JPH06326156A - Structure of bonding tool - Google Patents

Structure of bonding tool

Info

Publication number
JPH06326156A
JPH06326156A JP10902093A JP10902093A JPH06326156A JP H06326156 A JPH06326156 A JP H06326156A JP 10902093 A JP10902093 A JP 10902093A JP 10902093 A JP10902093 A JP 10902093A JP H06326156 A JPH06326156 A JP H06326156A
Authority
JP
Japan
Prior art keywords
heating element
pressurizing
contact
bonding tool
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10902093A
Other languages
Japanese (ja)
Inventor
Hidekazu Sato
英一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP10902093A priority Critical patent/JPH06326156A/en
Publication of JPH06326156A publication Critical patent/JPH06326156A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Abstract

PURPOSE:To change the temperature of a bonding tool by using a continuous heating system in the structure of the bonding tool used for connecting a glass substrate and a tape substrate. CONSTITUTION:The structure of a bonding tool consists of a pressure body 2 with a pressure surface 7, a pressure-body moving mechanism 4, a heating element 1 with a heat generating section and a heating-element moving mechanism 3. Through-holes 1 for cooling are formed to the pressure body 2, and the pressure body 2 is heated by a contact with the heating element 1. The heating element 1 is separated, and a refrigerant is flowed into the through-holes 11, thus allowing the cooling of the pressure body 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明のボンディングルールの構
造は、液晶パネルとTAB式半導体装置との接続や、テ
ープ配線基板と駆動用ICとの接続等に用いるボンディ
ングツールの構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The bonding rule structure of the present invention relates to the structure of a bonding tool used for connecting a liquid crystal panel to a TAB semiconductor device, connecting a tape wiring board to a driving IC, and the like.

【0002】[0002]

【従来の技術】ポリイミドフイルムのごとき可撓性を有
するフイルムを用いたテープ基板に半導体素子を搭載し
て、テープ基板に設けたリードと半導体素子の電極とを
接続したいわゆるTAB式半導体装置は広く実用に供さ
れている。また、上記のテープ基板上に多数のリードを
設け、その可撓性を利用して基板間あるいは、半導体装
置と基板間等を接続するフレキシブルテープも実用化さ
れている。
2. Description of the Related Art A so-called TAB type semiconductor device in which a semiconductor element is mounted on a tape substrate using a flexible film such as a polyimide film and leads provided on the tape substrate are connected to electrodes of the semiconductor element is widely used. It is put to practical use. Also, a flexible tape has been put into practical use in which a large number of leads are provided on the above-mentioned tape substrate and the flexibility thereof is used to connect between the substrates or between the semiconductor device and the substrate.

【0003】図5は従来の接続方法の一例を示す模式図
である。また図6は他の従来例を示す断面図であり、図
5及び図6において、液晶パネルを構成するガラス基板
17の外縁には多数の配線パターン18が設けられてい
る。TAB式半導体装置29は、可撓性を有するフイル
ム上に配線を有するテープ基板16に半導体素子30が
搭載され、半導体素子30の電極31はテープ基板16
上に配置したリード19にそれぞれ接続されている。
FIG. 5 is a schematic view showing an example of a conventional connection method. FIG. 6 is a cross-sectional view showing another conventional example. In FIGS. 5 and 6, a large number of wiring patterns 18 are provided on the outer edge of a glass substrate 17 that constitutes a liquid crystal panel. In the TAB type semiconductor device 29, a semiconductor element 30 is mounted on a tape substrate 16 having wiring on a flexible film, and electrodes 31 of the semiconductor element 30 are on the tape substrate 16.
The leads 19 arranged above are respectively connected.

【0004】上記のようなガラス基板17の配線パター
ン18にTAB式半導体装置29のリード19を接続す
るには、ガラス基板の配線パターン18にTAB式半導
体装置29のリード19を整合(位置合わせ)させて両
者の間に異方性導電膜20や異方性導電接着剤等の接続
剤を介装し、TAB式半導体装置29のリード19上よ
りボンディングツールでテープ基板16を加熱かつ加圧
して異方性導電膜20等の接続剤を硬化して配線パター
ン18にリード19を接続する。
To connect the leads 19 of the TAB semiconductor device 29 to the wiring pattern 18 of the glass substrate 17 as described above, the leads 19 of the TAB semiconductor device 29 are aligned (aligned) with the wiring pattern 18 of the glass substrate. Then, a connecting agent such as an anisotropic conductive film 20 or an anisotropic conductive adhesive is interposed between the two, and the tape substrate 16 is heated and pressed from above the lead 19 of the TAB semiconductor device 29 with a bonding tool. The connecting agent such as the anisotropic conductive film 20 is cured to connect the lead 19 to the wiring pattern 18.

【0005】このときの接続に用いられるボンディング
ツールとしては図5に示すごときボンディングツール内
に棒状発熱体5を内装した常時加熱方式のボンディング
ツール32が用いられる。
As the bonding tool used for the connection at this time, there is used a bonding tool 32 of a constant heating system in which a rod-shaped heating element 5 is incorporated in the bonding tool as shown in FIG.

【0006】あるいは、図6に示すごとくボンディング
ツールの一部を電気的な抵抗として利用する電気抵抗加
熱方式のボンディングツール33があった。
Alternatively, as shown in FIG. 6, there is an electric resistance heating type bonding tool 33 which uses a part of the bonding tool as an electric resistance.

【0007】[0007]

【発明が解決しようとする課題】しかし前述の従来技術
では、常時加熱方式のボンディングツールを使用した場
合には、熱可塑系異方性導電膜を使用した時に、接続時
の接続温度が一定のために、接続後ボンディングツール
を接続部から離した時点で異方性導電膜は軟化状態であ
り、それぞれのリードと電極間で確実な接続を行うこと
が出来ないという課題や、熱硬化系異方性導電膜を使用
した場合には、接続後ボンディングツールを接続部より
離した時点の異方性導電膜の温度が高温状態のために導
電粒子の反発力に接着剤保持力が負けてしまい確実な接
続が出来ないという課題があった。
However, in the above-mentioned conventional technique, when the bonding tool of the constant heating system is used, the connection temperature at the time of connection is constant when the thermoplastic anisotropic conductive film is used. For this reason, the anisotropic conductive film is in a softened state when the bonding tool is separated from the connection part after the connection, and it is difficult to make a reliable connection between each lead and the electrode. When the anisotropic conductive film is used, the adhesive holding force is lost to the repulsive force of the conductive particles due to the high temperature of the anisotropic conductive film at the time when the bonding tool is separated from the connection part after connection. There was a problem that a reliable connection could not be made.

【0008】また上記の課題に対して、電気抵抗加熱方
式のボンディングツールによれば通電時のみに加熱温度
を接続可能温度まで上昇することが可能なために接続後
加熱温度を下降させてからボンディングツールを接続部
から離すことによってリードと電極パターンの確実な接
続を確保することは可能であった。
In order to solve the above problems, according to the electric resistance heating type bonding tool, the heating temperature can be raised to the connectable temperature only when electricity is applied. It was possible to ensure a reliable connection between the leads and the electrode pattern by moving the tool away from the connection.

【0009】しかし、電気抵抗加熱方式のボンディング
ツールによればボンディングツールを発熱体として使用
するために、ボンディング部近傍に発熱部を形成するこ
とが必要となり、ボンディング部側面の厚みを極端に薄
くして電気抵抗を高め発熱部とする方法がとられてい
た。このようにボンディングツールに発熱部を形成した
場合には、接続部の長さ全体にわたって均一な温度を確
保するための加工は非常に難しくまた、高価なボンディ
ングツールとなってしまった。
However, according to the electrical resistance heating type bonding tool, since the bonding tool is used as a heating element, it is necessary to form a heating portion near the bonding portion, and the thickness of the side surface of the bonding portion is extremely reduced. A method of increasing the electric resistance and using it as a heat generating part has been adopted. When the heat generating portion is formed on the bonding tool in this manner, it is very difficult to perform processing for ensuring a uniform temperature over the entire length of the connection portion, and an expensive bonding tool is required.

【0010】さらに電気抵抗加熱方式のボンディングツ
ールを使用して接続を行う場合には、ボンディングツー
ル側面の厚みが薄いことで接続時の圧力と、ボンディン
グツールの加熱とによって、ボンディング面が変形して
しまい接続部全面にわたって均等な接続圧力と接続温度
を確保することが出来ないという現象の起こることがあ
り被接続体の確実な接続が出来なくなってしまうという
課題を有した。
Further, when the connection is made by using the electric resistance heating type bonding tool, the side surface of the bonding tool is thin and the bonding surface is deformed by the pressure at the time of connection and the heating of the bonding tool. However, there is a problem that a uniform connection pressure and connection temperature cannot be secured over the entire surface of the connection portion, and reliable connection of the connection target cannot be performed.

【0011】[0011]

【課題を解決するための手段】加圧面を有する加圧体
と、加圧体可動機構と、発熱部を有する発熱体と発熱体
可動機構からなり、加圧体接触面と発熱体接触面はそれ
ぞれに相対する接触面を有する。加圧体接触面と発熱体
接触面はそれぞれに相対する凸曲面と凹曲面で互いに接
触する。発熱体と加圧体が接触して発熱体よりの熱伝達
によって加圧体を温度上昇させる。または発熱体接触面
と加圧体接触面はそれぞれに傾斜して相対する凹凸の接
触面を有し互いに接触する。
A pressing body having a pressing surface, a pressing body moving mechanism, a heating element having a heating portion and a heating element moving mechanism, and the pressing body contact surface and the heating body contact surface are It has contact surfaces facing each other. The pressurizing body contact surface and the heat generating body contact surface are in contact with each other with a convex curved surface and a concave curved surface facing each other. The heating element and the pressure element contact each other, and the temperature of the pressure element is raised by heat transfer from the heating element. Alternatively, the contact surface of the heating element and the contact surface of the pressurizing element have contact surfaces of irregularities which are inclined and face each other, and contact each other.

【0012】加圧体に流体導入口と、流体流出口を有す
る貫通穴を配置することで、ボンディング終了時には流
体導入口より冷却媒体を流入しボンディング終了時の加
圧体の温度を下降させて接続部温度を下げることによっ
て確実な接続が可能となり接続時の電気的な導通の安定
を図ることと、ボンディング面の変形を防ぐボンディン
グツールを提供する。
By disposing a fluid introduction port and a through hole having a fluid outlet in the pressurizing body, a cooling medium is introduced from the fluid introducing port at the end of bonding to lower the temperature of the pressurizing body at the end of bonding. (EN) Provided is a bonding tool which can achieve a reliable connection by lowering the temperature of a connection portion, stabilize electrical conduction at the time of connection, and prevent deformation of a bonding surface.

【0013】[0013]

【作用】加圧面を有する加圧体と、加圧体可動機構と、
発熱部を有する発熱体と発熱体可動機構からなり、加圧
体接触面と発熱体接触面はそれぞれに相対する接触面を
有し、発熱体接触面と加圧体接触面はそれぞれに相対す
る凸曲面と凹曲面で 互いに接触する。発熱体と加圧体
とを接触して発熱体よりの熱伝達によって加圧体を温度
上昇させる。
[Function] A pressure body having a pressure surface, a pressure body moving mechanism,
It is composed of a heating element having a heating section and a heating element moving mechanism, and the pressing element contact surface and the heating element contact surface have contact surfaces facing each other, and the heating element contact surface and the pressing element contact surface oppose each other. The convex and concave surfaces are in contact with each other. The heating element and the pressure element are brought into contact with each other, and the temperature of the pressure element is raised by heat transfer from the heating element.

【0014】発熱体接触面と加圧体接触面はそれぞれに
傾斜して相対する凹凸の接触面を有し互いに接触する。
The heating element contact surface and the pressurizing element contact surface are in contact with each other with inclined and opposed contact surfaces having irregularities.

【0015】ボンディング終了時には加圧体には流体導
入口と、流体流出口を有する貫通穴を配置することで、
流体導入口より冷却媒体を流入しボンディング終了時の
加圧体の温度を冷却して接続部温度を下げる。
At the end of bonding, the pressurizing member is provided with a fluid inlet and a through hole having a fluid outlet,
A cooling medium is introduced from the fluid introduction port to cool the temperature of the pressurizing body at the end of bonding to lower the temperature of the connecting portion.

【0016】以上ごとき構造のボンディングツールの加
圧体は加圧体可動機構に接続され、加圧体のみでの動作
が可能である。また発熱体も発熱体可動機構に接続され
単独での動作が可能となっている。
The pressing body of the bonding tool having the above structure is connected to the pressing body moving mechanism and can be operated only by the pressing body. Further, the heating element is also connected to the heating element moving mechanism and can operate independently.

【0017】まず加圧体と発熱体とを接触させることで
加圧体は発熱体よりの伝熱により接続に必要となる所定
温度まで加熱される。次に、加圧体と発熱体が接触した
状態でリードと基板との整合部に移動し、接続部を加熱
及び加圧する。所定の加熱時間終了後、発熱体を加圧体
より離して、流体導入口より冷却媒体を導入すること
で、加圧体を冷却する。加圧体の加熱温度が所定の温度
まで下降した後に、加圧体の加圧を解除して、接続部上
面より離すことによって接続を終了することができる。
First, by contacting the heating element with the heating element, the heating element is heated to a predetermined temperature required for connection by heat transfer from the heating element. Next, in a state where the pressure body and the heating element are in contact with each other, they move to a matching portion between the lead and the substrate, and heat and pressurize the connection portion. After the end of the predetermined heating time, the heating element is separated from the pressurizing element, and the cooling medium is introduced from the fluid introducing port to cool the pressurizing element. After the heating temperature of the pressurizing body has dropped to a predetermined temperature, the pressurizing body is released from pressure and separated from the upper surface of the connecting portion, whereby the connection can be terminated.

【0018】[0018]

【実施例】(実施例1)図1は本発明の実施例1による
ところのボンディングツールの構造を示す側面図であ
り、図2は本発明の実施例1によるところのボンディン
グツールの一部を示す断面図である。図1及び図2を用
いて本実施例を詳細に説明する。
EXAMPLE 1 FIG. 1 is a side view showing the structure of a bonding tool according to Example 1 of the present invention, and FIG. 2 shows a part of the bonding tool according to Example 1 of the present invention. It is sectional drawing shown. This embodiment will be described in detail with reference to FIGS. 1 and 2.

【0019】図1においてボンディングツールは発熱体
1と、加圧体2と発熱体可動機構3と、加圧体可動機構
4とから構成されている。発熱体1には棒状発熱体5が
埋設され発熱部を形成し、また発熱体可動機構3と接続
されている。加圧体2の発熱体1との接触部である発熱
体接触部6は、加圧面7の長辺方向と直交する凹斜面8
で形成され、発熱体1の加圧体接触部9は、凹斜面8と
相対する凸斜面10より形成され接触時には互いに密着
する構造とした。
In FIG. 1, the bonding tool comprises a heating element 1, a pressing element 2, a heating element moving mechanism 3 and a pressing element moving mechanism 4. A rod-shaped heating element 5 is embedded in the heating element 1 to form a heating portion, and is connected to the heating element moving mechanism 3. The heating element contact portion 6 which is a contact portion of the pressing body 2 with the heating element 1 has a concave slope 8 orthogonal to the long side direction of the pressing surface 7.
The pressurizing body contact portion 9 of the heating element 1 is formed by the convex slope 10 facing the concave slope 8 and is in close contact with each other at the time of contact.

【0020】発熱体1は、銅合金、ニッケルクロム合
金、ニッケル系超耐熱合金、超低熱膨張鋳鉄等の金属を
用いて形成し、加圧体2に比較して体積を大きくした。
また、加圧体2はニッケル系超耐熱合金、超低熱膨張鋳
鉄等の金属や、アルミナ系セラミックス、炭化珪素、窒
化珪素等のセラミックス類を材料として用い、加圧及び
加熱時の変形量を極力抑えることとした。
The heating element 1 is made of a metal such as a copper alloy, a nickel-chromium alloy, a nickel-based super heat-resistant alloy, and an ultra-low thermal expansion cast iron, and has a larger volume than the pressurizing element 2.
The pressurizing body 2 is made of a metal such as nickel-based super heat-resistant alloy or ultra-low thermal expansion cast iron, or ceramics such as alumina-based ceramics, silicon carbide or silicon nitride, and the amount of deformation during pressurization and heating is maximized. I decided to suppress it.

【0021】また、加圧体2には、貫通穴11を配置し
て、図2に示すごとき流体導入口12より冷却媒体とし
て圧縮空気を流入できる構造とした。
Further, a through hole 11 is arranged in the pressurizing body 2 so that compressed air as a cooling medium can flow in through the fluid inlet 12 as shown in FIG.

【0022】以上のごときボンディングツールについて
以下説明する。
The above bonding tool will be described below.

【0023】図1において加圧体2は加圧体保持部13
により保持され、加圧体可動機構4に接続され加圧体移
動シリンダー14により上下動作可能となる。加圧体移
動シリンダー14は接続時の加圧圧力を確保するため
に、接続部に0.5MPaから5MPaの圧力を加える
ことが可能な大きさを選択する。
In FIG. 1, the pressure body 2 is a pressure body holding portion 13
It is held by the pressurizing body moving mechanism 4 and can be vertically moved by the pressurizing body moving cylinder 14. The pressurizing body moving cylinder 14 is selected to have a size capable of applying a pressure of 0.5 MPa to 5 MPa to the connecting portion in order to secure a pressurizing pressure at the time of connection.

【0024】発熱体1は発熱体1に棒状発熱体5を埋設
し加熱を行う。また、発熱体1は発熱体移動シリンダー
15と接続して、発熱体移動シリンダー15を動作する
ことにより発熱体1を下降し加圧体2の凹斜面8に発熱
体1の凸斜面10を接触させる。加圧体2は発熱体1よ
りの熱伝達によって加熱されるため、加圧体2と発熱体
1の接触面はできるだけ接触面積が大きくかつ密着する
ように凹斜面8と凸斜面10との組合せとした。
The heating element 1 is constructed by embedding a rod-shaped heating element 5 in the heating element 1 for heating. Further, the heating element 1 is connected to the heating element moving cylinder 15, and the heating element moving cylinder 15 is operated to lower the heating element 1 to bring the concave sloped surface 8 of the pressurizing element 2 into contact with the convex sloped surface 10 of the heating element 1. Let Since the pressurizing body 2 is heated by the heat transfer from the heat generating body 1, the contact surface between the pressurizing body 2 and the heat generating body 1 has a large contact area and a combination of the concave slope surface 8 and the convex slope surface 10 so as to be in close contact with each other. And

【0025】加圧体2に形成した加圧面7の温度が発熱
体1よりの熱伝達によって接続可能温度まで上昇した後
に、加圧体2に発熱体1を接触させた状態で加圧体可動
機構4により加圧体2を移動し加圧体2の加圧面7をテ
ープ基板16上面に接触させて加圧及び加熱を行い、整
合して配置したガラス基板17上の配線パターン18
と、テープ基板16のリード19とを、配線パターン1
8とリード19とに挟持して配置した異方性導電膜20
により接続を行う。
After the temperature of the pressurizing surface 7 formed on the pressurizing body 2 rises up to the connectable temperature due to heat transfer from the heat generating body 1, the pressurizing body is moved with the heat generating body 1 in contact with the pressurizing body 2. The pressurizing body 2 is moved by the mechanism 4 so that the pressurizing surface 7 of the pressurizing body 2 is brought into contact with the upper surface of the tape substrate 16 to perform pressurization and heating, and the wiring pattern 18 on the glass substrate 17 aligned and arranged.
And the leads 19 of the tape substrate 16 to the wiring pattern 1
8 and the anisotropic conductive film 20 sandwiched between the leads 19 and arranged.
To connect.

【0026】加圧体2よりの加熱温度と加圧力により接
続を終了した後に加圧体2に接触している発熱体1のみ
を発熱体可動機構3により加圧体2より離脱する。加圧
体2が加圧を継続している状態で冷却媒体として、圧縮
空気を貫通穴11に導入し加圧体2を冷却する。冷却媒
体により加圧体2を冷却した後に冷却媒体の流入を停止
して加圧体2の加圧を解除して加圧体可動機構4により
テープ基板16上面より加圧体2を離脱してテープ基板
16のリード19と、ガラス基板17の配線パターン1
8との異方性導電膜20による一回の接続を終了する。
テープ基板16上を離脱した加圧体2は接続前の定位置
に復帰し、定位置に復帰した加圧体2に再び発熱体1を
発熱体可動機構3によって接触させることで発熱体1よ
りの熱伝導により加圧体2を加熱して再度の接続に備え
ることとした。
Only the heating element 1 in contact with the pressing element 2 is separated from the pressing element 2 by the heating element moving mechanism 3 after the connection is completed by the heating temperature and the pressing force of the pressing element 2. Compressed air is introduced into the through holes 11 as a cooling medium to cool the pressurizing body 2 while the pressurizing body 2 continues to pressurize. After cooling the pressurizing body 2 with the cooling medium, the inflow of the cooling medium is stopped, the pressurization of the pressurizing body 2 is released, and the pressurizing body 2 is separated from the upper surface of the tape substrate 16 by the pressurizing body moving mechanism 4. The wiring pattern 1 on the lead 19 of the tape substrate 16 and the glass substrate 17
One connection with the anisotropic conductive film 20 with 8 is completed.
The pressure body 2 separated from the tape substrate 16 returns to the fixed position before the connection, and the heat generation body 1 is brought into contact with the pressure body 2 which has returned to the fixed position again by the heat generation body moving mechanism 3 so that It was decided to heat the pressurizing body 2 by the heat conduction of 1 and prepare for the connection again.

【0027】本実施例においては、異方性導電膜20の
接着剤21に熱硬化性樹脂を用い、また異方性導電膜2
0中に含まれ、リード19と配線パターン18とを電気
的に接続する導電粒子22にはプラスチック粒子表面に
金属メッキを施した粒子を用いた。
In this embodiment, a thermosetting resin is used as the adhesive 21 of the anisotropic conductive film 20, and the anisotropic conductive film 2 is used.
As the conductive particles 22 contained in 0 and electrically connecting the lead 19 and the wiring pattern 18, particles having metal surfaces plated on the plastic particles were used.

【0028】ガラス基板18上へのテープ基板17の接
続を異方性導電膜20により行う場合の異方性導電膜2
0の接続条件は、今回用いた異方性導電膜20の硬化必
要温度は摂氏140度であるため接続部23に接着剤2
1硬化温度の摂氏140度を確保するためには、発熱体
1の温度を約摂氏260度に設定し、加圧体2に発熱体
1を接触する。発熱体1を加圧体2に接触したことによ
り加圧面7温度は摂氏200度となり接続部23に温度
摂氏140度を確保することが可能となった。さらに接
続部23に加圧体移動シリンダー14により0.5MP
aから5MPaの加圧を行い、加圧を5秒から20秒保
持した後に発熱体可動機構3により発熱体1を加圧体2
より離し、図2に示す流体導入口12より1分間に2リ
ットルから5リットルの圧縮空気を冷却媒体として貫通
穴11に流入する。貫通穴11を流れた冷却媒体は流体
流出口24より放出される。冷却媒体により加圧体2を
摂氏70度から摂氏120度に冷却した後加圧体2を図
1に示す加圧体可動機構4によってテープ基板17より
離し定位置に復帰させて一回の接続を終了する。
Anisotropic conductive film 2 when the tape substrate 17 is connected to the glass substrate 18 by the anisotropic conductive film 20.
As for the connection condition of 0, since the required curing temperature of the anisotropic conductive film 20 used this time is 140 degrees Celsius, the adhesive 2 is applied to the connection portion 23.
In order to secure one curing temperature of 140 degrees Celsius, the temperature of the heating element 1 is set to about 260 degrees Celsius, and the heating element 1 is brought into contact with the pressurizing element 2. By bringing the heating element 1 into contact with the pressure member 2, the temperature of the pressure surface 7 becomes 200 degrees Celsius, and it becomes possible to secure the temperature of 140 degrees Celsius in the connecting portion 23. Furthermore, 0.5MP is applied to the connecting portion 23 by the pressurizing body moving cylinder 14.
The pressure of 5 MPa is applied from a, the pressure is maintained for 5 seconds to 20 seconds, and then the heating element moving mechanism 3 is used to move the heating element 1 to the pressing element 2.
Separated from each other, 2 to 5 liters of compressed air as a cooling medium flows into the through hole 11 per minute from the fluid introduction port 12 shown in FIG. The cooling medium flowing through the through hole 11 is discharged from the fluid outlet 24. After the pressure body 2 is cooled from 70 degrees Celsius to 120 degrees Celsius by the cooling medium, the pressure body 2 is separated from the tape substrate 17 by the pressure body moving mechanism 4 shown in FIG. To finish.

【0029】この時の接続部23の接続状態は良好であ
り、接続部23の一部が浮き上がって電気的な導通不良
の原因となるような場所も検出されなかった。
At this time, the connection state of the connection portion 23 was good, and no place was detected that would cause a part of the connection portion 23 to float and cause electrical failure.

【0030】(実施例2)図3は本発明の実施例2のボ
ンディングツールの構造を示す斜視図である。
(Second Embodiment) FIG. 3 is a perspective view showing the structure of a bonding tool according to a second embodiment of the present invention.

【0031】ボンディングツールは発熱体1と発熱体移
動シリンダー15と加圧体2と加圧体可動機構4と加圧
体移動シリンダー14とから構成され、発熱体1の加圧
体接触部9は凸凹斜面25で形成されている。また加圧
体2の発熱体接触部6は加圧体接触部9の凸凹斜面25
と相対する形状の斜面を有する凹凸斜面26より形成さ
れる。加圧体2の発熱体接触部6は加圧体移動シリンダ
ー14により発熱体1の加圧体接触部9に密着する。加
圧体2は棒状発熱体5により加熱された発熱体1より熱
伝達を受け、接続に必要となる所定温度に温度上昇す
る。発熱体1の加圧体接触部9は凹凸斜面26であり、
加圧体2の発熱体接触部6の凸凹斜面25と相対する形
状に形成され密着しているために加圧体2への接触面積
が大きく、温度伝達を速やかに行うことが可能である。
The bonding tool comprises a heating element 1, a heating element moving cylinder 15, a pressure element 2, a pressure element moving mechanism 4 and a pressure element moving cylinder 14, and the pressure element contact portion 9 of the heating element 1 is It is formed by the uneven slope 25. In addition, the heating element contact portion 6 of the pressurizing body 2 has the uneven slope 25 of the pressing body contact portion 9.
It is formed by an uneven slope 26 having a slope opposite to the slope. The heating element contacting part 6 of the pressing element 2 is brought into close contact with the pressing element contacting part 9 of the heating element 1 by the pressing element moving cylinder 14. The pressurizing body 2 receives heat from the heating element 1 heated by the rod-shaped heating element 5 and rises in temperature to a predetermined temperature required for connection. The pressure body contact portion 9 of the heating element 1 is the uneven slope 26,
Since the pressurizing body 2 is formed in a shape facing the convex-concave slope 25 of the heating element contact portion 6 and is in close contact with the pressurizing body 2, the contact area with the pressurizing body 2 is large, and the temperature can be quickly transmitted.

【0032】所定温度に上昇した加圧体2は、発熱体移
動シリンダー15により加圧されて、被接続体(図示し
ない)に接触し接続を行う。所定の時間接続を行った
後、加圧体移動シリンダー14の加圧力で加圧体2の加
圧を行い、発熱体移動シリンダー15は加圧を解除し所
定の位置に復帰することで、加圧体2の発熱体接触部6
より発熱体1を離脱することができる。発熱体1離脱後
の加圧体2は加圧体移動シリンダー14により加圧を継
続し、貫通穴11に冷却媒体を流入し加圧体2を冷却す
る。その後に加圧体移動シリンダーを動作することによ
って被接続体より離脱して発熱体1の加圧体接触部9と
発熱体接触部6が接触することで一回の接続を終了す
る。
The pressurizing body 2 which has risen to a predetermined temperature is pressurized by the heating element moving cylinder 15 and comes into contact with an object to be connected (not shown) for connection. After connecting for a predetermined time, the pressurizing body 2 is pressurized by the pressurizing force of the pressurizing body moving cylinder 14, and the heating element moving cylinder 15 releases the pressurization and returns to a predetermined position to apply the pressure. Heater contact portion 6 of pressure body 2
The heating element 1 can be detached more. After the heating element 1 is separated, the pressure element 2 is continuously pressurized by the pressure element moving cylinder 14, and the cooling medium is flown into the through hole 11 to cool the pressure element 2. After that, by operating the pressurizing body moving cylinder, the pressurizing body moving cylinder is detached from the connected body, and the pressurizing body contact portion 9 and the heating body contact portion 6 of the heating element 1 come into contact with each other to complete one connection.

【0033】(実施例3)図4は本発明の実施例3のボ
ンディングツールの構造を説明するための側面図であ
り、ボンディングツールは発熱体1と加圧体2と発熱体
可動機構3と加圧体可動機構4とから構成されている。
加圧体2と発熱体1との接触部はそれぞれに加圧体2の
加圧面7の長辺方向と直行する凹曲面27と凸曲面28
に形成され、かつ凹曲面27と凸曲面28は互いに相対
して配置される。発熱体1には棒状発熱体5が埋設され
発熱体可動機構3と接続されている。加圧体2の発熱体
1との接触部である発熱体接触部6は、加圧面7の長辺
方向と直交する凹曲面27で形成され、発熱体1の加圧
体2との接触部である加圧体接触部9は、凹曲面27と
相対する凸曲面28より形成され接触時には互いに密着
する構造とした。
(Embodiment 3) FIG. 4 is a side view for explaining the structure of a bonding tool according to a third embodiment of the present invention. The bonding tool includes a heating element 1, a pressurizing element 2, a heating element moving mechanism 3. It is composed of a pressurizing body moving mechanism 4.
The contact portions between the pressurizing body 2 and the heat generating body 1 respectively have a concave curved surface 27 and a convex curved surface 28 that are orthogonal to the long side direction of the pressurizing surface 7 of the pressurizing body 2.
And the concave curved surface 27 and the convex curved surface 28 are arranged to face each other. A rod-shaped heating element 5 is embedded in the heating element 1 and connected to the heating element moving mechanism 3. The heating element contact portion 6 which is a contact portion of the pressing element 2 with the heating element 1 is formed by a concave curved surface 27 orthogonal to the long side direction of the pressing surface 7, and the contact portion of the heating element 1 with the pressing element 2. The pressurizing body contact portion 9 is a convex curved surface 28 that faces the concave curved surface 27, and has a structure in which they are in close contact with each other at the time of contact.

【0034】発熱体1に形成する加圧体接触部9は凸曲
面28であり、加圧体2に形成する発熱体接触部6は凸
曲面28と相対する凹曲面27である。このため棒状発
熱体5によって加熱される発熱体1の温度は発熱体1の
凸曲面28より加圧体2の凹曲面27を経由して効率よ
く加圧体2に熱伝達することが可能となる。また、加圧
体2の発熱体接触面6を凹曲面27とすることで加圧体
2の体積を減ずることができるため、加圧体2より発熱
体1を離脱させて加圧体2に配置した貫通穴11に冷却
媒体導入口より冷却媒体を流入して、加圧体2を冷却す
る場合にも、冷却時間を短縮することが可能となり作業
時間を短縮することが可能となる。
The pressure member contact portion 9 formed on the heat generating element 1 is a convex curved surface 28, and the heat element contact portion 6 formed on the pressure element 2 is a concave curved surface 27 facing the convex curved surface 28. Therefore, the temperature of the heating element 1 heated by the rod-shaped heating element 5 can be efficiently transferred from the convex curved surface 28 of the heating element 1 to the pressing element 2 via the concave curved surface 27 of the pressing element 2. Become. Further, since the volume of the pressure body 2 can be reduced by forming the heating body contact surface 6 of the pressure body 2 into the concave curved surface 27, the heat generation body 1 is separated from the pressure body 2 to form the pressure body 2. Even when the cooling medium is introduced from the cooling medium introducing port into the arranged through hole 11 to cool the pressurizing body 2, the cooling time can be shortened and the working time can be shortened.

【0035】[0035]

【発明の効果】以上述べたごとく本発明においては加圧
面を有する加圧体と、加圧体可動機構と、発熱部を有す
る発熱体と発熱体可動機構からなり、加圧体接触面と発
熱体接触面はそれぞれに相対する接触面を有し、発熱体
を加圧体に接触して加圧体を温度上昇させる。発熱体接
触面と加圧体接触面はそれぞれに相対する凸曲面と凹曲
面で 互いに接触する。または発熱体接触面と加圧体接
触面はそれぞれに傾斜して相対する凹凸の接触面を有し
互いに接触する。さらに加圧体には流体導入口と、流体
流出口を有する貫通穴を配置することで、接続終了時に
流体導入口より冷却媒体を流入しボンディング終了時の
加圧体の温度を下降して接続部温度を下げてから加圧を
解放することで、異方性導電膜や異方性導電接着剤等の
接続剤の硬化状態を安定して維持することができるため
安定した接続状態を確保して確実な接続を可能とすると
共に、加圧面の温度を上下しても加圧面の変形を起こす
おそれがなく継続して安定した接続状態を確保すること
が可能となる。
As described above, in the present invention, the pressurizing body having the pressurizing surface, the pressurizing body moving mechanism, the heat generating body having the heat generating portion, and the heat generating body moving mechanism are provided. The body contact surfaces have contact surfaces facing each other, and the heating element is brought into contact with the pressure body to raise the temperature of the pressure body. The contact surface of the heating element and the contact surface of the pressurizing element are in contact with each other with a convex curved surface and a concave curved surface facing each other. Alternatively, the contact surface of the heating element and the contact surface of the pressurizing element have contact surfaces of irregularities which are inclined and face each other, and contact each other. Furthermore, by arranging a fluid inlet and a through hole with a fluid outlet in the pressurizing body, a cooling medium flows in from the fluid introducing port at the end of connection to lower the temperature of the pressurizing body at the end of bonding and make a connection. By releasing the pressure after lowering the part temperature, the cured state of the connecting agent such as anisotropic conductive film or anisotropic conductive adhesive can be stably maintained, so a stable connected state is secured. It is possible to ensure a reliable connection, and it is possible to continuously and stably secure a connected state without the risk of deformation of the pressing surface even if the temperature of the pressing surface is raised or lowered.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1によるボンディングツールの
構造を示す側面図である。
FIG. 1 is a side view showing a structure of a bonding tool according to a first embodiment of the present invention.

【図2】本発明の実施例1によるボンディングツールを
示す断面図である。
FIG. 2 is a sectional view showing a bonding tool according to the first embodiment of the present invention.

【図3】本発明の実施例2によるボンディングツールの
構造を示す斜視図である。
FIG. 3 is a perspective view showing a structure of a bonding tool according to a second embodiment of the present invention.

【図4】本発明の実施例3によるボンディングツールの
構造を示す側面図である。
FIG. 4 is a side view showing a structure of a bonding tool according to a third embodiment of the present invention.

【図5】従来の接続方法の一例を示す模式図である。FIG. 5 is a schematic diagram showing an example of a conventional connection method.

【図6】従来の接続方法の他の例を示す模式図である。FIG. 6 is a schematic diagram showing another example of a conventional connection method.

【符号の説明】[Explanation of symbols]

1 発熱体 2 加圧体 3 発熱体可動機構 4 加圧体可動機構 5 棒状発熱体 6 発熱体接触部 7 加圧面 8 凹斜面 9 加圧体接触部 10 凸斜面 11 貫通穴 12 流体導入口 13 加圧体保持部 14 加圧体移動シリンダー 15 発熱体移動シリンダー 24 流体流出口 25 凸凹斜面 26 凹凸斜面 27 凹曲面 28 凸曲面 DESCRIPTION OF SYMBOLS 1 Heating element 2 Pressurizing element 3 Heating element moving mechanism 4 Pressing element moving mechanism 5 Rod-shaped heating element 6 Heating element contact part 7 Pressing surface 8 Concave sloped surface 9 Pressing element contact part 10 Convex sloped surface 11 Through hole 12 Fluid introduction port 13 Pressurized body holding part 14 Pressurized body moving cylinder 15 Heating element moving cylinder 24 Fluid outlet 25 Convex slope 26 Uneven slope 27 Concave curved surface 28 Convex curved surface

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 加圧面を有する加圧体と、加圧体可動機
構と、発熱部を有する発熱体と発熱体可動機構からな
り、加圧体接触面と発熱体接触面はそれぞれに相対する
接触面を有することを特徴とするボンディングツールの
構造。
1. A pressurizing body having a pressurizing surface, a pressurizing body moving mechanism, a heat generating body having a heat generating portion, and a heat generating body moving mechanism, wherein the pressurizing body contact surface and the heat generating body contact surface face each other. Bonding tool structure characterized by having a contact surface.
【請求項2】 該発熱体接触面と該加圧体接触面はそれ
ぞれに相対する凸曲面と凹曲面であることを特徴とする
請求項1記載のボンディングツールの構造。
2. The bonding tool structure according to claim 1, wherein the heating element contact surface and the pressing element contact surface are a convex curved surface and a concave curved surface, respectively, which face each other.
【請求項3】 該発熱体接触面と該加圧体接触面はそれ
ぞれに傾斜して相対する凹斜面、凸斜面または凹凸斜面
を有することを特徴とする請求項1記載のボンディング
ツールの構造。
3. The bonding tool structure according to claim 1, wherein the heating element contact surface and the pressure element contact surface each have a concave slope, a convex slope or an uneven slope that are inclined and face each other.
【請求項4】 加圧体には流体導入口と、流体流出口を
有する貫通穴を有することを特徴とする請求項1または
請求項2または請求項3記載のボンディングツールの構
造。
4. The bonding tool structure according to claim 1, wherein the pressurizing body has a fluid inlet and a through hole having a fluid outlet.
JP10902093A 1993-05-11 1993-05-11 Structure of bonding tool Pending JPH06326156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10902093A JPH06326156A (en) 1993-05-11 1993-05-11 Structure of bonding tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10902093A JPH06326156A (en) 1993-05-11 1993-05-11 Structure of bonding tool

Publications (1)

Publication Number Publication Date
JPH06326156A true JPH06326156A (en) 1994-11-25

Family

ID=14499561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10902093A Pending JPH06326156A (en) 1993-05-11 1993-05-11 Structure of bonding tool

Country Status (1)

Country Link
JP (1) JPH06326156A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011137A (en) * 2015-06-23 2017-01-12 栗原 玲子 Pressure heating/cooling device, flip-chip mounting device, flip-chip mounting method and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011137A (en) * 2015-06-23 2017-01-12 栗原 玲子 Pressure heating/cooling device, flip-chip mounting device, flip-chip mounting method and semiconductor device

Similar Documents

Publication Publication Date Title
JPH04348540A (en) Flip chip bonder
JPH06326156A (en) Structure of bonding tool
JP3317226B2 (en) Thermocompression bonding equipment
WO2006016532A1 (en) Method of connecting electric component and heater
JP4385895B2 (en) Bonding equipment
JPH10502762A (en) Method for forming a conductive connection
JP3909816B2 (en) Device for connecting circuit components to a liquid crystal display panel
JP3539826B2 (en) Thermocompression tools
JP3795269B2 (en) Thermocompression bonding equipment
US5641114A (en) Controlled temperature bonding
JP4767518B2 (en) Implementation method
KR101728677B1 (en) Laser bonding method for flexible display and electronic parts
JP2000183517A (en) Bonding tool and method for connecting terminal and manufacture of electrostatic actuator
EP3841609A1 (en) Profiled thermode
KR20000016847A (en) Apparatus of manufacturing a liquid crystal display panel
JP3127407B2 (en) Thermocompression bonding method
JPH09283566A (en) Connection of substrate
CN114871561B (en) Hot-pressing welding head and hot-pressing welding equipment
JP2611716B2 (en) Manufacturing method of composite lead frame
JP2004031865A (en) Method for connecting liquid crystal display panel and driving circuit
JPH09266233A (en) Thermal contact bonding apparatus
JP3550378B2 (en) Thermocompression bonding equipment
JP2000156560A (en) Mounting equipment of electronic component and its mounting method
JP4240939B2 (en) Connection method between liquid crystal display panel and liquid crystal driving IC chip
JPH01175186A (en) Heat pressurizer for thermal adhesion press