the concentration of acid catalyst and the type of acid catalyst. The results were as described in Table II-2 below. When a liquid acid such as hydrochloric acid or sulfuric acid was used at a concentration of 0.01 mol / L or higher, a high conversion rate and a high levulinic acid yield were obtained. In particular, a concentration of about 0.05 to about 3 mol / L was effective in obtaining a very high levulinic acid yield.
Further, as an acid catalyst, a zeolite catalyst such as ZSM-5 has an effect of increasing the yield of levulinic acid as well as the liquid acid. In general, levulinic acid and formic acid are obtained in a C yield of 5: 1. However, when a zeolite catalyst is used, the levulinic acid in the product is less than 5 times that of formic acid, and most of it is retained in the zeolite catalyst. it is conceivable that. Therefore, the levulinic acid actually produced is estimated to be larger than the values in the table.
Figure WO-DOC-TABLE-II-2
[規則26に基づく補充 30.04.2010] 
 II:実施例H-11及びH-12(原料濃度)
 本発明IIの方法を高い原料濃度で行った。その結果は下記表II-3の通りであった。ただし、表中の原料濃度は水に対する原料の質量%である。この結果、40%近いきわめて高い原料濃度でも高いレブリン酸収率が得られることがわかった。
Figure WO-DOC-TABLE-II-3
[Supplement under rule 26 30.04.2010]
II: Examples H-11 and H-12 (raw material concentration)
The process of Invention II was carried out at a high raw material concentration. The results are shown in Table II-3 below. However, the raw material concentration in the table is mass% of the raw material with respect to water. As a result, it was found that a high levulinic acid yield can be obtained even at an extremely high raw material concentration close to 40%.
Figure WO-DOC-TABLE-II-3
[規則26に基づく補充 30.04.2010] 
 II:実施例H-13乃至比較例H-15-R及びH-19R(原料の種類)
 原料としてグルコース以外に単糖類のフルクトース、2糖類のスクロース、2糖およびオリゴ糖を含む廃糖蜜を用い、反応を行った。その結果は下記表II-4の通りであった。廃糖蜜はサトウキビの糖蜜からスクロースを結晶化分離した後の残渣であり、分析の結果、糖類を40wt%含んでいた。
Figure WO-DOC-TABLE-II-4
 括弧内は、収率として、廃糖蜜に含まれる糖類に対する値を示す。
[Supplement under rule 26 30.04.2010]
II: Example H-13 to Comparative Examples H-15-R and H-19R (types of raw materials)
In addition to glucose, the reaction was performed using waste molasses containing monosaccharide fructose, disaccharide sucrose, disaccharide and oligosaccharide in addition to glucose. The results are shown in Table II-4 below. Waste molasses was the residue after crystallizing and separating sucrose from sugarcane molasses, and as a result of analysis, it contained 40 wt% of sugars.
Figure WO-DOC-TABLE-II-4
The values in parentheses indicate the value for the saccharide contained in the molasses as the yield.
[規則26に基づく補充 30.04.2010] 
 II:本発明IIの第二の態様
 II:実施例A-1~A-3
 内径7.5mm、長さ20mm、内容積8.8mLのSUS316製の吸着管を用意した。この吸着管にレブリン酸を0.05mol/Lの濃度で含有する水溶液7mLと、吸着剤としてZSM-5(Si/Al=27)のペレット1gを導入し、吸着管のキャップを取り付け密閉した。
 所定温度に加熱したサンドバスにこの吸着管を浸し、所定時間吸着させた後に吸着管を取り出し、液を回収した。この液中のレブリン酸の濃度を高速液体クロマトグラフおよび有機炭素分析計で測定し、レブリン酸の吸着率を求めた。その結果は下記表II-5に記載した通りであった。
 実施例A-1~A-3に、様々な吸着温度での結果を示す。実施例A-1では常温で吸着を行い、高い吸着率でレブリン酸を吸着分離することができた。また、実施例A-2およびA-3で示されるように、加温した状態で吸着を行うと、常温に比べ短い吸着時間で吸着を行うことができた。180℃の場合、吸着器内の圧力は約1MPaとなった。
Figure WO-DOC-TABLE-II-5
[Supplement under rule 26 30.04.2010]
II: Second aspect II of the present invention II : Examples A-1 to A-3
An adsorption tube made of SUS316 having an inner diameter of 7.5 mm, a length of 20 mm, and an internal volume of 8.8 mL was prepared. 7 mL of an aqueous solution containing levulinic acid at a concentration of 0.05 mol / L and 1 g of ZSM-5 (Si / Al = 27) pellets as an adsorbent were introduced into the adsorption tube, and the cap of the adsorption tube was attached and sealed.
The adsorbing tube was immersed in a sand bath heated to a predetermined temperature and adsorbed for a predetermined time, and then the adsorbing tube was taken out to recover the liquid. The concentration of levulinic acid in this solution was measured with a high performance liquid chromatograph and an organic carbon analyzer, and the adsorption rate of levulinic acid was determined. The results were as described in Table II-5 below.
Examples A-1 to A-3 show the results at various adsorption temperatures. In Example A-1, adsorption was performed at room temperature, and levulinic acid could be adsorbed and separated at a high adsorption rate. Further, as shown in Examples A-2 and A-3, when adsorption was performed in a heated state, adsorption could be performed in a shorter adsorption time than at normal temperature. In the case of 180 ° C, the pressure in the adsorber was about 1 MPa.
Figure WO-DOC-TABLE-II-5
[規則26に基づく補充 30.04.2010] 
 II:実施例A-4
 実施例A-1と同じ吸着器を用い、サンドバスを2つ用意して、第1ステップは180℃、第2ステップは30℃で吸着を行った。吸着剤としてZSM-5(Si/Al=27)のペレットを0.1~2mmのサイズに破砕して用いた。その結果は下記表II-6に記載した通りであった。その結果、短時間できわめて高い吸着率でレブリン酸を吸着分離することができた。
Figure WO-DOC-TABLE-II-6
[Supplement under rule 26 30.04.2010]
II: Example A-4
Using the same adsorber as in Example A-1, two sand baths were prepared, and the first step was performed at 180 ° C., and the second step was performed at 30 ° C. As an adsorbent, ZSM-5 (Si / Al = 27) pellets were crushed to a size of 0.1 to 2 mm and used. The results were as described in Table II-6 below. As a result, levulinic acid could be adsorbed and separated with a very high adsorption rate in a short time.
Figure WO-DOC-TABLE-II-6
 II:実施例A-5
 本発明IIの第一の態様における水熱反応管と、吸着剤を充填した吸着管と、水熱反応の生成液を水熱反応管から吸着管へ、また必要に応じて吸着管から水熱反応管へ送ることのできる配管とから成る装置を用いて、本発明IIの第一の態様における水熱反応に引き続き、吸着操作を行った。連結配管のバルブ操作により、本発明IIの第一の態様における反応を終了した後に生成液を反応管から吸着管に送り、吸着管で所定時間吸着剤に接触させて吸着させた後、生成液を水熱反応管に戻した。
 本発明IIの第一の態様における反応は、実施例H-7と同じ条件、すなわち、反応液7mL、グルコース濃度1.8wt%、酸触媒の塩酸濃度0.5mol/L、反応温度300℃、反応時間3minで行った。吸着管には吸着剤として実施例A-4と同じZSM-5のペレット2gを充填した。吸着率は、吸着剤に吸着させた後の生成液中のレブリン酸量を測定し、実施例H-7の生成液中のレブリン酸量と比較して算出した。
 その結果、吸着温度180℃、吸着時間5分で吸着を行ったときレブリン酸の吸着率は51%であった。また、吸着操作を2つの温度で行い、第1ステップを吸着温度180℃、吸着時間31分、第2ステップを吸着温度90℃、吸着時間30分としたとき、レブリン酸の吸着率は87%であった。このようにして、反応液を蒸留することなく、高温でレブリン酸を吸着分離し、反応液を再度水熱反応に使用することができた。
II: Example A-5
The hydrothermal reaction tube in the first aspect of the present invention II, the adsorption tube filled with the adsorbent, and the hydrothermal reaction product liquid from the hydrothermal reaction tube to the adsorption tube, and if necessary, from the adsorption tube to hydrothermal The adsorption operation was performed following the hydrothermal reaction in the first aspect of the present invention II using an apparatus comprising a pipe that can be sent to the reaction tube. After the reaction in the first aspect of the present invention II is completed by operating the valve of the connecting pipe, the product solution is sent from the reaction tube to the adsorption tube, and is adsorbed by contacting the adsorbent with the adsorption tube for a predetermined time. Was returned to the hydrothermal reaction tube.
The reaction in the first aspect of the present invention II was carried out under the same conditions as in Example H-7, that is, 7 mL of reaction solution, 1.8 wt% glucose concentration, 0.5 mol / L hydrochloric acid concentration of acid catalyst, reaction temperature 300 ° C., reaction time It took 3 minutes. The adsorption tube was filled with 2 g of the same ZSM-5 pellets as in Example A-4 as an adsorbent. The adsorption rate was calculated by measuring the amount of levulinic acid in the product solution after adsorbed on the adsorbent and comparing it with the amount of levulinic acid in the product solution of Example H-7.
As a result, the adsorption rate of levulinic acid was 51% when adsorption was performed at an adsorption temperature of 180 ° C. and an adsorption time of 5 minutes. When the adsorption operation is performed at two temperatures, the first step is adsorption temperature 180 ° C, adsorption time 31 minutes, and the second step is adsorption temperature 90 ° C, adsorption time 30 minutes, the adsorption rate of levulinic acid is 87% Met. In this way, levulinic acid was adsorbed and separated at a high temperature without distilling the reaction solution, and the reaction solution could be used again for the hydrothermal reaction.
 II:本発明IIの第三の態様
 レブリン酸またはレブリン酸含有液を接触転化させる本発明IIの反応を以下のように行った。
II: Third embodiment of the present invention II The reaction of the present invention II for catalytic conversion of levulinic acid or a levulinic acid-containing solution was carried out as follows.
 触媒反応装置として、電気炉内に設置した内径6mm、外径10mm、長さ600mmのSUS-306製の反応管から成る固定層反応器を使用し、これに触媒を充填した。固定層反応器の上流には予熱管が接続されており、ここに原料液または原料液を吸着した吸着剤と、キャリアーガスとして水素または窒素を送入し、約300℃に加熱して原料液を気化した。反応器の下流には、生成物回収器が接続されており、氷水で0℃に冷却し、生成物中の液状成分を凝縮させて回収した。生成物回収器の下流にはガスバッグを取り付け、生成ガスを捕集した。 As a catalyst reaction apparatus, a fixed bed reactor comprising a reaction tube made of SUS-306 having an inner diameter of 6 mm, an outer diameter of 10 mm, and a length of 600 mm installed in an electric furnace was used, and this was filled with a catalyst. A preheating tube is connected upstream of the fixed bed reactor. The adsorbent that adsorbs the raw material liquid or the raw material liquid and hydrogen or nitrogen as the carrier gas are fed into this, and the raw material liquid is heated to about 300 ° C. Vaporized. A product recovery unit was connected downstream of the reactor, cooled to 0 ° C. with ice water, and the liquid component in the product was condensed and recovered. A gas bag was attached downstream of the product collector to collect the generated gas.
 液状生成物はFID検出器付きガスクロマトグラフ(キャピラリカラムDB-1を使用)およびガスクロマトグラフ質量分析計(キャピラリカラムDB-1およびDB-FFAPを使用)で分析した。また、生成ガスはTCD検出器付きガスクロマトグラフ(充填カラムのポラパックQおよびモレキュラーシーブ13Xを使用)にて分析した。 The liquid product was analyzed with a gas chromatograph with FID detector (using capillary column DB-1) and a gas chromatograph mass spectrometer (using capillary columns DB-1 and DB-FFAP). The product gas was analyzed with a gas chromatograph equipped with a TCD detector (using Polapack Q and molecular sieve 13X in the packed column).
 Ni/ZSM-5を次のようにして調製した。Zeolyst社製のZSM-5ペレット(Si/Al=27のZSM-5を80wt%、バインダーとしてアルミナ20wt%を含む)に硝酸ニッケル(Ni(NO3)2・6H2O水溶液を含浸させ、100℃で2時間乾燥し、マッフル炉で450℃にて3時間焼成した。これを固定層装置に充填し、450℃で1時間水素還元し、Niを5wt%含むNi/ZSM-5とした。 Ni / ZSM-5 was prepared as follows. Zeolyst ZSM-5 pellets (80% by weight of ZSM-5 with Si / Al = 27 and 20% by weight of alumina as binder) were impregnated with nickel nitrate (Ni (NO 3 ) 2 · 6H 2 O aqueous solution. The mixture was dried at 2 ° C. for 2 hours and baked in a muffle furnace at 450 ° C. for 3 hours, filled in a fixed bed apparatus, and hydrogen-reduced at 450 ° C. for 1 hour to obtain Ni / ZSM-5 containing 5 wt% Ni.
 II:実施例C-1
 実施例H-12(グルコース濃度36%、塩酸0.1mol/L、反応温度300℃、反応時間3分)の水熱反応で得た生成液を90℃でZSM-5に吸着させ、これを300℃で脱着させてレブリン酸を50%含む水溶液を得た。これをZSM-5ペレットを充填した前期の固定層反応器の予熱管に供給した。キャリアガスには窒素を用い、450℃で反応させた。表II-7に示されているように、この反応により、炭化水素生成物として含酸素炭化水素のヒドロキシエチルメチルケトン、アセトン、酢酸を高収率に得ることができた。
II: Example C-1
The product obtained from the hydrothermal reaction of Example H-12 (glucose concentration 36%, hydrochloric acid 0.1 mol / L, reaction temperature 300 ° C., reaction time 3 minutes) was adsorbed on ZSM-5 at 90 ° C. Desorption was carried out at 0 ° C. to obtain an aqueous solution containing 50% levulinic acid. This was supplied to the preheating tube of the fixed bed reactor of the previous period packed with ZSM-5 pellets. Nitrogen was used as a carrier gas and reacted at 450 ° C. As shown in Table II-7, as a result of this reaction, oxygen-containing hydrocarbons such as hydroxyethyl methyl ketone, acetone, and acetic acid were obtained in high yield as the hydrocarbon products.
 II:実施例C-2~C-6
 実施例C-1で得られるヒドロキシエチルメチルケトン、アセトン、酢酸を用い、前期の触媒反応装置を使用して、表II-7に示されたゼオライト触媒、反応条件でさらに反応を行った。その結果は下記表II-7に記載した通りであった。
II: Examples C-2 to C-6
Using hydroxyethyl methyl ketone, acetone, and acetic acid obtained in Example C-1, the previous catalyst reaction apparatus was used, and the reaction was further performed with the zeolite catalysts and reaction conditions shown in Table II-7. The results were as described in Table II-7 below.
 その結果、ヒドロキシエチルメチルケトンからは、低い水素圧下ではエチルメチルケトン、エチルビニルケトン、アセトン、酢酸などの含酸素炭化水素が高収率に得られ、また比較的高い水素圧下ではベンゼン、トルエン、キシレンなどの単環芳香族炭化水素や、メチルナフタレン、ジメチルナフタレンなどの2環芳香族炭化水素が高収率に得られた。 As a result, oxygen-containing hydrocarbons such as ethyl methyl ketone, ethyl vinyl ketone, acetone, and acetic acid are obtained in high yield from hydroxyethyl methyl ketone under low hydrogen pressure, and benzene, toluene, Monocyclic aromatic hydrocarbons such as xylene and bicyclic aromatic hydrocarbons such as methylnaphthalene and dimethylnaphthalene were obtained in high yield.
 また、アセトン、酢酸からは、ベンゼン、トルエン、キシレンなどの単環芳香族炭化水素、メチルナフタレン、ジメチルナフタレンなどの2環芳香族炭化水素、エチレン、プロピレン、ブテンなどの低級オレフィン炭化水素、プロパンなどの低級パラフィン炭化水素が高収率に得られた。本反応をさらに長時間継続すると、低級オレフィン炭化水素/低級パラフィン炭化水素比は増大した。 From acetone and acetic acid, monocyclic aromatic hydrocarbons such as benzene, toluene and xylene, bicyclic aromatic hydrocarbons such as methylnaphthalene and dimethylnaphthalene, lower olefin hydrocarbons such as ethylene, propylene and butene, propane, etc. The lower paraffin hydrocarbon was obtained in high yield. When this reaction was continued for a longer time, the lower olefin hydrocarbon / lower paraffin hydrocarbon ratio increased.
[規則26に基づく補充 30.04.2010] 
 これらの反応で得られた炭化水素化合物は、化学工業で使用する基幹化学物質である。すなわち、ベンゼン、トルエン、キシレンなどの単環芳香族炭化水素や、エチレン、プロピレン、ブテンなどの低級オレフィン炭化水素は、石油化学工業に必要な出発原料として最も重要な化合物である。メチルナフタレンやジメチルナフタレンなどの2環芳香族化合物は、染料、医薬、機能性ポリマー原料としてきわめて重要な化合物である。また、アセトン、エチルメチルケトン、酢酸などの含酸素炭化水素は、化学工業における重要な中間体化合物であり、ビニルメチルケトンは殺虫剤や重合剤やステロイド合成中間体として重要な化合物である。
Figure WO-DOC-TABLE-II-7
[Supplement under rule 26 30.04.2010]
The hydrocarbon compounds obtained by these reactions are basic chemical substances used in the chemical industry. That is, monocyclic aromatic hydrocarbons such as benzene, toluene and xylene and lower olefin hydrocarbons such as ethylene, propylene and butene are the most important compounds as starting materials necessary for the petrochemical industry. Bicyclic aromatic compounds such as methylnaphthalene and dimethylnaphthalene are extremely important compounds as dyes, pharmaceuticals, and functional polymer raw materials. In addition, oxygen-containing hydrocarbons such as acetone, ethyl methyl ketone, and acetic acid are important intermediate compounds in the chemical industry, and vinyl methyl ketone is an important compound as an insecticide, a polymerization agent, and a steroid synthesis intermediate.
Figure WO-DOC-TABLE-II-7

Claims (14)

  1.  芳香族炭化水素又はケトン化合物を製造する装置であって、
     有機酸を、ゼオライト触媒と反応させる反応器を備えてなる、製造装置。
    An apparatus for producing an aromatic hydrocarbon or ketone compound,
    A production apparatus comprising a reactor for reacting an organic acid with a zeolite catalyst.
  2.  前記有機酸が酸発酵菌により発酵させて得られたものである、請求項1に記載の製造装置。 The manufacturing apparatus according to claim 1, wherein the organic acid is obtained by fermentation with acid-fermenting bacteria.
  3.  前記有機酸が、バイオマスを酸発酵菌により発酵させて得られたものである、請求項1に記載の製造装置。 The manufacturing apparatus according to claim 1, wherein the organic acid is obtained by fermenting biomass with acid-fermenting bacteria.
  4.  バイオマスから芳香族炭化水素又はケトン化合物を製造する装置であって、
     バイオマスと、酸発酵菌とを第1反応器に供給する第1供給器と、
     前記バイオマスを、前記酸発酵菌により発酵させて、有機酸を生成する第1反応器と、
     生成した有機酸と、ゼオライト触媒を第2反応器に供給する第2供給器と、
     前記有機酸を、前記ゼオライト触媒と反応させる第2反応器を備えてなる、製造装置。
    An apparatus for producing an aromatic hydrocarbon or ketone compound from biomass,
    A first feeder for supplying biomass and acid-fermenting bacteria to the first reactor;
    A first reactor for fermenting the biomass with the acid-fermenting bacteria to produce an organic acid;
    A second feeder for feeding the produced organic acid and a zeolite catalyst to the second reactor;
    A production apparatus comprising a second reactor for reacting the organic acid with the zeolite catalyst.
  5.  芳香族炭化水素又はケトン化合物を製造する方法であって、
     前記有機酸を、ゼオライト触媒と反応させることを含んでなる、製造方法。
    A method for producing an aromatic hydrocarbon or ketone compound comprising:
    A process comprising reacting the organic acid with a zeolite catalyst.
  6.  バイオマスから芳香族炭化水素又はケトン化合物を製造する方法であって、
     バイオマスと、酸発酵菌とを用意し、
     前記バイオマスを、前記酸発酵菌により発酵させて、有機酸を生成し、
     生成した有機酸と、ゼオライト触媒とを反応させることを含んでなる、製造方法。
    A method for producing an aromatic hydrocarbon or ketone compound from biomass,
    Prepare biomass and acid-fermenting bacteria,
    Fermenting the biomass with the acid-fermenting bacteria to produce an organic acid,
    A production method comprising reacting a produced organic acid with a zeolite catalyst.
  7.  バイオマスからレブリン酸を生成する製造装置であって、
     バイオマスと、酸触媒と、水とを反応器に供給する供給器と、
     前記バイオマスと、前記酸触媒と、前記水を反応させる反応器とを備えてなる、製造装置。
    A production device for producing levulinic acid from biomass,
    A feeder for supplying biomass, an acid catalyst and water to the reactor;
    A production apparatus comprising the biomass, the acid catalyst, and a reactor for reacting the water.
  8.  バイオマスからレブリン酸を生成する方法であって、
     バイオマスと、酸触媒と、水とを用意し、
     前記バイオマスと、前記酸触媒と、前記水とを反応させることを含んでなる、製造方法。
    A method for producing levulinic acid from biomass,
    Prepare biomass, acid catalyst and water,
    A production method comprising reacting the biomass, the acid catalyst, and the water.
  9.  レブリン酸を含んでなる組成物からレブリン酸を分離する装置であって、
     レブリン酸を含んでなる組成物と、吸着剤とを吸着器に供給する供給器と、
     前記組成物と、前記吸着剤とを接触させ、前記吸着剤にレブリン酸を吸着させる吸着器とを備えてなる、分離装置。
    An apparatus for separating levulinic acid from a composition comprising levulinic acid,
    A feeder for supplying the adsorber with a composition comprising levulinic acid and an adsorbent;
    A separation apparatus comprising: an adsorber that brings the composition into contact with the adsorbent and adsorbs levulinic acid to the adsorbent.
  10.  レブリン酸を含んでなる組成物からレブリン酸を分離する方法であって、
     レブリン酸を含んでなる組成物と、吸着剤とを接触させ、前記組成物からレブリン酸を前記吸着剤に吸着させることを含んでなる、分離方法。
    A method for separating levulinic acid from a composition comprising levulinic acid, comprising:
    A separation method comprising contacting a composition comprising levulinic acid with an adsorbent and adsorbing levulinic acid from the composition onto the adsorbent.
  11.  レブリン酸から炭化水素を得る製造装置であって、
     レブリン酸と、ゼオライト触媒とを反応器に供給する供給器と、
     前記レブリン酸と、前記ゼオライト触媒とを反応させる反応器とを備えてなる、製造装置。
    An apparatus for obtaining hydrocarbons from levulinic acid,
    A feeder for supplying levulinic acid and a zeolite catalyst to the reactor;
    The manufacturing apparatus provided with the reactor which makes the said levulinic acid and the said zeolite catalyst react.
  12.  レブリン酸から炭化水素を製造する方法であって、
     レブリン酸と、ゼオライト触媒とを用意し、
     前期レブリン酸と、前記ゼオライト触媒とを反応させることを含んでなる、製造方法。
    A method for producing hydrocarbons from levulinic acid,
    Prepare levulinic acid and zeolite catalyst,
    A production method comprising reacting levulinic acid with the zeolite catalyst.
  13.  前記有機酸が、請求項7の装置により、又は請求項8の製造方法により得られたものである、請求項1に記載の製造装置。 The manufacturing apparatus according to claim 1, wherein the organic acid is obtained by the apparatus according to claim 7 or by the manufacturing method according to claim 8.
  14.  前記有機酸が、請求項7の装置により、又は請求項8の製造方法により得られたものである、請求項5に記載の製造方法。 The manufacturing method according to claim 5, wherein the organic acid is obtained by the apparatus of claim 7 or by the manufacturing method of claim 8.
PCT/JP2010/053255 2009-03-02 2010-03-01 Apparatus for producing aromatic hydrocarbons or ketone compounds, apparatus for producing levulinic acid, apparatus for separating levulinic acid, and apparatus for producing hydrocarbons from levulinic acid WO2010101120A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-048421 2009-03-02
JP2009048439A JP5504494B2 (en) 2009-03-02 2009-03-02 Equipment for producing aromatic hydrocarbons or ketone compounds
JP2009048421A JP5504493B2 (en) 2009-03-02 2009-03-02 Levulinic acid production apparatus, levulinic acid separation apparatus, and apparatus for producing hydrocarbons from levulinic acid
JP2009-048439 2009-03-02

Publications (1)

Publication Number Publication Date
WO2010101120A1 true WO2010101120A1 (en) 2010-09-10

Family

ID=42709677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053255 WO2010101120A1 (en) 2009-03-02 2010-03-01 Apparatus for producing aromatic hydrocarbons or ketone compounds, apparatus for producing levulinic acid, apparatus for separating levulinic acid, and apparatus for producing hydrocarbons from levulinic acid

Country Status (1)

Country Link
WO (1) WO2010101120A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013159322A1 (en) * 2012-04-27 2013-10-31 中国科学技术大学 Method for preparing acetic acid
CN106431882A (en) * 2016-09-06 2017-02-22 安徽理工大学 Method for preparing acetylpropionic acid by efficiently decomposing saccharose

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5076027A (en) * 1973-08-09 1975-06-21
JPH06329577A (en) * 1993-05-24 1994-11-29 Chiyoda Corp Production of lower fatty acid from lower aliphatic ketone
WO1998019986A1 (en) * 1996-11-08 1998-05-14 Arkenol, Inc. A method for the production of levulinic acid and its derivatives
CN1680257A (en) * 2005-01-07 2005-10-12 浙江大学 Preparation of levulinate from glucose by molecular screen catalytic hydrolysis
JP2007153925A (en) * 2005-11-30 2007-06-21 Nippon Oil Corp Biomass treatment method using fluidized catalytic cracking
JP2009155273A (en) * 2007-12-27 2009-07-16 National Institute Of Advanced Industrial & Technology Method for producing cyclic ketone

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5076027A (en) * 1973-08-09 1975-06-21
JPH06329577A (en) * 1993-05-24 1994-11-29 Chiyoda Corp Production of lower fatty acid from lower aliphatic ketone
WO1998019986A1 (en) * 1996-11-08 1998-05-14 Arkenol, Inc. A method for the production of levulinic acid and its derivatives
CN1680257A (en) * 2005-01-07 2005-10-12 浙江大学 Preparation of levulinate from glucose by molecular screen catalytic hydrolysis
JP2007153925A (en) * 2005-11-30 2007-06-21 Nippon Oil Corp Biomass treatment method using fluidized catalytic cracking
JP2009155273A (en) * 2007-12-27 2009-07-16 National Institute Of Advanced Industrial & Technology Method for producing cyclic ketone

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013159322A1 (en) * 2012-04-27 2013-10-31 中国科学技术大学 Method for preparing acetic acid
CN106431882A (en) * 2016-09-06 2017-02-22 安徽理工大学 Method for preparing acetylpropionic acid by efficiently decomposing saccharose
CN106431882B (en) * 2016-09-06 2019-04-09 安徽理工大学 A method of levulic acid is prepared by sucrose efficient-decomposition

Similar Documents

Publication Publication Date Title
JP5504493B2 (en) Levulinic acid production apparatus, levulinic acid separation apparatus, and apparatus for producing hydrocarbons from levulinic acid
Liu et al. Catalytic conversion of light alkanes to aromatics by metal-containing HZSM-5 zeolite catalysts—A review
Li et al. Catalytic upgrading of pyrolysis vapor from rape straw in a vacuum pyrolysis system over La/HZSM-5 with hierarchical structure
He et al. Dual acidic mesoporous KIT silicates enable one-pot production of γ-valerolactone from biomass derivatives via cascade reactions
Ausavasukhi et al. Catalytic deoxygenation of benzaldehyde over gallium-modified ZSM-5 zeolite
Fanchiang et al. Catalytic fast pyrolysis of furfural over H-ZSM-5 and Zn/H-ZSM-5 catalysts
Chaihad et al. In-situ catalytic upgrading of bio-oil derived from fast pyrolysis of sunflower stalk to aromatic hydrocarbons over bifunctional Cu-loaded HZSM-5
KR101430798B1 (en) Purification of alcohols prior to their use in the presence of an acid catalyst
KR20110094204A (en) Alternative paths to alcohols and hydrocarbons from biomass
CN101081799B (en) Method for preparing small molecule alkene by oxygen compounds
JP2007176873A (en) Production method for raw material of resin, and resin and its production method
US9346773B2 (en) Thermo-mechanically integrated process for the production of ethylene oxide from a flow of ethanol
CA2783638A1 (en) Integrated process and apparatus to produce hydrocarbons from aqueous solutions of lactones, hydroxy-carboxylic acids, alkene-carboxylic acids, and/or alcohols
CN100548944C (en) A kind of zeolite catalysis and separation method that improves yield of preparing olefin by methyl alcohol dewatering
Zhang et al. Optimizing anti-coking abilities of zeolites by ethylene diamine tetraacetie acid modification on catalytic fast pyrolysis of corn stalk
CN1331732C (en) Process and apparatus for preparing hihg-purity CO, hydrogen and their mixture by cracking methanol
CN106883091B (en) Method for selectively synthesizing p-xylene from 4-methyl-3-cyclohexene formaldehyde
KR20150088293A (en) Low-energy consumption method for dehydrating ethanol into ethylene
US9353074B2 (en) Thermally integrated process for the production of ethylene oxide from a flow of ethanol
Park et al. Catalytic pyrolysis of Japanese larch using spent HZSM-5
Ogo et al. One pot direct catalytic conversion of cellulose to C3 and C4 hydrocarbons using Pt/H-USY zeolite catalyst at low temperature
US4420561A (en) Fermentation process
Luo et al. Enhancement of renewable N-heterocycles production via catalytic co-pyrolysis of glycerol and cellulose over HZSM-5 under ammonia atmosphere
US4515892A (en) Fermentation process
WO2010101120A1 (en) Apparatus for producing aromatic hydrocarbons or ketone compounds, apparatus for producing levulinic acid, apparatus for separating levulinic acid, and apparatus for producing hydrocarbons from levulinic acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748715

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10748715

Country of ref document: EP

Kind code of ref document: A1