JP2009155273A - Method for producing cyclic ketone - Google Patents

Method for producing cyclic ketone Download PDF

Info

Publication number
JP2009155273A
JP2009155273A JP2007335785A JP2007335785A JP2009155273A JP 2009155273 A JP2009155273 A JP 2009155273A JP 2007335785 A JP2007335785 A JP 2007335785A JP 2007335785 A JP2007335785 A JP 2007335785A JP 2009155273 A JP2009155273 A JP 2009155273A
Authority
JP
Japan
Prior art keywords
acid
catalyst
ring
reaction
aromatic ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007335785A
Other languages
Japanese (ja)
Other versions
JP5263754B2 (en
Inventor
Hiroshi Yamashita
浩 山下
Kazuaki Hiroki
一亮 廣木
Makiko Hatori
真紀子 羽鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007335785A priority Critical patent/JP5263754B2/en
Publication of JP2009155273A publication Critical patent/JP2009155273A/en
Application granted granted Critical
Publication of JP5263754B2 publication Critical patent/JP5263754B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently producing a cyclic ketone (aromatic ring-condesed cycloalkenone), which can be utilized as agrochemicals, their production intermediates and the like. <P>SOLUTION: The cyclic ketone expressed by general formula (II), in which the ring A represents a monocyclic or condensed polycyclic aromatic ring group, which may contain atoms selected from the group consisting of nitrogen, oxygen, sulfur or selenium as atoms constituting the ring, and in which a part of hydrogen atoms may be substituted by a group not participating in reaction, also p shows an integer of 1-9; is produced by reacting an aromatic ring-substituted alkanoic acid in the presence of a catalyst while irradiating with microwaves. As the catalyst, a solid acid catalyst such as zeolite, can be used, for instance. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、芳香環置換フェニルアルカン酸を、触媒存在下で分子内環化させて得られる環状ケトンの効率的な製造方法に関するものである。   The present invention relates to an efficient method for producing a cyclic ketone obtained by intramolecular cyclization of an aromatic ring-substituted phenylalkanoic acid in the presence of a catalyst.

テトラロン、インダノン、ベンゾスベロン等の環状ケトン(芳香環縮合シクロアルケノン)は、医・農薬等の生理活性物質やその合成中間体として有用である。
それらの製造法として、芳香環置換アルカン酸を、酸触媒存在下で、フリーデル・クラフツ型反応により環化させる方法が知られているが、従来の製造法では、反応を進行させるために、多量の酸触媒の使用や高温での長時間の加熱等が必要であり(たとえば、非特許文献1〜2、特許文献1)、工業的に有利な方法とはいえなかった。
Ber.Deut.Chem.Ges.56,p.620(1923) J.Org.Chem.46,p.2974(1981) 特開2004−189620号公報
Cyclic ketones (aromatic ring condensed cycloalkenones) such as tetralone, indanone, and benzosuberone are useful as bioactive substances such as medicines and agricultural chemicals and synthetic intermediates thereof.
As a production method thereof, a method of cyclizing an aromatic ring-substituted alkanoic acid by Friedel-Crafts type reaction in the presence of an acid catalyst is known, but in the conventional production method, in order to proceed the reaction, The use of a large amount of an acid catalyst and long-time heating at a high temperature are necessary (for example, Non-Patent Documents 1 and 2 and Patent Document 1), and it was not an industrially advantageous method.
Ber. Deutsch. Chem. Ges. 56, p. 620 (1923) J. et al. Org. Chem. 46, p. 2974 (1981) JP 2004-189620 A

本発明は、以上のような事情に鑑みてなされたものであって、芳香環置換アルカン酸から環状ケトンを、多量の酸性廃棄物を出すことなく短時間で効率的に製造することを目的とするものである。   The present invention has been made in view of the circumstances as described above, and an object thereof is to efficiently produce a cyclic ketone from an aromatic ring-substituted alkanoic acid in a short time without producing a large amount of acidic waste. To do.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、芳香環置換アルカン酸の分子内環化反応が、マイクロ波照射により著しく加速されることを見いだし、本発明を完成させるに至った。
すなわち、この出願は以下の発明を提供するものである。
〈1〉下記の一般式(I)

Figure 2009155273
(式中、環Aは単環または縮合多環の芳香環基を示し、その環を構成する原子には、窒素、酸素、硫黄またはセレンから選ばれる原子を含んでいてもよく、環上の水素原子の一部が反応に関与しない基で置換されていても差し支えない。また、pは1以上9以下の整数を示す。)
で表される芳香環置換アルカン酸を、触媒の存在下で、マイクロ波を照射して反応させることを特徴とする、下記の一般式(II)
Figure 2009155273
(式中、A及びpは前記と同じ意味である。)
で表される環状ケトンの製造方法。
〈2〉触媒が酸触媒であることを特徴とする〈1〉に記載の製造方法。
〈3〉酸触媒が、固体酸であることを特徴とする〈2〉に記載の製造方法。
〈4〉固体酸が、ゼオライト、モンモリロナイト、シリカ及び酸性ポリマーから選ばれる少なくとも一種であることを特徴とする〈3〉に記載の製造方法。 As a result of intensive studies to solve the above problems, the present inventors have found that the intramolecular cyclization reaction of an aromatic ring-substituted alkanoic acid is remarkably accelerated by microwave irradiation, thereby completing the present invention. It came.
That is, this application provides the following inventions.
<1> The following general formula (I)
Figure 2009155273
(In the formula, ring A represents a monocyclic or condensed polycyclic aromatic ring group, and the atoms constituting the ring may contain an atom selected from nitrogen, oxygen, sulfur or selenium, and (Part of the hydrogen atoms may be substituted with a group not participating in the reaction, and p represents an integer of 1 to 9.)
Wherein the aromatic ring-substituted alkanoic acid is reacted by irradiation with microwaves in the presence of a catalyst.
Figure 2009155273
(In the formula, A and p have the same meanings as described above.)
The manufacturing method of cyclic ketone represented by these.
<2> The production method according to <1>, wherein the catalyst is an acid catalyst.
<3> The production method according to <2>, wherein the acid catalyst is a solid acid.
<4> The production method according to <3>, wherein the solid acid is at least one selected from zeolite, montmorillonite, silica, and an acidic polymer.

本発明の製法方法により、従来の方法に比べ短時間で効率的に環状ケトン(芳香環縮合シクロアルケノン)を得ることができる。   By the production method of the present invention, a cyclic ketone (aromatic ring-fused cycloalkenone) can be efficiently obtained in a shorter time than the conventional method.

以下、本発明について詳細に説明する。
本発明の製造方法は、芳香環置換アルカン酸を、触媒の存在下、マイクロ波を照射して反応させることを特徴とする。
本発明において使用される芳香環置換アルカン酸は、下記の一般式(I)

Figure 2009155273
で表されるもので、環Aは単環または縮合多環の芳香環基を示し、その環を構成する原子には、窒素、酸素、硫黄またはセレンから選ばれる原子を含んでいてもよく、環上の水素原子の一部が反応に関与しない基で置換されていても差し支えない。また、pは1以上9以下の整数を示す。
そのような環Aの種類としては、ベンゼン環、ナフタレン環、フラン環、チオフェン環等が挙げられ、それらの環を有する芳香環置換アルカン酸の具体例としては、3−フェニルプロピオン酸、4−フェニル酪酸、4−(4−メトキシフェニル)酪酸、4−(4−トリル)酪酸、4−(4−フルオロフェニル)酪酸、4−(4−クロロフェニル)酪酸、4−(4−ニトロフェニル)酪酸、4−(2,5−ジメトキシフェニル)酪酸、5−フェニル吉草酸、6−フェニルヘキサン酸、7−フェニルヘプタン酸、8−フェニルオクタン酸、9−フェニルノナン酸、9−フェニルデカン酸、4−(2−フリル)ブタン酸、4−(2−チエニル)ブタン酸、4−(2−セレノフェニル)ブタン酸、3−(2−フリル)プロパン酸、3−(2−チエニル)プロパン酸等を挙げることができる。 Hereinafter, the present invention will be described in detail.
The production method of the present invention is characterized by reacting an aromatic ring-substituted alkanoic acid by irradiation with microwaves in the presence of a catalyst.
The aromatic ring-substituted alkanoic acid used in the present invention has the following general formula (I)
Figure 2009155273
Ring A represents a monocyclic or condensed polycyclic aromatic ring group, and atoms constituting the ring may include an atom selected from nitrogen, oxygen, sulfur or selenium, A part of hydrogen atoms on the ring may be substituted with a group not participating in the reaction. P represents an integer of 1 to 9.
Examples of such ring A include a benzene ring, a naphthalene ring, a furan ring, a thiophene ring, and the like. Specific examples of the aromatic ring-substituted alkanoic acid having such a ring include 3-phenylpropionic acid, 4-phenyl Phenylbutyric acid, 4- (4-methoxyphenyl) butyric acid, 4- (4-tolyl) butyric acid, 4- (4-fluorophenyl) butyric acid, 4- (4-chlorophenyl) butyric acid, 4- (4-nitrophenyl) butyric acid 4- (2,5-dimethoxyphenyl) butyric acid, 5-phenylvaleric acid, 6-phenylhexanoic acid, 7-phenylheptanoic acid, 8-phenyloctanoic acid, 9-phenylnonanoic acid, 9-phenyldecanoic acid, 4 -(2-furyl) butanoic acid, 4- (2-thienyl) butanoic acid, 4- (2-selenophenyl) butanoic acid, 3- (2-furyl) propanoic acid, 3- (2-thienyl) And the like can be given propanoic acid.

一方、本発明で製造される環状ケトンは、下記の一般式(II)

Figure 2009155273
で表されるもので、式中、A及びpは前記と同じ意味である。
それらの具体例としては、ベンゾシクロブテノン、ベンゾシクロペンテノン(1−インダノン)、ベンゾシクロヘキセノン(1−テトラロン)、7−メチル−1−テトラロン、7−メトキシ−1−テトラロン、7−フルオロ−1−テトラロン、7−ニトロ−1−テトラロン、5,8−ジメトキシ−1−テトラロン、ベンゾシクロヘプテノン(1−ベンゾスベロン)、ベンゾシクロオクテノン、ベンゾシクロノネノン、ベンゾシクロデセノン、ベンゾシクロドデセノン、4−オキソ−4,5,6,7−テトラヒドロオキサナフテン、4−オキソ−4,5,6,7−テトラヒドロチアナフテン、4−オキソ−4,5,6,7−テトラヒドロセレナナフテン等を挙げることができる。 On the other hand, the cyclic ketone produced in the present invention has the following general formula (II):
Figure 2009155273
In the formula, A and p have the same meaning as described above.
Specific examples thereof include benzocyclobutenone, benzocyclopentenone (1-indanone), benzocyclohexenone (1-tetralone), 7-methyl-1-tetralone, 7-methoxy-1-tetralone, 7-fluoro. -1-tetralone, 7-nitro-1-tetralone, 5,8-dimethoxy-1-tetralone, benzocycloheptenone (1-benzosuberone), benzocyclooctenone, benzocyclononenone, benzocyclodecenone, benzocyclo Dodecenone, 4-oxo-4,5,6,7-tetrahydrooxanaphthene, 4-oxo-4,5,6,7-tetrahydrothianaphthene, 4-oxo-4,5,6,7-tetrahydroselena Naphthenes can be mentioned.

本発明では、フリーデル・クラフツ型の求電子置換反応で使われる従来公知の各種の触媒を用いることができる。それらの具体例としては、金属塩、金属酸化物等の無機物、有機物等、各種酸性化合物が挙げられ、無機物をより具体的に示せば、金属塩(アルミニウム、鉄等の塩化物、臭化物等)や、プロトン性水素原子あるいは金属カチオン(アルミニウム、チタン、ガリウム等)を有するゼオライト、モンモリロナイト、シリカ、ポリリン酸等の無機系固体酸が挙げられ、また有機物をより具体的に示せば、スルホン酸基を有するナフィオン等の酸性ポリマーや他の有機系固体酸が挙げられる。この中のゼオライトの種類としては、Y型、Beta型、ZSM−5型、Mordenite型、SAPO型等の基本骨格を有する各種のゼオライトを使用できる。また、シリカ等にナフィオン等の有機系酸性化合物を担持した触媒を用いることもできる。触媒の量は、所望する反応速度等に応じて任意に決めることができるが、原料に対する重量比として、通常0.0001〜200であり、好ましくは0.002〜150、より好ましくは0.005〜100である。   In the present invention, various conventionally known catalysts used in Friedel-Crafts type electrophilic substitution reactions can be used. Specific examples thereof include various acidic compounds such as metal salts, inorganic substances such as metal oxides, and organic substances. If inorganic substances are shown more specifically, metal salts (chlorides such as aluminum and iron, bromides, etc.) And inorganic solid acids such as zeolites having protonic hydrogen atoms or metal cations (aluminum, titanium, gallium, etc.), montmorillonite, silica, polyphosphoric acid, etc., and more specifically showing organic substances, sulfonic acid groups And acidic polymers such as Nafion and other organic solid acids. Among these, various types of zeolite having a basic skeleton such as Y-type, Beta-type, ZSM-5-type, Mordenite-type, and SAPO-type can be used. A catalyst in which an organic acidic compound such as Nafion is supported on silica or the like can also be used. The amount of the catalyst can be arbitrarily determined according to the desired reaction rate and the like, but is usually 0.0001 to 200, preferably 0.002 to 150, more preferably 0.005 as a weight ratio to the raw material. ~ 100.

反応の温度は、−20℃以上、好ましくは0〜300℃、より好ましくは、40〜290℃であり、反応時間は反応温度にもよるが、0.5〜120分、好ましくは0.5〜100分、より好ましくは0.5〜80分程度である。   The temperature of the reaction is −20 ° C. or higher, preferably 0 to 300 ° C., more preferably 40 to 290 ° C. The reaction time depends on the reaction temperature, but is 0.5 to 120 minutes, preferably 0.5 -100 minutes, more preferably about 0.5-80 minutes.

また、反応は、溶媒の有無にかかわらず実施できるが、溶媒を用いる場合には、デカリン、デカン等の炭化水素、クロロベンゼン、1,2−又は1,3−ジクロロベンゼン、1,2,4−トリクロロベンゼン等のハロゲン化炭化水素、ジブチルエーテル等のエーテル等、原料と反応するものを除いた各種の溶媒が使用可能で、2種以上混合して用いることもできる。   The reaction can be carried out with or without a solvent. When a solvent is used, hydrocarbons such as decalin and decane, chlorobenzene, 1,2- or 1,3-dichlorobenzene, 1,2,4- Various solvents excluding those that react with the raw material, such as halogenated hydrocarbons such as trichlorobenzene and ethers such as dibutyl ether, can be used, and two or more kinds can be used in combination.

本発明において照射するマイクロ波の出力や周波数、照射方法は、特に限定されるものではなく、反応温度が所定の範囲に保持できるように制御すればよい。マイクロ波の周波数は、通常、0.3GHz〜30GHzである。0.3GHz未満又は30GHzを超える周波数範囲では、環化反応が不十分となり環状ケトンの形成促進効果が不十分となる。
本発明の反応におけるマイクロ波の照射では、接触式または非接触式の温度センサーを備えた各種の市販装置等を使用できる。さらに、マイクロ波照射の出力、キャビティの種類(マルチモード、シングルモード)、照射の形態(連続的、断続的)等は、反応のスケールや種類等に応じて任意に決めることができる。
マイクロ波発振器としては、マグネトロン等のマイクロ波発振器や、固体素子を用いたマイクロ波発振器等を適宜用いることができる。
In the present invention, the output, frequency, and irradiation method of the microwave to be irradiated are not particularly limited, and may be controlled so that the reaction temperature can be maintained within a predetermined range. The frequency of the microwave is usually 0.3 GHz to 30 GHz. In the frequency range of less than 0.3 GHz or more than 30 GHz, the cyclization reaction is insufficient and the effect of promoting the formation of cyclic ketone is insufficient.
In the microwave irradiation in the reaction of the present invention, various commercially available devices equipped with a contact type or non-contact type temperature sensor can be used. Furthermore, the output of microwave irradiation, the type of cavity (multimode, single mode), the form of irradiation (continuous, intermittent), etc. can be arbitrarily determined according to the scale and type of reaction.
As the microwave oscillator, a microwave oscillator such as a magnetron, a microwave oscillator using a solid element, or the like can be used as appropriate.

本発明の方法で生成した環状ケトンの精製は、クロマトグラフィー、蒸留、再結晶等の通常用いられる手段により容易に達せられる。   Purification of the cyclic ketone produced by the method of the present invention can be easily achieved by commonly used means such as chromatography, distillation, recrystallization and the like.

次に、本発明を実施例および比較例によりさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
4−フェニル酪酸(I−a) 0.80mmol、H−Beta型ゼオライト HSZ−940HOA(東ソー社製) 100mg、1,2−ジクロロベンゼン 1.0mlの混合物を反応管に入れ、放射温度計を備えたマイクロ波照射装置(CEM社製、Discover、シングルモード型)を用いて、攪拌しながら220℃で10分反応させた。生成物をガスクロマトグラフ及びガスクロマトグラフ質量分析計で分析した結果、1−テトラロン(II−a)が89%の収率で生成したことがわかった。
EXAMPLES Next, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited to these Examples.
Example 1
4-phenylbutyric acid (I-a) 0.80 mmol, H-Beta type zeolite HSZ-940HOA (manufactured by Tosoh Corporation) 100 mg, 1,2-dichlorobenzene 1.0 ml is put in a reaction tube, and equipped with a radiation thermometer Using a microwave irradiation apparatus (CEM, Discover, single mode type), the mixture was reacted at 220 ° C. for 10 minutes with stirring. As a result of analyzing the product with a gas chromatograph and a gas chromatograph mass spectrometer, it was found that 1-tetralone (II-a) was produced in a yield of 89%.

(実施例2)
I−aの代わりに4−(4−トリル)酪酸(I−b)を用いて、実施例1と同様に200℃で10分の反応を行った。生成物をガスクロマトグラフ及びガスクロマトグラフ質量分析計で分析した結果、7−メチル−1−テトラロン(II−b)が93%の収率で生成したことがわかった。
反応混合物を遠心分離器にかけて上澄みを分離し、アセトン(2ml×3回)で残存固体を洗浄した。上澄みと洗浄液を合わせて減圧濃縮し、濃縮物をカラムクラマトグラフィー(シリカゲル、ヘキサン:酢酸エチル=7:1)で精製すると、II−bが85%の収率で得られた。
(Example 2)
Using 4- (4-tolyl) butyric acid (Ib) instead of Ia, the reaction was carried out at 200 ° C. for 10 minutes in the same manner as in Example 1. As a result of analyzing the product with a gas chromatograph and a gas chromatograph mass spectrometer, it was found that 7-methyl-1-tetralone (II-b) was produced in a yield of 93%.
The reaction mixture was centrifuged to separate the supernatant, and the remaining solid was washed with acetone (2 ml × 3 times). The supernatant and washing solution were combined and concentrated under reduced pressure, and the concentrate was purified by column chromatography (silica gel, hexane: ethyl acetate = 7: 1) to obtain II-b in a yield of 85%.

(実施例3)
I−aの代わりに4−(4−フルオロフェニル)酪酸(I−c)を用いて、実施例1と同様に220℃で10分の反応を行った。生成物をガスクロマトグラフ及びガスクロマトグラフ質量分析計で分析した結果、7−フルオロ−1−テトラロン(II−c)が95%の収率で生成したことがわかった。
この反応混合物について、実施例2と同様の精製操作を行うと、II−cが85%の収率で得られた。
(Example 3)
Using 4- (4-fluorophenyl) butyric acid (Ic) instead of Ia, the reaction was carried out at 220 ° C. for 10 minutes in the same manner as in Example 1. As a result of analyzing the product with a gas chromatograph and a gas chromatograph mass spectrometer, it was found that 7-fluoro-1-tetralone (II-c) was produced in a yield of 95%.
When this reaction mixture was purified in the same manner as in Example 2, II-c was obtained in a yield of 85%.

(実施例4)
I−aの代わりに4−(4−ニトロフェニル)酪酸(I−d)を用いて、実施例1と同様に220℃で60分の反応を行った。生成物をガスクロマトグラフ及びガスクロマトグラフ質量分析計で分析した結果、7−ニトロ−1−テトラロン(II−d)が15%の収率で生成したことがわかった。
Example 4
Using 4- (4-nitrophenyl) butyric acid (Id) instead of Ia, a reaction was carried out at 220 ° C. for 60 minutes in the same manner as in Example 1. As a result of analyzing the product with a gas chromatograph and a gas chromatograph mass spectrometer, it was found that 7-nitro-1-tetralone (II-d) was produced in a yield of 15%.

(実施例5〜38)
原料の芳香環置換アルカン酸や反応条件(触媒、装置、温度等)を変えて、実施例1と同様に反応及び分析を行い、生成した環状ケトンの収率を測定した結果を表1に示す。

Figure 2009155273
1)I-a:4−フェニル酪酸、
I-b:4−(4−トリル)酪酸、
I-c:4−(4−フルオロフェニル)酪酸、
I-d:4−(4−ニトロフェニル)酪酸、
I-e:4−(4−メトキシフェニル)酪酸、
I-f:4−(2,5−ジメトキシフェニル)酪酸、
I-g:3−フェニルプロピオン酸、
I-h:5−フェニル吉草酸、
I-i:4−(3−チエニル)酪酸
2)930HOA:H−Beta型ゼオライト HSZ−930HOA(東ソー社製)、
940HOA:H−Beta型ゼオライト HSZ−940HOA(東ソー社製)、
830HOA:H−ZSM−5型ゼオライト HSZ−830HOA(東ソー社製)、
840HOA:H−ZSM−5型ゼオライト HSZ−840HOA(東ソー社製)、
620HOA:H−Mordenite型ゼオライト HSZ−620HOA(東ソー社製)、
341HUA:H−Y型ゼオライト HSZ−341HOA(東ソー社製)、
360HUA:H−Y型ゼオライト HSZ−360HUA(東ソー社製)、
390HUA:H−Y型ゼオライト HSZ−390HOA(東ソー社製)、
SAPO-11:H−SAPO型ゼオライト SAPO−11(日揮ユニバーサル社製)、
SAC-13:シリカ担持ナフィオン SAC−13(アルドリッチ社製)、
NR50:ナフィオン NR50(アルドリッチ社製)、
Al-mont:Al3+−モンモリロナイト
3)1,2-DCB:1,2−ジクロロベンゼン、
1,3-DCB:1,3−ジクロロベンゼン、
TCB:1,2,4−トリクロロベンゼン
CB:クロロベンゼン
4)A:Discover(CEM社製)、B:Initiator(バイオタージ社製)
5)II-a:1−テトラロン、
II-b:7−メチル−1−テトラロン、
II-c:7−フルオロ−1−テトラロン、
II-d:7−ニトロ−1−テトラロン、
II-e:7−メトキシ−1−テトラロン、
II-f:5,8−ジメトキシ−1−テトラロン、
II-g:1−インダノン、
II-h:1−ベンゾスベロン、
II-i:4−オキソ−4,5,6,7−テトラヒドロチアナフテン (Examples 5-38)
Table 1 shows the results of measuring the yield of the produced cyclic ketone by carrying out the reaction and analysis in the same manner as in Example 1 by changing the raw material aromatic ring-substituted alkanoic acid and the reaction conditions (catalyst, apparatus, temperature, etc.). .
Figure 2009155273
1) Ia: 4-phenylbutyric acid,
Ib: 4- (4-Tolyl) butyric acid,
Ic: 4- (4-fluorophenyl) butyric acid,
Id: 4- (4-nitrophenyl) butyric acid,
Ie: 4- (4-methoxyphenyl) butyric acid,
If: 4- (2,5-dimethoxyphenyl) butyric acid,
Ig: 3-phenylpropionic acid,
Ih: 5-phenylvaleric acid,
Ii: 4- (3-thienyl) butyric acid 2) 930HOA: H-Beta type zeolite HSZ-930HOA (manufactured by Tosoh Corporation),
940HOA: H-Beta type zeolite HSZ-940HOA (manufactured by Tosoh Corporation),
830HOA: H-ZSM-5 type zeolite HSZ-830HOA (manufactured by Tosoh Corporation),
840HOA: H-ZSM-5 type zeolite HSZ-840HOA (manufactured by Tosoh Corporation),
620HOA: H-Mordenite type zeolite HSZ-620HOA (manufactured by Tosoh Corporation),
341HUA: HY type zeolite HSZ-341HOA (manufactured by Tosoh Corporation),
360HUA: H-Y type zeolite HSZ-360HUA (manufactured by Tosoh Corporation),
390HUA: HY type zeolite HSZ-390HOA (manufactured by Tosoh Corporation),
SAPO-11: H-SAPO type zeolite SAPO-11 (manufactured by JGC Universal),
SAC-13: silica-carrying Nafion SAC-13 (manufactured by Aldrich),
NR50: Nafion NR50 (manufactured by Aldrich),
Al-mont: Al 3+ -montmorillonite 3) 1,2-DCB: 1,2-dichlorobenzene,
1,3-DCB: 1,3-dichlorobenzene,
TCB: 1,2,4-trichlorobenzene
CB: Chlorobenzene 4) A: Discover (CEM), B: Initiator (Biotage)
5) II-a: 1-tetralone,
II-b: 7-methyl-1-tetralone,
II-c: 7-fluoro-1-tetralone,
II-d: 7-nitro-1-tetralone,
II-e: 7-methoxy-1-tetralone,
II-f: 5,8-dimethoxy-1-tetralone,
II-g: 1-Indanone,
II-h: 1-benzosuberone,
II-i: 4-oxo-4,5,6,7-tetrahydrothianaphthene

(比較例1)
マイクロ波照射装置の代わりにオイルバスを用いる他は実施例3と同様に反応及び分析を行った結果、II−cの収率は20%であり、実施例3で得られた収率の95%よりも低いものであった。このことは、マイクロ波照射の反応が、同じ反応温度・時間でのオイルバスによる通常加熱の反応に比べ、II−cを短時間で収率よく与えることを示している。
(Comparative Example 1)
The reaction and analysis were conducted in the same manner as in Example 3 except that an oil bath was used instead of the microwave irradiation apparatus. As a result, the yield of II-c was 20%, which was 95% of the yield obtained in Example 3. %. This shows that the reaction of microwave irradiation gives II-c in a short time with a high yield as compared with the reaction of normal heating with an oil bath at the same reaction temperature and time.

(比較例2〜18)
他の実施例において、比較例1と同様に、オイルバスでの反応及び分析を行った結果を、対応する実施例の結果と共に表2に示す。

Figure 2009155273
(Comparative Examples 2 to 18)
In other examples, similar to Comparative Example 1, the results of the reaction and analysis in the oil bath are shown in Table 2 together with the results of the corresponding examples.
Figure 2009155273

いずれの比較例においても、生成した環状ケトンの収率は対応する実施例の値よりも低く、マイクロ波照射を用いることにより、原料や触媒の種類等の反応条件に関わりなく、環状ケトンをより効率的に製造できることが示された。   In any of the comparative examples, the yield of the produced cyclic ketone is lower than the value of the corresponding example, and by using microwave irradiation, the cyclic ketone can be obtained more regardless of the reaction conditions such as the type of raw material and catalyst. It was shown that it can be manufactured efficiently.

本発明の方法により、各種医・農薬やその製造中間体として有用な環状ケトンを、より効率的かつ安全に製造できる。特に、本発明により得られるテトラロンやインダノン等の誘導体にはさまざまな薬理活性が知られているため利用価値が高く、本発明の工業的意義は多大である。   By the method of the present invention, it is possible to more efficiently and safely produce cyclic ketones useful as various medicines / agrochemicals and production intermediates thereof. In particular, derivatives such as tetralone and indanone obtained by the present invention have high utility value because various pharmacological activities are known, and the industrial significance of the present invention is great.

Claims (4)

下記の一般式(I)
Figure 2009155273
(式中、環Aは単環または縮合多環の芳香環基を示し、その環を構成する原子には、窒素、酸素、硫黄またはセレンから選ばれる原子を含んでいてもよく、環上の水素原子の一部が反応に関与しない基で置換されていても差し支えない。また、pは1以上9以下の整数を示す。)
で表される芳香環置換アルカン酸を、触媒の存在下で、マイクロ波を照射して反応させることを特徴とする、下記の一般式(II)
Figure 2009155273
(式中、A及びpは前記と同じ意味である。)
で表される環状ケトンの製造方法。
The following general formula (I)
Figure 2009155273
(In the formula, ring A represents a monocyclic or condensed polycyclic aromatic ring group, and the atoms constituting the ring may contain an atom selected from nitrogen, oxygen, sulfur or selenium, and (Part of the hydrogen atoms may be substituted with a group not participating in the reaction, and p represents an integer of 1 to 9.)
Wherein the aromatic ring-substituted alkanoic acid is reacted by irradiation with microwaves in the presence of a catalyst.
Figure 2009155273
(In the formula, A and p have the same meanings as described above.)
The manufacturing method of cyclic ketone represented by these.
触媒が酸触媒であることを特徴とする請求項1に記載の製造方法。   The production method according to claim 1, wherein the catalyst is an acid catalyst. 酸触媒が、固体酸であることを特徴とする請求項2に記載の製造方法。   The production method according to claim 2, wherein the acid catalyst is a solid acid. 固体酸が、ゼオライト、モンモリロナイト、シリカ及び酸性ポリマーから選ばれる少なくとも一種であることを特徴とする請求項3に記載の製造方法。   The production method according to claim 3, wherein the solid acid is at least one selected from zeolite, montmorillonite, silica, and an acidic polymer.
JP2007335785A 2007-12-27 2007-12-27 Method for producing cyclic ketone Expired - Fee Related JP5263754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007335785A JP5263754B2 (en) 2007-12-27 2007-12-27 Method for producing cyclic ketone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007335785A JP5263754B2 (en) 2007-12-27 2007-12-27 Method for producing cyclic ketone

Publications (2)

Publication Number Publication Date
JP2009155273A true JP2009155273A (en) 2009-07-16
JP5263754B2 JP5263754B2 (en) 2013-08-14

Family

ID=40959666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007335785A Expired - Fee Related JP5263754B2 (en) 2007-12-27 2007-12-27 Method for producing cyclic ketone

Country Status (1)

Country Link
JP (1) JP5263754B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101120A1 (en) * 2009-03-02 2010-09-10 国立大学法人 鹿児島大学 Apparatus for producing aromatic hydrocarbons or ketone compounds, apparatus for producing levulinic acid, apparatus for separating levulinic acid, and apparatus for producing hydrocarbons from levulinic acid
JP2014196285A (en) * 2013-03-05 2014-10-16 田岡化学工業株式会社 Method of producing fluorenone derivative
WO2019044946A1 (en) * 2017-08-31 2019-03-07 第一三共株式会社 Novel method for producing antibody-drug conjugate

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140A (en) * 1984-06-12 1986-01-06 Res Dev Corp Of Japan Production of alpha-tetralone derivative through photoreaction process
JPH03279343A (en) * 1990-02-02 1991-12-10 Mitsubishi Kasei Corp Production of cyclic ketones
JPH06184007A (en) * 1992-12-18 1994-07-05 Cosmo Sogo Kenkyusho:Kk Production of 2,3-dimethylnaphthalene
JPH08225482A (en) * 1995-02-22 1996-09-03 Dai Ichi Seiyaku Co Ltd Tetralone-related compound and its production
JPH11199554A (en) * 1996-07-25 1999-07-27 Agency Of Ind Science & Technol Production of acid amide or acid imide compound
JP2000186059A (en) * 1998-10-15 2000-07-04 Takeda Chem Ind Ltd Production of benzocycloheptene derivative
JP2001516349A (en) * 1997-03-12 2001-09-25 ロデイア・シミ Method for acylating or sulfonating aromatic compounds
JP2003525204A (en) * 1999-03-31 2003-08-26 ロディア・シミ Method for activating aromatic bases by microwave
JP2004059572A (en) * 2002-06-03 2004-02-26 Showa Denko Kk Method for producing aromatic compound by friedel-crafts reaction
JP2004189620A (en) * 2002-12-09 2004-07-08 National Institute Of Advanced Industrial & Technology Method for producing cyclic ketones
JP2004337819A (en) * 2003-03-20 2004-12-02 Showa Denko Kk Solid acid catalyst
JP2005068102A (en) * 2003-08-27 2005-03-17 National Institute Of Advanced Industrial & Technology Method for producing cyclic ketone
JP2006115952A (en) * 2004-10-19 2006-05-11 Tokyo Electric Power Co Inc:The Dechlorination method for high concentration organohalogen compound containing pcb
JP2006248920A (en) * 2005-03-08 2006-09-21 Meiji Univ Method for producing cyclic ketone compound, cyclization rearrangement catalyst and method for producing the same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140A (en) * 1984-06-12 1986-01-06 Res Dev Corp Of Japan Production of alpha-tetralone derivative through photoreaction process
JPH03279343A (en) * 1990-02-02 1991-12-10 Mitsubishi Kasei Corp Production of cyclic ketones
JPH06184007A (en) * 1992-12-18 1994-07-05 Cosmo Sogo Kenkyusho:Kk Production of 2,3-dimethylnaphthalene
JPH08225482A (en) * 1995-02-22 1996-09-03 Dai Ichi Seiyaku Co Ltd Tetralone-related compound and its production
JPH11199554A (en) * 1996-07-25 1999-07-27 Agency Of Ind Science & Technol Production of acid amide or acid imide compound
JP2001516349A (en) * 1997-03-12 2001-09-25 ロデイア・シミ Method for acylating or sulfonating aromatic compounds
JP2000186059A (en) * 1998-10-15 2000-07-04 Takeda Chem Ind Ltd Production of benzocycloheptene derivative
JP2003525204A (en) * 1999-03-31 2003-08-26 ロディア・シミ Method for activating aromatic bases by microwave
JP2004059572A (en) * 2002-06-03 2004-02-26 Showa Denko Kk Method for producing aromatic compound by friedel-crafts reaction
JP2004189620A (en) * 2002-12-09 2004-07-08 National Institute Of Advanced Industrial & Technology Method for producing cyclic ketones
JP2004337819A (en) * 2003-03-20 2004-12-02 Showa Denko Kk Solid acid catalyst
JP2005068102A (en) * 2003-08-27 2005-03-17 National Institute Of Advanced Industrial & Technology Method for producing cyclic ketone
JP2006115952A (en) * 2004-10-19 2006-05-11 Tokyo Electric Power Co Inc:The Dechlorination method for high concentration organohalogen compound containing pcb
JP2006248920A (en) * 2005-03-08 2006-09-21 Meiji Univ Method for producing cyclic ketone compound, cyclization rearrangement catalyst and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101120A1 (en) * 2009-03-02 2010-09-10 国立大学法人 鹿児島大学 Apparatus for producing aromatic hydrocarbons or ketone compounds, apparatus for producing levulinic acid, apparatus for separating levulinic acid, and apparatus for producing hydrocarbons from levulinic acid
JP2014196285A (en) * 2013-03-05 2014-10-16 田岡化学工業株式会社 Method of producing fluorenone derivative
WO2019044946A1 (en) * 2017-08-31 2019-03-07 第一三共株式会社 Novel method for producing antibody-drug conjugate
US11318212B2 (en) 2017-08-31 2022-05-03 Daiichi Sankyo Company, Limited Method for producing antibody-drug conjugate

Also Published As

Publication number Publication date
JP5263754B2 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
Sartori et al. Advances in Friedel-Crafts acylation reactions: Catalytic and green processes
Das et al. An efficient synthesis of 1, 8-dioxo-octahydroxanthenes using heterogeneous catalysts
Ley et al. Polymer-supported hypervalent iodine reagents in ‘clean’organic synthesis with potential application in combinatorial chemistry
Xu et al. Synthesis of chalcones catalyzed by a novel solid sulfonic acid from bamboo
Cioc et al. The interplay between kinetics and thermodynamics in furan diels–alder chemistry for sustainable chemicals production
Heine et al. Aziridines. XIII. Reactions of 1, 2, 3-Triarylaziridines with Activated Alkenes and Alkynes
JP5263754B2 (en) Method for producing cyclic ketone
Rezaei et al. Starch–sulfuric acid as a bio-supported and recyclable solid acid catalyst for rapid synthesis of α, α′-benzylidene bis (4-hydroxycoumarin) derivatives
Umemoto et al. Effective methods for preparing S-(trifluoromethyl) dibenzothiophenium salts
Ghorbani et al. Novel carbon-based solid acid from green pistachio peel as an efficient catalyst for the chemoselective acylation, acetalization and thioacetalization of aldehydes, synthesis of biscoumarins and antimicrobial evaluation
Fu et al. Direct and efficient synthesis of sulfonium acyl sulfonylmethylide ylides from acetylenic sulfones and dimethyl sulfoxide
Pal Microwave-assisted eco-friendly synthesis of bis-, tris (indolyl) methanes and synthesis of di-bis (indolyl) methanes catalyzed by fruit juice of Citrus limon under solvent-free conditions
Iranpoor et al. Catalytic and chemoselective deprotection of S, S-and S, O-acetals and ketals in the presence of their O, O-analogs with electrophilic halogens under neutral conditions
Yerxa et al. Synthesis of indolizine-5, 8-diones and [3.2. 2] cyclazines
Mishra et al. Zirconia Supported on Rice Husk Silica from Biowaste: A Novel, Efficient, and Recoverable Nanocatalyst for the Green Synthesis of Tetrahydro-1-benzopyrans
JP5561710B2 (en) Method for producing aromatic compound
CN108218897B (en) Polysubstituted selenophene indole and derivative and synthetic method thereof
Terang et al. Trimethylsilyl chloride assisted conjugate addition-elimination of organocopper reagents to 2-bis (methylthio) nitroethylene: An efficient and highly stereoselective synthesis of 2-methylthio-2-alkyl/aryl-1-nitroethylenes and their application for synthesis of nitroheterocycles
Stamos Aldehyde-enamines from α-oxocarboxylic acids. A facile and general route to aldehydes via decarboxylation of α-oxocarboxylic acids carrying β-hydrogens
Shirude et al. An efficient and time saving microwave-assisted selenium dioxide oxidation of 1, 2-diarylethanones
Ferreira et al. A new one-pot procedure for a ring contraction reaction using iodine/H2O2
Kotha et al. Synthesis of indane-based [n. 3.3] propellane derivatives via ring-closing metathesis
JP2012224580A (en) Method for producing diaryl compound
JP2012017301A (en) Cyclohexenones and method of producing the same
JP2012017302A (en) 1, 5-diketones and method of producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees