JPH06326329A - Static induction transistor - Google Patents

Static induction transistor

Info

Publication number
JPH06326329A
JPH06326329A JP11555693A JP11555693A JPH06326329A JP H06326329 A JPH06326329 A JP H06326329A JP 11555693 A JP11555693 A JP 11555693A JP 11555693 A JP11555693 A JP 11555693A JP H06326329 A JPH06326329 A JP H06326329A
Authority
JP
Japan
Prior art keywords
mesa
gate
layer
mesa groove
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11555693A
Other languages
Japanese (ja)
Inventor
Eiji Yamanaka
英二 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP11555693A priority Critical patent/JPH06326329A/en
Publication of JPH06326329A publication Critical patent/JPH06326329A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a mesa type static induction transistor(SIT) in such a way that a P-N junction section can be completely coated even after a deep mesa groove is formed so as to excellently stabilize the surface of the transistor by constituting the peripheral section of the mesa groove in a three-layer structure composed of source regions, gate regions, and drain regions in the laminating direction. CONSTITUTION:The transistor has a buried gate structure composed of a source region 4 and drain region 2 which are respectively composed of semiconductor layers of one conductivity and a gate region 3 which has the opposite conductivity and put between the regions 4 and 2 and the periphery of an element is separated by a mesa groove B proved in the laminating direction of the layers 2-4. In such mesa type static induction transistor, the peripheral section of the groove B is constituted in a three-layer structure composed of source regions 4' and 4'', gate areas 3' and 3'', and drain regions 2 and 2'. Therefore, a highly reliable high-withstand voltage mesa type SIT having high surface stability can be obtained, because the exposed part J of a P-N junction can be coated excellently with a passivation layer 6 composed of glass, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,主として電力用の埋込
みゲート型静電誘導型トランジスタ(StaticInduction
Transistor ;以下SITと呼ぶ)に関するものであ
り,特に高耐圧を実現する為のメサ溝周縁部の構造に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to a buried gate type static induction transistor (StaticInduction) for power.
Transistor; hereinafter referred to as SIT), and particularly to the structure of the peripheral portion of the mesa groove for realizing a high breakdown voltage.

【0002】[0002]

【従来の技術】図6は従来のメサ型のSITの一例の全
体断面概略図を示し,図7は破線円で囲まれたメサ溝
B′近傍の拡大図を示している。また,図8は図7の状
態のメサ溝部B′に表面被覆樹脂を回転塗布硬化させる
かまたは,ガラス微粉末を電着形成するかした状態を示
す図である。
2. Description of the Related Art FIG. 6 shows an overall cross-sectional schematic view of an example of a conventional mesa-type SIT, and FIG. 7 shows an enlarged view in the vicinity of a mesa groove B'encircled by a broken line circle. Further, FIG. 8 is a view showing a state in which the surface coating resin is spin-coated and cured or glass fine powder is electrodeposited on the mesa groove portion B ′ in the state of FIG. 7.

【0003】図6で示すメサ型SITは,N+ ドレイン
オーミック層1上にN- ドレイン層2が形成され,更に
その上に,P+ ゲート層3及びP+ ゲート電極層3′が
夫々形成され,更に,P+ ゲート層上に,Nソース層4
が形成され,このNソース層4上に,N+ ソースオーミ
ック層5が形成されている。また,図7で示すようにP
+ ゲート電極層3′からN+ ドレインオーミック層1に
至るメサ溝部B′が形成され,このメサ溝部B′の底部
と縁部は,図8で示すように,樹脂又はガラスからなる
パシベーション層7,7′,7″によって被覆されてい
る。
In the mesa type SIT shown in FIG. 6, an N - drain layer 2 is formed on an N + drain ohmic layer 1, and a P + gate layer 3 and a P + gate electrode layer 3'are further formed thereon. Further, the N source layer 4 is formed on the P + gate layer.
And the N + source ohmic layer 5 is formed on the N source layer 4. Also, as shown in FIG.
A mesa groove portion B'from the + gate electrode layer 3'to the N + drain ohmic layer 1 is formed, and the bottom portion and the edge portion of the mesa groove portion B'are, as shown in FIG. 8, a passivation layer 7 made of resin or glass. , 7 ', 7 ".

【0004】[0004]

【発明が解決しようとする課題】従来,メサ型SITは
高耐圧化をめざす程ドレインN- 層2の厚みを大きくし
なければならず,従って素子分離の為のメサ溝B′も厚
みに比例して深くする必要が有った。この様な深いメサ
溝B′を形成した場合,素子の表面安定化(パッシベー
ション)の為の有機物やガラス等による,メサ溝B´の
埋め戻しは,メサ溝B′が深い為,溝側壁に露呈されて
いるゲート,ドレイン間のPN接合部Jを完全に被覆す
ることが難しく,電圧印加時に放電を起こし結果的にゲ
ート,ドレイン間がショートしてしまうという欠点があ
った。
Conventionally, in the mesa type SIT, the thickness of the drain N layer 2 must be increased so as to increase the breakdown voltage. Therefore, the mesa groove B ′ for element isolation is also proportional to the thickness. I needed to deepen it. When such a deep mesa groove B ′ is formed, backfilling of the mesa groove B ′ with an organic substance or glass for surface stabilization (passivation) of the element causes the mesa groove B ′ to be deep, so that the mesa groove B ′ is deep. It is difficult to completely cover the exposed PN junction J between the gate and drain, and discharge occurs when a voltage is applied, resulting in a short circuit between the gate and drain.

【0005】そこで,本発明の技術的課題は,この様な
従来構造の欠点を除去し深いメサ溝形成後でもPN接合
部を完全に被覆できる様にし,表面安定化の極めて優れ
たSITを提供することにある。
Therefore, the technical problem of the present invention is to eliminate such drawbacks of the conventional structure and to completely cover the PN junction even after the formation of the deep mesa groove, and to provide the SIT excellent in surface stabilization. To do.

【0006】[0006]

【課題を解決するための手段】本発明の静電誘導型トラ
ンジスタ(SIT)は,一導電型の半導体層から夫々成
るソース領域及びドレイン領域と,それに挾まれた逆導
電型のゲート領域とを備えた埋込みゲート型構造を有
し,素子周辺が前記半導体層の積層方向に設けられたメ
サ溝によって分離されているメサ型の静電誘導型トラン
ジスタにおいて,前記メサ溝周縁部の前記積層方向の構
造がソース領域,ゲート領域,及びドレイン領域からな
る三層構造を備えていることを特徴とする。
A static induction transistor (SIT) according to the present invention comprises a source region and a drain region each formed of a semiconductor layer of one conductivity type, and a gate region of an opposite conductivity type sandwiched by the source and drain regions. In a mesa-type static induction transistor having a buried gate type structure provided with the periphery of the element separated by a mesa groove provided in the stacking direction of the semiconductor layers, The structure is characterized by having a three-layer structure including a source region, a gate region, and a drain region.

【0007】[0007]

【作用】本発明では,メサ溝周縁部を三層にしている
為,ゲート,ドレイン間のPN接合のP層が,メサ溝の
頂部よりはるかに深い場所に位置付けられる事になり,
パッシベーション用の有機物やガラス等によるメサ溝の
埋め戻しが良好に成され,表面安定化の極めて良好なS
ITが得られることになる。
In the present invention, since the peripheral portion of the mesa groove has three layers, the P layer of the PN junction between the gate and the drain is located at a position much deeper than the top of the mesa groove.
The mesa groove can be backfilled well with organic materials for passivation, glass, etc., and S with excellent surface stabilization.
IT will be obtained.

【0008】[0008]

【実施例】以下,図面を参照しながら本発明の実施例に
つき詳述する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

【0009】図1は本発明の実施例に係るSITの構造
を示す断面図,図2は図1のSITのメサ溝B近傍の拡
大図で,パッシベーション層を除いた部分を示してい
る。また,図3は図1で破線円で囲んだメサ溝B近傍の
拡大図である。図1乃至3中メサ溝Bの側壁に露呈して
いるゲート・ドレイン間のPN接合Jはメサ溝Bの比較
的内部に位置している。これはP+ ゲート電極層3′の
上にエピタキシャル成長によるNソース層4′が残され
たままになっているからである。メサ溝BのPN接合J
を有する側壁の対向壁も同様に,P+ ゲート電極層
3'',Nソース層4''が残された形状となっている。通
常,このNソース層4′,4''は15〜20μm程度の
厚さで作られる為PN接合部Jの位置はメサ溝B頂部か
ら18〜23μm程度の深さの位置に形成されることに
なる。図2で示したメサ溝B内部に,図3で示すよう
に,ポリイミド系の表面被覆樹脂を回転塗布,硬化させ
るか,あるいは表面封止用のガラス微粉末を例えば電気
泳動法等により選択的に形成し焼成硬化させて,溝内の
側壁部に露出したPN接合Jがパッシベーション層6で
覆われている。このように,SIT素子のゲート・ドレ
イン耐圧を左右するPN接合部Jは,パッシベーション
層6で,完全に被覆されることになり,優れた表面安定
化が実現できるのである。尚,符号6´,6''は,パッ
シベーション層6の形成の際に,表面に残ったパッシベ
ーション材を示している。
FIG. 1 is a sectional view showing the structure of an SIT according to an embodiment of the present invention, and FIG. 2 is an enlarged view of the vicinity of the mesa groove B of the SIT of FIG. 1, showing a portion excluding the passivation layer. Further, FIG. 3 is an enlarged view of the vicinity of the mesa groove B surrounded by a broken line circle in FIG. 1 to 3, the PN junction J between the gate and the drain exposed on the side wall of the mesa groove B is located relatively inside the mesa groove B. This is because the N source layer 4'by epitaxial growth remains on the P + gate electrode layer 3 '. PN junction J of mesa groove B
Similarly, the opposite wall of the side wall having the same has a shape in which the P + gate electrode layer 3 ″ and the N source layer 4 ″ are left. Normally, the N source layers 4 ', 4''are formed with a thickness of about 15 to 20 .mu.m, so that the position of the PN junction J should be formed at a depth of about 18 to 23 .mu.m from the top of the mesa groove B. become. Inside the mesa groove B shown in FIG. 2, a polyimide-based surface coating resin is spin-coated and cured as shown in FIG. 3, or glass fine powder for surface sealing is selectively applied by, for example, electrophoresis. The PN junction J exposed on the side wall portion in the groove is covered with the passivation layer 6 after being formed and baked and cured. In this way, the PN junction portion J, which influences the gate / drain breakdown voltage of the SIT element, is completely covered with the passivation layer 6, and excellent surface stabilization can be realized. It should be noted that reference numerals 6 ′ and 6 ″ indicate passivation materials remaining on the surface when the passivation layer 6 is formed.

【0010】図4及び図5は,図1乃至図3で示すSI
Tを製造するための各工程を順に示す図である。図4
(a)はN- onN+ 2層構造のシリコンウェハーであ
りN-層2は比抵抗100Ωcm,厚み100μmであ
る。又,N+ 層1は比抵抗0.01Ωcm,厚み150
μmである。図4(a)で示すウェハーを全面熱酸化
し,通常のフォトリソグラフィー技術を用いてN- ドレ
イン層2の表面にメッシュ状又はストライプ状の選択開
孔を行ない,チッ化ボロン等のP型拡散源を用いて選択
的にP+ ゲート3及びP+ ゲート電極3′を拡散形成し
た状態が図4(b)である。
FIGS. 4 and 5 show the SI shown in FIGS.
It is a figure which shows each process for manufacturing T in order. Figure 4
(A) is N - Onn a silicon wafer of + 2-layer structure N - layer 2 is specific resistance 100 .OMEGA.cm, a thickness of 100 [mu] m. The N + layer 1 has a specific resistance of 0.01 Ωcm and a thickness of 150.
μm. The entire surface of the wafer shown in FIG. 4A is thermally oxidized, and selective opening in a mesh or stripe shape is performed on the surface of the N drain layer 2 by using a normal photolithography technique, and P type diffusion such as boron nitride is performed. FIG. 4B shows a state in which the P + gate 3 and the P + gate electrode 3'are selectively formed by diffusion by using the source.

【0011】図4(c)は図4(b)の状態のウェハー
表面に成長源としてSiCl4 を用い,キャリアガスと
してH2 を用いて1150℃の温度でNソース層4をエ
ピタキャル成長した状態を示す。形成されたNソース層
4は比抵抗5〜10Ωcm,厚み15〜20μmであ
る。
FIG. 4C shows a state in which the N source layer 4 is epitaxially grown on the wafer surface in the state of FIG. 4B using SiCl 4 as a growth source and H 2 as a carrier gas at a temperature of 1150 ° C. Indicates. The formed N source layer 4 has a specific resistance of 5 to 10 Ωcm and a thickness of 15 to 20 μm.

【0012】図5(a)は図4(c)の状態のウェハー
に通常のフォトリソグラフィー技術で選択開孔し,埋込
まれたP+ ゲート電極層3′を選択エッチングにより堀
起こし,ゲート電極溝Aを形成した状態を示す。シリコ
ンのエッチング液としてはフッ酸,硝酸系の一般のエッ
チャントを用いた。
In FIG. 5A, the wafer in the state of FIG. 4C is selectively opened by a normal photolithography technique, and the buried P + gate electrode layer 3'is dug up by selective etching to form a gate electrode. The state which formed the groove A is shown. As a silicon etching solution, a general etchant of hydrofluoric acid or nitric acid was used.

【0013】図5(b)は図5(a)の状態のウェハー
表面に,前と同様通常のフォトリソグラフィー技術で選
択開孔し,やはり同様のシリコンエッチャントを用い素
子分離用のメサ溝Bを選択エッチング形成したものを示
す。メサ溝Bにより,P+ ゲート電極層3′,3´,N
ソース層4´,4''及びN- ドレイン層2,2´が規定
され,メサ溝Bの深さはN+ ドレインオーミック層1に
到達するまでとし,本発明の実施例では140μmとし
た。
In FIG. 5B, selective opening is performed on the wafer surface in the state of FIG. 5A by the usual photolithography technique as before, and the same silicon etchant is used to form the mesa groove B for element isolation. The one formed by selective etching is shown. Due to the mesa groove B, the P + gate electrode layers 3 ', 3', N
The source layers 4 ', 4''and the N - drain layers 2, 2'are defined, and the depth of the mesa groove B is set to reach the N + drain ohmic layer 1 and is set to 140 μm in the embodiment of the present invention.

【0014】図5(c)は図5(b)の状態でガラスか
らなるパッシベーション層6を電気泳動法にて付着形成
した状態を示す。ガラス形成の条件は日本電気硝子株式
会社製のGP−190材をイソプロピルアルコールに混
合し白金を陽極電極とし100V/cmの電界を印加し
てガラス粉末を付着させた。更に,870℃で10分間
溶融焼成させてガラスからなるパッシベーション層6を
形成し,SITの基本構造を完成した。
FIG. 5C shows a state in which the passivation layer 6 made of glass is attached and formed by the electrophoresis method in the state of FIG. 5B. The glass forming conditions were as follows: GP-190 material manufactured by Nippon Electric Glass Co., Ltd. was mixed with isopropyl alcohol, and platinum was used as an anode electrode, and an electric field of 100 V / cm was applied to deposit glass powder. Further, it was melted and baked at 870 ° C. for 10 minutes to form a passivation layer 6 made of glass, thus completing the basic structure of SIT.

【0015】次に,本発明の実施例によるSITの効果
と,従来例によるSITとを比較して説明する。図6乃
至図8と図2との比較から,PN接合Jは本発明の実施
例による場合に比べ,従来例のメサ溝B´の頂部に極め
て近い部分に位置しており,頂面から3〜4μmの深さ
となっている。図8及び図3の比較から,従来において
は,従来のゲート・ドレイン間の耐圧を左右するPN接
合部Jの樹脂又はガラスからなるパシベーション層7の
被覆は本発明の実施例による場合に比べ不完全である。
メサ溝頂面からのPN接合Jの深さの違いが両者の被覆
性の差として現われている。
Next, the effect of the SIT according to the embodiment of the present invention and the SIT according to the conventional example will be compared and described. From the comparison between FIGS. 6 to 8 and FIG. 2, the PN junction J is located much closer to the top of the mesa groove B ′ of the conventional example as compared with the case of the embodiment of the present invention, and 3 from the top surface. The depth is up to 4 μm. From the comparison of FIGS. 8 and 3, in the conventional case, the coating of the passivation layer 7 made of resin or glass at the PN junction J, which influences the breakdown voltage between the gate and the drain, is not so good as in the case of the embodiment of the present invention. Perfect.
The difference in the depth of the PN junction J from the top surface of the mesa groove appears as the difference in the coverage between the two.

【0016】尚,図1乃至図5に示される本発明の実施
例と図6乃至図8に示される従来例とのゲート・ソース
間耐圧の歩留比較は耐圧1200V品で,本発明の実施
例によるものが92%,従来例においては42%であっ
た。尚,SIT素子の寸法は共に14mm角で母数は1
20個であった。
The yield comparison of the breakdown voltage between the gate and the source between the embodiment of the present invention shown in FIGS. 1 to 5 and the conventional example shown in FIGS. It was 92% by the example and 42% by the conventional example. The dimensions of the SIT elements are both 14 mm square and the parameter is 1.
It was 20 pieces.

【0017】以上,説明したように本発明の実施例で
は,ゲートP+ 層3を埋込む為のソースエピタキャル層
4の一部をメサ溝Bの周縁部に最後まで残すことで,露
呈されたPN接合部Jをメサ溝B頂面より深い位置に形
成する様な例を示したが,これは必ずしもエピタキシャ
ル層の一部を残すことに限らず,例えばポリイミド樹脂
や蒸着金属膜等の厚膜を利用することによっても可能で
あり,相対的にメサ溝Bの頂より深さ方向に距離をかせ
ぐ手段を講じさえすれば被覆性は大幅に改善できるので
ある。
As described above, according to the embodiment of the present invention, a part of the source epitaxy layer 4 for burying the gate P + layer 3 is exposed at the end of the peripheral edge of the mesa groove B, so that it is exposed. An example is shown in which the PN junction portion J is formed at a position deeper than the top surface of the mesa groove B. However, this does not necessarily leave a part of the epitaxial layer and the thickness of, for example, a polyimide resin or a vapor-deposited metal film. It is also possible to use a film, and the covering property can be greatly improved only by taking a means to relatively increase the distance in the depth direction from the top of the mesa groove B.

【0018】又,本発明の実施例ではメサ型SITに関
して提案しているが,その他のエピタキシャル成長によ
って形成される他のいかなる半導体デバイスに対しても
本発明の主旨を応用することは極めて簡単なことであ
る。
Although the embodiments of the present invention propose the mesa type SIT, it is extremely easy to apply the gist of the present invention to any other semiconductor device formed by epitaxial growth. Is.

【0019】[0019]

【発明の効果】以上の様に本発明によれば,PN接合露
呈部を極めて良好に被覆できる為に,表面安定性の極め
て高い高信頼性の高耐圧メサ型SITを提供することが
可能となった。
As described above, according to the present invention, since the exposed PN junction can be coated very well, it is possible to provide a highly reliable high withstand voltage mesa SIT having extremely high surface stability. became.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係るSITの構造を示す全体
的断面図である。
FIG. 1 is an overall sectional view showing a structure of an SIT according to an embodiment of the present invention.

【図2】図1の破線円で囲まれたメサ溝近傍の拡大断面
概略図で,パッシベーション材を除いてある。
FIG. 2 is an enlarged schematic cross-sectional view in the vicinity of the mesa groove surrounded by a broken line circle in FIG. 1, in which a passivation material is removed.

【図3】図1の破線円で囲まれたメサ溝近傍の拡大断面
概略図である。
3 is an enlarged cross-sectional schematic view of the vicinity of a mesa groove surrounded by a broken line circle in FIG.

【図4】図1乃至図3で示したSITを製造するための
工程を示す断面図である。
FIG. 4 is a cross-sectional view showing a process for manufacturing the SIT shown in FIGS. 1 to 3.

【図5】図1乃至図3で示したSITを製造するための
工程を示す断面図である。
FIG. 5 is a cross-sectional view showing a process for manufacturing the SIT shown in FIGS. 1 to 3.

【図6】従来例に係るSITの構造を示す全体的断面図
である。
FIG. 6 is an overall sectional view showing the structure of a SIT according to a conventional example.

【図7】図6のSITの破線円で囲まれたメサ溝近傍の
拡大断面図である。
7 is an enlarged cross-sectional view of the vicinity of a mesa groove surrounded by a dashed circle of SIT in FIG.

【図8】図6の破線円で囲まれたメサ溝近傍の拡大断面
図である。
8 is an enlarged cross-sectional view of the vicinity of a mesa groove surrounded by a broken line circle in FIG.

【符号の説明】[Explanation of symbols]

1 N+ ドレインオーミック層 2 N- ドレイン層 3 P+ ゲート層 3′,3'' P+ ゲート電極層 4 Nソース層 4′,4'' Nソース層の一部(ダミー層) 5 N+ ソースオーミック層 6,7 パッシベーション層 A ゲート電極段 B,B′ メサ溝 J ゲート・ドレイン間PN接合部DESCRIPTION OF SYMBOLS 1 N + drain ohmic layer 2 N drain layer 3 P + gate layer 3 ′, 3 ″ P + gate electrode layer 4 N source layer 4 ′, 4 ″ part of N source layer (dummy layer) 5 N + Source ohmic layer 6,7 Passivation layer A Gate electrode step B, B'Mesa groove J Gate-drain PN junction

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一導電型の半導体層から夫々成るソース
領域及びドレイン領域と,それに挾まれた逆導電型のゲ
ート領域とを備えた埋込みゲート型構造を有し,素子周
辺が前記半導体層の積層方向に設けられたメサ溝によっ
て分離されているメサ型の静電誘導型トランジスタにお
いて, 前記メサ溝周縁部の前記積層方向の構造がソース領域,
ゲート領域,及びドレイン領域からなる三層構造を備え
ていることを特徴とする静電誘導型トランジスタ。
1. A buried gate type structure comprising a source region and a drain region each composed of a semiconductor layer of one conductivity type and a gate region of an opposite conductivity type sandwiched between the source and drain regions, wherein the periphery of the element is the semiconductor layer. In a mesa-type electrostatic induction transistor that is separated by a mesa groove provided in the stacking direction, the structure in the stacking direction at the peripheral edge of the mesa groove is a source region,
An electrostatic induction transistor having a three-layer structure including a gate region and a drain region.
JP11555693A 1993-05-18 1993-05-18 Static induction transistor Pending JPH06326329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11555693A JPH06326329A (en) 1993-05-18 1993-05-18 Static induction transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11555693A JPH06326329A (en) 1993-05-18 1993-05-18 Static induction transistor

Publications (1)

Publication Number Publication Date
JPH06326329A true JPH06326329A (en) 1994-11-25

Family

ID=14665469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11555693A Pending JPH06326329A (en) 1993-05-18 1993-05-18 Static induction transistor

Country Status (1)

Country Link
JP (1) JPH06326329A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106328718A (en) * 2016-11-04 2017-01-11 四川洪芯微科技有限公司 Mesa diode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106328718A (en) * 2016-11-04 2017-01-11 四川洪芯微科技有限公司 Mesa diode

Similar Documents

Publication Publication Date Title
US7135364B2 (en) Method of fabricating semiconductor integrated circuit
US5915180A (en) Process for producing a semiconductor device having a single thermal oxidizing step
CN113178481A (en) Semiconductor device with a plurality of semiconductor chips
US8476691B1 (en) High reliability-high voltage junction termination with charge dissipation layer
JPH06349849A (en) High-breakdown-strength thin- film semiconductor device
JPH1154748A (en) Semiconductor device and manufacture thereof
JP2018082158A (en) Semiconductor device
TWI401807B (en) Mesa type semiconductor device and manufacturing method thereof
JP3192809B2 (en) High pressure silicon carbide Schottky diode
JP2003069045A (en) Semiconductor device
JP4794546B2 (en) Semiconductor device and manufacturing method thereof
JPS63287064A (en) Mis type semiconductor device and manufacture thereof
JPH06326329A (en) Static induction transistor
EP0756760B1 (en) Semiconductor device with guard ring and process for its production
JP2700870B2 (en) Electrostatic induction transistor and method of manufacturing the same
JPH0610700Y2 (en) Schottky barrier diode
US20220406756A1 (en) Semiconductor device and method of manufacturing semiconductor device
JPH1051010A (en) Manufacture of semiconductor device
JPH0550858B2 (en)
JPH0936383A (en) Semiconductor device
JPH0878431A (en) Silicon carbide vertical type bipolar transistor and its manufacture
JPS621262B2 (en)
JP3285131B2 (en) Embedded gate type static induction semiconductor device
JPH1174492A (en) Manufacture of semiconductor substrate
JPS60109274A (en) Semiconductor ic device and manufacture thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020508