JPH06325919A - Oxide magnetic material and manufacture thereof - Google Patents
Oxide magnetic material and manufacture thereofInfo
- Publication number
- JPH06325919A JPH06325919A JP5110290A JP11029093A JPH06325919A JP H06325919 A JPH06325919 A JP H06325919A JP 5110290 A JP5110290 A JP 5110290A JP 11029093 A JP11029093 A JP 11029093A JP H06325919 A JPH06325919 A JP H06325919A
- Authority
- JP
- Japan
- Prior art keywords
- ferrite
- magnetic material
- oxide magnetic
- sno
- crystal grain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compounds Of Iron (AREA)
- Magnetic Ceramics (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は,スピネル型Mn−Zn
フェライトにおける高透磁率で低損失な材料とその製造
方法に関するものである。BACKGROUND OF THE INVENTION The present invention relates to spinel type Mn-Zn.
The present invention relates to a material having high magnetic permeability and low loss in ferrite and a method for manufacturing the same.
【0002】[0002]
【従来の技術】近年電子機器の小型化,高性能化の技術
革新が著しくそれに伴い使用されるMn−Znフェライ
トの高性能化,例えば,高透磁率化及び低損失が強く望
まれている。2. Description of the Related Art In recent years, technological innovations for miniaturization and high performance of electronic devices have been remarkably accompanied, and accordingly, high performance of Mn-Zn ferrite used, for example, high magnetic permeability and low loss are strongly desired.
【0003】一般に高透磁率を有するMn−Znフェラ
イトは主成分組成として52〜52.5mol%Fe2
O3 ,24〜26mol%MnO残部ZnO付近の組成
とされており現在市販されているものもほぼこの範囲で
ある。Generally, Mn-Zn ferrite having a high magnetic permeability has a main composition of 52 to 52.5 mol% Fe 2
The composition of O 3 , 24-26 mol% MnO balance ZnO is in the vicinity, and that of commercially available products is almost in this range.
【0004】さらに,このMn−Znフェライトは,副
成分としてSiO2 ,CaOを含有させる場合もある。
これは特に初透磁率(μi )の周波数特性を良好にする
目的と粒成長をコントロールすることを目的として成さ
れている。Further, the Mn-Zn ferrite may contain SiO 2 and CaO as sub-components.
This is done especially for the purpose of improving the frequency characteristic of initial permeability (μ i ) and controlling grain growth.
【0005】高μi を達成するためには上記のような組
成を吟味して最適な組成を選択することのみならず,結
晶粒径を,比較的大きくすることが極めて重要となる。
このためには焼成温度を高くすることが最も有効であ
る。In order to achieve a high μi, it is extremely important not only to examine the composition as described above and select the optimum composition but also to make the crystal grain size relatively large.
For this purpose, it is most effective to raise the firing temperature.
【0006】更に,詳しくは,Mn−Znフェライトの
高透磁率化のためには,前述した如く組成を吟味するこ
とはもちろんその他に結晶粒径を均一で大きくすること
が不可欠である。More specifically, in order to increase the magnetic permeability of Mn-Zn ferrite, it is indispensable not only to examine the composition as described above but also to make the crystal grain size uniform and large.
【0007】通常のMn−Znフェライトは混合,予
焼,解砕,造粒,成形,焼結の工程を経て製造される。
この中で,焼成体の結晶粒径を制御するためには解砕後
の粉末粒径及び焼成条件,特に焼成温度を適切な条件に
設定することが不可欠である。Normal Mn-Zn ferrite is manufactured through the steps of mixing, pre-firing, crushing, granulation, molding and sintering.
Among these, in order to control the crystal grain size of the fired body, it is essential to set the powder grain size after firing and firing conditions, especially the firing temperature to appropriate conditions.
【0008】また,粉末粒径に関しては,使用する原料
及び各製造条件より決定され通常0.1〜0.5μm程
度の大きさである。そして,焼成温度については,炉の
寿命及びZnの揮発を考慮した上で1200〜1450
℃の間で行なわれるのが通例である。この焼成温度の範
囲の中でなるべく高い温度で焼成することが結晶粒径を
大きくし高い透磁率を得るための必須の条件となる。The powder particle size is usually about 0.1 to 0.5 μm, which is determined by the raw material used and each manufacturing condition. The firing temperature is 1200 to 1450 in consideration of the life of the furnace and the volatilization of Zn.
It is customary to carry out between 0 ° C. Firing at a temperature as high as possible within this firing temperature range is an essential condition for increasing the crystal grain size and obtaining high magnetic permeability.
【0009】[0009]
【発明が解決しようとする課題】しかしながら,焼成温
度をあまり高くしすぎると粒成長する段階で異常粒成長
による結晶粒径分布がブロードとなったり,粒内にポア
が取り残される等の組織不整が生じかえって磁気特性が
著しく劣化する,例えば,透磁率や,損失特性がが逆に
劣化してしまう,という欠点を有する。However, if the firing temperature is too high, the grain size distribution due to abnormal grain growth becomes broad at the stage of grain growth, or there is a structural irregularity such as pores left in the grain. However, there is a drawback that the magnetic properties are deteriorated remarkably, for example, the magnetic permeability and the loss properties are deteriorated.
【0010】現在市販されている高透磁率材もそのた
め,結晶粒径がせいぜい15〜20μm程度の大きさで
μi もせいぜい10000程度のものにコントロールさ
れている。これは結晶粒径をさらに大きくすることで前
述した欠点が生ずるためである。For this reason, the high-permeability materials currently on the market are controlled to have a crystal grain size of at most 15 to 20 μm and a μ i of at most 10,000. This is because the above-mentioned drawbacks occur when the crystal grain size is further increased.
【0011】そこで,本発明の技術的課題は,上記欠点
を解決し結晶粒径を均一に大きくし優れた高透磁率で低
損失なMn−Znフェライトからなる酸化物磁性材料と
その製造方法を提供することにある。Therefore, the technical problem of the present invention is to solve the above-mentioned drawbacks and to provide an oxide magnetic material made of Mn-Zn ferrite which is excellent in high permeability and low loss by uniformly increasing the crystal grain size, and a manufacturing method thereof. To provide.
【0012】[0012]
【課題を解決するための手段】本発明者は種々の検討を
行った結果TiO2 ,SnO2 のうち少なくとも一種を
0〜0.4(0は含まず)wt%添加することで平均結
晶粒径が20〜50μmでしかも均一な組織を有し高い
透磁率と低損失化を実現できることを見い出し,さらに
焼成過程の昇温部における雰囲気はMn−Znフェライ
トの粒成長に著しい影響を及ぼすことを見い出し,特に
酸素分圧10%以上とすることでさらに高い透磁率と低
損失化が図れることを見い出したものである。また,本
発明者は,TiO2 ,又はSnO2 の一種以上を含有せ
しめることで主問題点を解決したばかりでなくTi
O2 ,SnO2 の含有による本質的な透磁率と損失の向
上ができることを見い出し,本発明を為すに至ったもの
である。Means for Solving the Problems As a result of various investigations, the present inventor has added at least one of TiO 2 and SnO 2 in an amount of 0 to 0.4 (not including 0) wt% to obtain an average crystal grain. It was found that the diameter is 20 to 50 μm and the structure has a uniform structure, and high permeability and low loss can be realized. Furthermore, the atmosphere in the temperature rising part during the firing process has a significant effect on the grain growth of Mn-Zn ferrite. The inventors have found that, particularly when the oxygen partial pressure is 10% or more, higher permeability and lower loss can be achieved. Further, the present inventor not only solved the main problem by adding one or more of TiO 2 or SnO 2 , but not only Ti
It was found that the essential permeability and loss can be improved by containing O 2 and SnO 2 , and the present invention has been accomplished.
【0013】本発明によれば,スピネル型Mn−Znフ
ェライト焼結体において,TiO2,SnO2 のうち少
なくとも一種を0〜0.4重量%(0は含まず)含有
し,平均結晶粒径が20〜50μmであることを特徴と
する酸化物磁性材料が得られる。According to the present invention, the spinel type Mn-Zn ferrite sintered body contains 0 to 0.4% by weight (not including 0) of at least one of TiO 2 and SnO 2 , and has an average crystal grain size. Of 20 to 50 μm is obtained.
【0014】即ち,本発明では,TiO2 ,SnO2 を
適量添加することで異常粒成長を押さえられ,均一でし
かも大きな結晶粒径を有する焼成体を得ることができ,
その結果著しく高い透磁率と低損失化を図ることを可能
としたものである。That is, in the present invention, by adding an appropriate amount of TiO 2 and SnO 2 , abnormal grain growth can be suppressed and a fired body having a uniform and large crystal grain size can be obtained.
As a result, it is possible to achieve extremely high magnetic permeability and low loss.
【0015】ここで,本発明におけるTiO2 ,SnO
2 の添加による異常粒成長の抑制のメカニズムについ
て,その詳細は不明であるが,これらの添加により結晶
粒の表面及び粒界の状態が改質され,なめらかな正常粒
成長が促進されたためと思われる。Here, in the present invention, TiO 2 , SnO
Although the details of the mechanism of suppression of abnormal grain growth by the addition of 2 are unclear, it is thought that these additions improved the state of the grain surface and grain boundaries and promoted smooth normal grain growth. Be done.
【0016】ここで,本発明において,TiO2 ,Sn
O2 の含有量を0〜0.4wt%(0は含まず)とした
のは0.4wt%以上の領域では,それ以上の効果がな
いばかりでなく,逆に異常粒成長を生じ磁気特性が劣化
するためである。Here, in the present invention, TiO 2 , Sn
The content of O 2 is set to 0 to 0.4 wt% (0 is not included), in the region of 0.4 wt% or more, not only there is no further effect, but on the contrary, abnormal grain growth occurs and magnetic characteristics Is deteriorated.
【0017】また,本発明によれば,Mn−Znフェラ
イト焼結体の製造方法において,Mn−Znフェライト
原料粉末に,TiO2 ,SnO2 のうちの少なくとも一
種を0〜0.4重量%(0は含まず)を含むように添加
することと酸素分圧が少なくとも10%である雰囲気中
で昇温焼成することを含むことを特徴とする酸化物磁性
材料の製造方法が得られる。Further, according to the present invention, in the method for producing a Mn-Zn ferrite sintered body, at least one of TiO 2 and SnO 2 is added to the Mn-Zn ferrite raw material powder in an amount of 0 to 0.4% by weight ( A method for producing an oxide magnetic material is obtained, which comprises adding so as to include (not including 0) and performing temperature rising firing in an atmosphere having an oxygen partial pressure of at least 10%.
【0018】ここで,本発明において,焼成工程におけ
る昇温部の酸素雰囲気を酸素が10%以上と限定したの
は,酸素分圧が10%よりも低い場合には粒内にポアが
取り残されたり,異常粒成長を生じ易く,磁性特性が劣
化するためであり,また酸素分圧は100%まで,異常
粒成長抑制効果はあるが,工業的には大気中で行うのが
コスト的に好ましく,また,大気中でもその効果は充分
である。Here, in the present invention, the oxygen atmosphere in the temperature rising portion in the firing step is limited to 10% or more of oxygen because the pores are left in the grains when the oxygen partial pressure is lower than 10%. This is because abnormal grain growth is likely to occur and the magnetic properties are deteriorated. The oxygen partial pressure is up to 100%, which has the effect of suppressing abnormal grain growth. However, industrially, it is preferable in terms of cost to perform it in air. , In addition, the effect is sufficient even in the atmosphere.
【0019】[0019]
【実施例】以下,本発明の実施例について図面を参照し
て説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0020】(実施例1)高純度のFe2 O3 ,Mn3
O4 ,ZnO原料を用い,ボールミルで混合し52mo
l%Fe2 O3 −25mol%MnO−23mol%Z
nOの組成を有する混合粉を得た。この混合粉末を,大
気中1000℃で予焼した。さらに本粉末をボールミル
にて粉砕した。この時同時にTiO2 ,SnO2 を0〜
0.5wt%添加した。得られた粉砕粉末にポリビニー
ルアルコールをバインダーとして添加し,スプレー還粒
した。その後,2トン/cm2 の圧力で外径25mm,
内径15mm及び高さ5mmのトロイダル形状を成形し
1300〜1400℃の温度で酸素分圧を0.1〜6%
の間でコントロールした雰囲気下で焼成した。表1に,
TiO2 ,SnO2 の添加量を変化させた時の磁気特性
と,画像解析処理装置を用いて切片長から求めた平均粒
径を示す。Example 1 High-purity Fe 2 O 3 and Mn 3
Using O 4 and ZnO raw materials, mixing with a ball mill to obtain 52mo
1% Fe 2 O 3 -25 mol% MnO-23 mol% Z
A mixed powder having a composition of nO was obtained. This mixed powder was pre-baked at 1000 ° C. in the atmosphere. Further, this powder was pulverized with a ball mill. At this time, TiO 2 and SnO 2 are simultaneously added to 0
0.5 wt% was added. Polyvinyl alcohol was added as a binder to the obtained pulverized powder, and spray-returned. After that, at a pressure of 2 tons / cm 2 , the outer diameter is 25 mm,
A toroidal shape with an inner diameter of 15 mm and a height of 5 mm is formed, and the oxygen partial pressure is 0.1 to 6% at a temperature of 1300 to 1400 ° C.
Firing was performed in a controlled atmosphere between the two. In Table 1,
The magnetic properties when the added amounts of TiO 2 and SnO 2 are changed, and the average particle size obtained from the section length using an image analysis processing device are shown.
【0021】[0021]
【表1】 [Table 1]
【0022】上記 表1に示すように,TiO2 ,Sn
O2 の少なくとも一種が,0.4wt%以下の領域(0
は含まず)では結晶粒が大きくしかも優れた磁気特性が
得られているのがわかる。As shown in Table 1 above, TiO 2 , Sn
At least one type of O 2 is in the region of 0.4 wt% or less (0
It can be seen that the crystal grains are large and excellent magnetic characteristics are obtained.
【0023】(実施例2)実施例1で得られた52Fe
2 O3 −25MnO−23ZnO(mol%)でTiO
2 を0.3wt%,SnO2 を0.3wt%,TiO2
を0.05wt%とSnO2 を0.1wt%の両方含有
した3種の試料を昇温時の酸素分圧を0.005〜10
0%まで変化させ,保持温度を1300〜1400℃,
保持部の酸素分圧を0.1〜6%でコントロールした条
件下で焼成した。(Example 2) 52Fe obtained in Example 1
2 O 3 -25 MnO-23 ZnO (mol%) TiO
2 is 0.3 wt%, SnO 2 is 0.3 wt%, TiO 2
Of 0.05% by weight and 0.1% by weight of SnO 2 were added to each of the three samples, and the oxygen partial pressure during heating was 0.005 to 10%.
Change to 0%, hold temperature 1300 ~ 1400 ℃,
It was fired under the condition that the oxygen partial pressure of the holding part was controlled at 0.1 to 6%.
【0024】下表2に昇温時の酸素分圧を変化させた時
の磁気特性と画像解析処理装置を用いて得られた焼成付
の結晶組織の切辺長を求め,この平均値を1.5倍とし
た値の平均結晶粒径を示した。In Table 2 below, the magnetic characteristics when the oxygen partial pressure at the time of temperature rise was changed and the cut side length of the crystal structure with firing obtained by using the image analysis processing apparatus were obtained, and this average value was calculated as 1 The average crystal grain size of the value obtained by multiplying by 0.5 is shown.
【0025】[0025]
【表2】 [Table 2]
【0026】上記表2に示すように,いずれの組成の試
料においても昇温時の酸素分圧が10%以上の試料は平
均粒径が20μm以上の値で異常粒成長は認められず,
また10%よりも低い酸素分圧が昇温した試料よりも優
れた磁気特性を示すことがわかる。As shown in Table 2 above, in any of the samples having any composition, when the oxygen partial pressure during heating was 10% or more, the average particle size was 20 μm or more, and no abnormal grain growth was observed.
Further, it can be seen that the magnetic properties are superior to those of the sample in which the oxygen partial pressure lower than 10% is increased.
【0027】[0027]
【発明の効果】以上述べた如く本発明によれば,SnO
2 ,TiO2 の少なくとも一種以上を0〜0.4wt%
(0は含まず)含有し,平均結晶粒径が20〜50μm
の高透磁率でしかも低損失なMn−Znフェライトが得
られる。As described above, according to the present invention, SnO
2 , at least one of TiO 2 and 0 to 0.4 wt%
(0 is not included) Contains and average crystal grain size is 20-50 μm
It is possible to obtain Mn-Zn ferrite having high magnetic permeability and low loss.
【0028】また,上記Mn−Znフェライトを製造す
るので焼成過程における昇温部の酸素分圧を10%以上
とすることでさらに高透磁率で,低損なMn−Znフェ
ライトが得られるものである。Further, since the above Mn-Zn ferrite is manufactured, the oxygen partial pressure in the temperature rising portion in the firing process is set to 10% or more to obtain Mn-Zn ferrite with higher permeability and lower loss. is there.
【0029】これはTiO2 ,SnO2 を特定量含有せ
しめることによりなめらかな正常粒成長が実現され,極
めて均質な焼成体組織が得られ,高特性化が実現できる
ばかりでなく,TiO2 ,SnO2 の添加によりスピネ
ル相の本質的な磁気特性が改善されたためと思われる。
また,焼成過程での昇温部を10%以上の酸素分圧とす
ることでなめらかな正常粒成長がさらに促進されたため
と思われる。This is because not only is it possible to realize smooth normal grain growth by containing a specific amount of TiO 2 and SnO 2 and to obtain an extremely homogeneous fired body structure and to realize high characteristics, but also TiO 2 and SnO 2. It seems that the addition of 2 improved the essential magnetic properties of the spinel phase.
It is also considered that smooth normal grain growth was further promoted by setting the oxygen partial pressure of 10% or more in the temperature rising portion in the firing process.
Claims (2)
において,TiO2,SnO2 のうち少なくとも一種を
0〜0.4重量%(0は含まず)含有し, 平均結晶粒径が20〜50μmであることを特徴とする
酸化物磁性材料。1. A spinel-type Mn—Zn ferrite sintered body containing at least one of TiO 2 and SnO 2 in an amount of 0 to 0.4% by weight (not including 0) and having an average crystal grain size of 20 to 50 μm. An oxide magnetic material characterized by:
において,Mn−Znフェライト原料粉末に,Ti
O2 ,SnO2 のうちの少なくとも一種を0〜0.4重
量%(0は含まず)を含むように添加することと,酸素
分圧が少なくとも10%である雰囲気中で昇温焼成する
ことを含むことを特徴とする酸化物磁性材料の製造方
法。2. A method for producing a Mn-Zn ferrite sintered body, wherein the Mn-Zn ferrite raw material powder is Ti
Add at least one of O 2 and SnO 2 so as to contain 0 to 0.4% by weight (not including 0), and perform temperature-rising firing in an atmosphere having an oxygen partial pressure of at least 10%. A method for producing an oxide magnetic material, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5110290A JPH06325919A (en) | 1993-05-12 | 1993-05-12 | Oxide magnetic material and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5110290A JPH06325919A (en) | 1993-05-12 | 1993-05-12 | Oxide magnetic material and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06325919A true JPH06325919A (en) | 1994-11-25 |
Family
ID=14531949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5110290A Pending JPH06325919A (en) | 1993-05-12 | 1993-05-12 | Oxide magnetic material and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06325919A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6210598B1 (en) | 1998-08-19 | 2001-04-03 | Minebea Co., Ltd. | Mn-Zn ferrite |
JP2012069869A (en) * | 2010-09-27 | 2012-04-05 | Tdk Corp | Mnzn based ferrite core |
-
1993
- 1993-05-12 JP JP5110290A patent/JPH06325919A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6210598B1 (en) | 1998-08-19 | 2001-04-03 | Minebea Co., Ltd. | Mn-Zn ferrite |
JP2012069869A (en) * | 2010-09-27 | 2012-04-05 | Tdk Corp | Mnzn based ferrite core |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3108803B2 (en) | Mn-Zn ferrite | |
EP1101736B1 (en) | Mn-Zn ferrite and production thereof | |
CN106915956A (en) | MnZnLi based ferrites, magnetic core and transformer | |
JP3584439B2 (en) | Mn-Zn ferrite and method for producing the same | |
JP2004323283A (en) | Ferrite sintered compact and manufacturing method for ferrite sintered compact | |
JP3588693B2 (en) | Mn-Zn ferrite and method for producing the same | |
EP0980857B1 (en) | A Mn-Zn ferrite | |
JP3635410B2 (en) | Method for producing manganese-zinc based ferrite | |
JP3288113B2 (en) | Mn-Zn ferrite magnetic material | |
JPH06325919A (en) | Oxide magnetic material and manufacture thereof | |
JPH0867555A (en) | Production of zinc oxide sintered compact | |
JP2914554B2 (en) | Method for producing high permeability MnZn ferrite | |
JPH0680613B2 (en) | High density magnetic material | |
JP3454472B2 (en) | Manganese-zinc ferrite and method for producing the same | |
JP4135869B2 (en) | Ferrite sintered member and method for producing ferrite sintered member | |
JP3747234B2 (en) | Method for producing soft ferrite | |
JPH09115719A (en) | High permeability oxide magnetic material and its manufacture | |
JPH0574623A (en) | High permeability magnetic material and its manufacture | |
JP2627676B2 (en) | Manufacturing method of oxide magnetic material | |
JPH09180926A (en) | Low loss oxide magnetic material | |
JPH06325920A (en) | Low-loss magnetic material and manufacture thereof | |
CN118380221A (en) | Zinc oxide piezoresistor and preparation method thereof | |
JPH10144514A (en) | Calcinated oxide powder, oxide magnetic material using it and their manufacture | |
JPH0547540A (en) | Oxide calcinated power, high-permeability magnetic material using the same and manufacture thereof | |
KR0143068B1 (en) | A method of oxide magnetized material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20021002 |