JP3747234B2 - Method for producing soft ferrite - Google Patents

Method for producing soft ferrite Download PDF

Info

Publication number
JP3747234B2
JP3747234B2 JP18779194A JP18779194A JP3747234B2 JP 3747234 B2 JP3747234 B2 JP 3747234B2 JP 18779194 A JP18779194 A JP 18779194A JP 18779194 A JP18779194 A JP 18779194A JP 3747234 B2 JP3747234 B2 JP 3747234B2
Authority
JP
Japan
Prior art keywords
less
amount
phosphorus
terms
excluding zero
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18779194A
Other languages
Japanese (ja)
Other versions
JPH0826732A (en
Inventor
克志 安原
伊藤  隆
忠勝 佐野
章 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP18779194A priority Critical patent/JP3747234B2/en
Publication of JPH0826732A publication Critical patent/JPH0826732A/en
Application granted granted Critical
Publication of JP3747234B2 publication Critical patent/JP3747234B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compounds Of Iron (AREA)
  • Soft Magnetic Materials (AREA)

Description

【0001】
【産業上の利用分野】
近年、エレクトロニクス機器の普及に伴って益々機器の小型化,軽量化の要求が激しくなって来ている。特に重量的にも、容積的にも主要部分を占める電源の小型化が標的となっているが、この対応のため、電力変換部の周波数を上げて処理する所謂「高周波電源方式」が急激に増加して来ている。この用途に使われるフェライト磁性体は高周波且つ強磁場中で動作させるので、一般の用途のものに比べて電力損失が著しく大きくなってしまう。
【0002】
本発明は、この高周波電力損失を低減し、小型化可能な高周波電源用ソフトフェライトの製造方法に関するものである。
【0003】
【従来の技術】
従来、この種の高透磁率,低損失磁性材料の製造にあっては漠然と出発原料物質の中に含まれる不純物が極めて低いものを使用しなければならないとされている。特に、添加微量成分によって特性改善を計る場合には、これら微量添加成分に比べて十分低い不純物の原材料を選択しなければならない状況になってきている。然し、この純度の高い原料の選択のみで所要の特性改善を計ると当然コスト高を招き、場合によっては製品の実用性を失わせることにもなる。
【0004】
その対策として、例えばマンガン亜鉛系フェライトにとってCaOやSiO2 は代表的不純物であると同時に、後述の通り低損失化の添加物としても有効でよく活用されるので、補正可能量であれば許容されることが知られている。又、燐の相当量の添加・含有,若しくは工程での混入が「組成成分のみの原因」でフェライトの特性に漠然と影響することも知られている。
【0005】
例えば、特開平2−30660号公報には副成分の燐の量が0.001wt% より少ない場合結晶粒径が小さく、また、0.007wt% より多い場合には大きくなるため、電力損失が大きくなって不適当であると記述され、その特許請求の範囲にも明確に「燐を0.001〜0.007wt% 」と記載されている。即ち、燐の含有量の範囲が低損失酸化物磁性材料の必須要件として明示されている。なお、この燐を含む添加物の量等は予め原料に含まれているものを分析し考慮していると付記されている。
【0006】
特開平4−92822号公報によれば、燐の添加量は従来0.008wt% 〜0.015wt% を添加すると、最終焼結温度を20℃下げる効果があって、産業に与える影響としては炉の寿命と熱エネルギーの改善に貢献してきたが、「燐の添加量を制限」する事によって損失も小さくする事ができたと記載されている。その実施例中では、燐を0.0033wt% 含ませる事によってコアー損失を小さくする事ができると説明している。又、燐の含有率と損失の関係を確認するための実施例では燐の添加量の水準が0.0012〜0.01wt% (効果を示すグラフは第1図)の範囲で行われ効果の損失測定は16KHz で行なわれている。
【0007】
従って、これらの先行技術の思想は焼結温度を下げるため相当量の燐(0.0012wt% 以上)を含ませることにあるが、0.005wt% 以下に押えればコア損失も低く押えられる範囲であり、本願出願前に公開されている前述の特開平2−30660号公報の特許請求の範囲でも燐の量を0.001〜0.007wt% と制限したと同質の論理に基づくもので、燐の量が0.002wt% 以下という添加量又は存在量の少い事と焼成条件との相互作用による効果については「認識されていない」と理解される。原料中の硼素・燐について何等の吟味又は説明のない事も「相当量含ませ得る事」を前提としていることを示唆している。
【0008】
特開平5−217733号公報には、(25KHz-200mt−100℃)に於ける磁心損失を55KW/m3 以下とするには燐の量を原料中に含有するものを含めて0.001wt% 以下にすることが必要であると記載されている。然しながら、成分,副成分以外の製造條件(焼結温度が低く過ぎると)が不適切であれば燐が0.001wt% 以下のものでも、燐が0.001wt% 以上のものより悪くなる場合もある事も示唆されており、再現性の條件が欠けている事を自認している。
【0009】
更に、特開平6−140231号公報ではソフトフェライト中の燐の含有量が0.003wt% 以下、即ち0〜0.003wt% に規制する事が望ましく、同実施例1ではサンプルNo1中の燐の総計は0.003wt% 未満であったとし、サンプルNo2〜49も同様であったと記述されている。この先行技術に於ては燐のみ且その存在のみが量には関係なく、漠然と焼結フェライトに影響がある事を示唆しているのに過ぎない。従って燐が0〜0.003wt% の範囲で副成分と影響し合う事はないと理解されている。
【0010】
発明が解決しようとする課題として先行技術を比較把握するには低損失材料の測定周波数は極めて重要であり、20KHz 前後と100KHz 前後では同一の材料でも全て逆の損失値を示す場合があるからである。即ち、同一の成分組成であっても結晶成長状態,粒界・結晶内の酸化度合によって電気的特性が異るという事である。
【0011】
また、マンガン亜鉛系フェライトの特性改善とコスト改善のために、従来の一般的課題とされていた不純物の混入防止、組成成分の均一化,粒子の微細化焼結等の効果を期待した主成分・副成分の溶液混合・噴霧焙焼法等も数多く開示されている。例えば、特開平3−116803号では従来の酸化物混合法の既知の添加物Si,Ca,Hfを噴霧法で行えばHfが粒界のみならず、フェライト中に固溶するためにより高抵抗の粒子ができて電力損失が低下するとしている。
【0012】
特開平4−12504号では、Mn−Znフェライトの噴霧焙焼前にSi,Caの副成分を同時に溶解添加すると、工程全体が簡略化されて特性が若干改善されるとしている。
【0013】
特開平4−192310号では、Mn−Zn系フェライトにBiを0.05wt% 以下を添加してHighμ材を得るのに際し、BiまたはBi塩の化合物を溶解混合して噴霧焙焼すると組成が均一で且つ結晶粒が均一で粒径が大きくなり、空孔も少ないものが得られてμi特性が大幅に改善されるとしている。
【0014】
更に、特開平4−307903号ではソフトフェライトにSi,Ca,Zrの添加を噴霧焙焼法で行うと損失特性の大幅な改善がされるとしている。然し、何れの先行技術も添加成分を噴霧焙焼で主成分と同時に行えば組成が均一で且組織が均一な微細粒子となるが、添加物の効果は同傾向で従来法に比べて稍改善されるか、焼結條件が若干ズレる程度で全く予想されないような結果は少い。
【0015】
特開平3−163802には酸化燐/又は酸化硼素0.01wt% 以下(好ましくは0.00005wt% 以上)の範囲、特開平3−223119には酸化燐/又は酸化硼素0.003wt% 以下(好ましくは0.0001wt% 以上)とされているが何れも微量の添加によって鉄損の低減をもたらす有用成分と明示されているが添加量の増加によって鉄損が減少する傾向は殆ど見受けられないのみならず上限値に比べ好ましいとする燐の添加量,0.00005wt% 、0.0001wt% は検出精度に照らしても殆ど含まれてないと表現してよい値であり燐の添加量が直に鉄損の減少に影響しているとは判断し得ず、他の必須主要因も存在している事を示唆している先行技術であり、本出願はまさにこの必須要件を見出したものである。
【0016】
以上に述べた先行技術をまとめるとMn−Zn系フェライトのコア損失を低減させるためには特開平2−3060号,特開平4−92822号,特開平5−217733号で燐の含有量を適切な範囲に添加することが提案され、更に燐と同様の効果を示す硼素の添加について特開平3−163802及び特開平3−223119で単独又は複合で微量添加する事も提案されているが、本発明は、フェライトコアの損失を確実に再現性良く低減させるためには、燐・硼素の含有量を制御するだけでは足りず、フェライトと原材料中及び製造工程で混入する燐及び硼素の各々の量と合計量を一定量以下の特定量に制御し、さらに昇温時より酸素量の制御を含めた焼成條件の調整を行う事が必須である事を究明したものである。又特開平3−116803号,特開平4−12504号,特開平4−192310号では主成分,副成分,添加物の溶液混合,噴霧焙焼法等が試みられているが従来法に比べ添加物,不純物制御効果は同傾向を示し、改善効果が稍強調されるに過ぎないか、又は製造條件が若干ズレる程度である。
【0017】
【発明が解決しようとする課題】
一般に、電源装置を小型軽量化するには前述の如く処理周波数を上げた方が有利である。しかし、実際にはいろいろな制約があって500KHz 程度が実現できる範囲と考えられている。従来、この種のフェライトとしてマンガン,亜鉛と酸化鉄等を主体とするものが好適とされている。また、副成分,添加物,製造條件等を検討改善することから、この要望に対応してきているが、弱磁界の損失と異って比較的強い磁界中で動作するものであるため、一般の用途に比べて高周波で且磁気損失が著しく増大するところに最大の問題があり、此の視点に合せたアプローチが必要になって来る。
【0018】
従って、主成分は従来既知のマンガン亜鉛系であってもヒステリシス損に関係する飽和磁束密度Bs,及びBsと残留磁束密度Brとの差であるΔBが大きく、且渦電流損に関係する比抵抗が大きい事が必要である。更に、電力消費を考えると動作温度範囲で一番変化量が少い,即ち、常温附近ではパワーロスの温度係数が負である方が望ましいというフェライトとしては特殊な特性が要求されているのである。
【0019】
この様に高性能化を追求しなければならなくなればなる程、製品バラツキを小さくする要求は当然高まるにも拘らず、産業上の要請はコストの上昇を最小限しか許さず、均一で安定した製造手段の究明により要求を満足しなければならなくなる。従って、従来のように主として組成成分の特定だけで調整バランシングするだけでは到底十分な目標特性,コストの製品が得られないため、視点を変えると同時に多面的に交絡的要件の研究解明が必要となった。
【0020】
本発明は、フェライトの原材料中及び製造工程で混入する燐及び硼素を特定量に制御し、更に、焼成を適正な條件で行うことによりフェライトのコア損失を低減させるソフトフェライトの製造方法を提供することを目的とする。
【0021】
【課題を解決するための手段】
本発明の請求項1に係るソフトフェライトの製造方法においては、原材料中及び製造工程で混入する燐及び硼素の量の和を0.004wt%以下(零を含まず)で、且つ硼素の量を0.002wt%以下(零を含まず)、燐の量を0.002wt%以下の特定量に精製してフェライト材料を製造し、該材料の焼成に際し、900℃から焼成温度までの昇温部の雰囲気の酸素分圧を15% 以下(零を含まず)にし、且つ、焼成温度を1250℃以上,1400℃以下にするようにされている。又好ましくは上記の硼素と燐の和を0.0035wt% 以下(零を含まず)で、且つ硼素の量を0.002wt% 以下(零を含まず)、燐の量を0.0015wt% 以下、更に好ましくは硼素と燐の量の和を0.0025wt% 以下(零を含まず)で、且つ硼素の量を0.0015wt% 以下(零を含まず)、燐の量を0.001wt% 以下とするのが望ましい。
【0022】
本発明の請求項2に係るフェライトの製造方法において原材料中及び製造工程で混入する燐及び硼素の量の和を0.004wt% 以下(零を含まず)で且つ、硼素の量を0.002wt% 以下(零を含まず)で、且つ、燐の量を0.002wt% 以下にすると共に、主成分がMnO換算で30〜41mol%の酸化マンガンと、ZnO換算で6〜16mol%の酸化亜鉛と、残りが酸化鉄であり、SiO2 換算で0.005〜0.025wt% の珪素とCaO換算で0.02〜0.15wt% のカルシウムを含み、更に、Nb2 O5 換算で0.06wt% 以下(零を含まず)のニオブ,V2 O5 換算で0.08wt% 以下(零を含まず)のバナジウム,ZrO2 換算で0.07wt% 以下(零を含まず)のジルコニウム,SnO2 換算で0.4wt% 以下の(零を含まず)のスズ及びTiO2 換算で0.3wt% 以下(零を含まず)のチタンの1種以上を含み、その成分元素または添加物の一部または全部を溶液で混合し、噴霧焙焼によってフェライトを製造するようにされている。
【0023】
【作用】
本発明の請求項1に係るソフトフェライトの製造方法によれば、軟磁性フェライトの高周波高磁束密度における低磁心損失の得られる製造條件の許容領域が燐及び硼素の量の増加に従って狭くなるので原材料中及び製造工程で混入する燐及び硼素の量の和を0.004wt% 以下(零を含まず)で、且つ硼素の量を0.002wt% 以下(零を含まず)、燐の量を0.002wt% 以下の特定量に精製してフェライト材料を製造し、該材料の焼成に際し、900℃から焼成温度までの昇温部の雰囲気の酸素分圧を15% 以下(零を含まず)にし、且つ、焼成温度を1250℃以上,1400℃以下にすることにより製造工程領域が拡大出来てより再現性良く、高周波,高磁束密度に於て低損失な軟磁性フェライトが得られる。
【0024】
本発明の請求項2に係るソフトフェライトの製造方法によれば、マンガン亜鉛系フェライトの内、比較的高透磁率で且高周波,高磁束密度に於ける損失が低い材料が安定に得られる。
【0025】
【実施例】
本発明は一見すると、従来技術の「微量成分組成によるフェライト特性の改善」と受取られ易いが、前述の如く「100KHz 以上に於ける低損失,強磁界に於ける低損失」という新しく、且つ、難しい課題に対して多面的な究明から導き出されたものである。
【0026】
その具体的手段は「結晶粒子を急激に成長させる微量不純物の量を低く押える(或る量を超える場合には精製する)」と共に、「結晶化の初期,即ち、焼結昇温時から酸素分圧を低くする」というプロセスを採る事によって実現したものである。特に、重要なことは100KHz 以上の高周波に於ける損失を低下させるには結晶成長が終了した後では効果的に作用しない事に着目したことである。
【0027】
以下、この手段について詳しく説明すると、一般に高性能フェライトを製造するには高純度主成分原料を用い微量組成物,添加物により結晶の構造を制御しているが、出発原料中の不純物が少い方が良いからといって全ての不純物が少いものを選択すれば、品質コストのバランスが取れないから産業上利用できないものになってしまう。此のためには後述するようにSi,Caの様な粒界酸化調整のための成分は添加量も比較的多量であり、或程度含まれていても含有量を考慮して添加し、焼結全体として結晶状態を調整することにより解決出来る。
【0028】
然し、本発明の如く超高品質の低損失材料を目標とするには此等の添加物の1/10〜1/100 という極々微量の燐,硼素の存否が課題を解決出来なくするので、此の二成分については特に低含有量の原材料を選択し且補正する事により課題解決効果のバラツキを抑えるようにされている。
【0029】
燐,硼素は微量でも焼結特性を急激に変化させる成分であり、フェライト主成分と反応して液相を形成するので、一般には不均質な微細結晶構造を形成してしまい、磁気特性を劣化させるものと考えられる。従って、高透磁率で高周波に於て低損失の磁気特性を得るにはこの二成分の含有量が少い原料ソースを積極的に選択する事が必要で、特定量を越すと他の副成分・添加成分・焼結條件との相互作用を利用出来る領域が得られなくなる。
【0030】
本発明によれば各成分が単独の場合、燐については0.002wt% ,硼素については0.002wt% で、二成分が共存する場合は0.004wt% 以上になると相互作用を失う,即ち、添加物を含め他の製造要件を変化させても磁気特性を調整不可能な程急激な結晶成長を促す限界量である事が判明した。従って、課題解決のためには主成分原料を選択するに際し、少くとも硼素については0.002wt% 以下(零を含まず)、燐については0.002wt% 以下、共存する場合は合計で0.004wt% 以下(零を含まず)のものを選び、コンタミ量を考慮して上記限度量以下の特定量に調整する。又好ましくは上記の硼素と燐の和を0.0035wt% 以下(零を含まず)で、且つ硼素の量を0.002wt% 以下(零を含まず)、燐の量を0.0015wt% 以下、更に好ましくは硼素と燐の量の和を0.0025wt% 以下(零を含まず)で、且つ硼素の量を0.0015wt% 以下(零を含まず)、燐の量を0.001wt% 以下とするのが望ましい。
【0031】
又、前述の通り、この二成分以外にもいろいろな不純物が含まれる可能性があり、種類と量によっては微細構造が変化するので特性調整又は改良成分として逆に作用する場合も多い。特に、高性能を得るためには前述の如く一般に不純物の許容量が少いがマンガン亜鉛系フェライトにとってCaOやSiO2 は代表的不純物であると同時に調整添加物としても知られている。
【0032】
一般に、CaOの量が増加すると低周波のμiは漸次低下し、高周波のμiは上昇するが0.025wt% よりは低下するという適当な範囲をもっている。また、CaOが粒界に偏析して酸化し低損失化に寄与して改善されていると考えられる。SiO2 についても同様に偏析が観測されるが何れも多量に過ぎると異常成長が起って比抵抗が低くなり改善効果が少くなる。従って、原料中の量を含めCaOが0.25wt% 以下、SiO2 が0.02wt% 以下の範囲で目標特性に応じ添加量を調整することが望ましいことが知られているが、此等の調整効果が得られる領域と度合は前記燐と硼素の含有量及び焼成條件が前提となっている事が明かとなったのである。
【0033】
又、CaO,SiO2 の最低量は原料中の含有量と調整目的によって定まる。SiO2 ,CaOが粒界に偏析していると焼成雰囲気,特に酸素量に影響を受け易いが、粒界のみを酸化させると粒界の比抵抗を高くする事ができる事が知られている。然し、此の点についても燐と硼素が前記限界値を越すと、云いかえれば急激に結晶が成長し過ぎると従来技術では到達できない程低損失を得る手段である「昇温時の酸素量による特性改善効果を期待出来なくなってしまう」という新しい知見を得たものである。
【0034】
又、粒界自体の厚さ、結晶粒子間の距離も磁気特性には関係が深いが部分的に大き過ぎても劣化するので上記Si,Ca等の粒界形成物質は分散した状態で加える必要があり、必要によっては主成分と同時に噴霧焼結する事によってより好ましい成果が得られた。更に、高周波電源用フェライト分野に必要とされる特性は基本としてBsが高く、しかもΔBが大きい、つまりBrが低いものが必要である事は当然で、主体的には高飽和磁束密度で高透磁率を兼ね得る主成分領域を選択する必要がある。
【0035】
このことから、MnOの換算で30〜41mol%の酸化マンガン,ZnO換算で6〜16mol%の酸化亜鉛、残りが酸化鉄である範囲が好適である。この範囲外では、コア損失が増大し、さらにコア損失の極小温度が60℃以下になったり、キュリー温度が200℃以下になったり、または初透磁率が低下したり、残留磁束密度(Br)が増大したりする。更に、微調整バランシング添加物として前記SiO2 ,CaOの外Nb2 O5 換算で0.06wt% 以下のニオブ,V2 O5 換算で0.08wt% 以下のバナジウム,ZrO2 換算で0.07wt% 以下のジルコニューム,SnO2 換算で0.4wt% 以下のスズ,及びTiO2 換算で0.3wt% 以下のチタンの一種以上を添加して調整する。Nb2 O5 が0.06wt% を越えるとき、コア損失が増大し、初透磁率が低下した。V2 O5 が0.08wt% を越えるとき、コア損失が増大し、初透磁率が低下した。ZrO2 が0.07wt% を越えるとき、コア損失が増大し、初透磁率が低下した。SnO2 が0.4wt% を越えるとき、コア損失の極小温度が60℃以下となった。TiO2 が0.3wt% を越えるとき、コア損失の極小温度が60℃以下となった。又此の種の出発原料の選定に当っては、本発明の添加物を含む組成成分の管理と補正は勿論Sr,Baを始めとする、その他の不純分も合計で0.05wt% 以下に押える事が作用効果を減少させないために望ましい。
【0036】
急激なフェライト結晶化促進成分である燐,硼素が極めて少い出発原料物質を選定すると共に、コンタミ量を考慮して補正するか、必要によっては脱燐,脱硼素工程を設け、完成品の燐の含有量を0.002wt% 以下、硼素を0.002wt% 以下(零を含まず)、共存の場合は合計0.004wt% 以下(零を含まず)となる様に調整プロセスを設ける。又好ましくは上記の硼素と燐の和を0.0035wt% 以下(零を含まず)で、且つ硼素の量を0.002wt% 以下(零を含まず)、燐の量を0.0015wt% 以下、更に好ましくは硼素と燐の量の和を0.0025wt% 以下(零を含まず)で、且つ硼素の量を0.0015wt% 以下(零を含まず)、燐の量を0.001wt% 以下とするのが望ましい。その調整プロセスでフェライト結晶の急成長を押えた上で、焼結昇温中に低酸素分圧にする事により高周波損失が少く且所望の特性に調整する微量添加物成分,即ち、Ca,Si,Nb,V,Sn,Ti等が有効で且安定に作用する製造條件の領域が広くなる事が判明した。
【0037】
此の結晶成長を急激に促進させる硼素と燐も前述の限界量以下にすれば、一時粒子径の選択によって約30%程度のコア損失のピークを改善出来るし、溶液混合する等、原料粒子間のコンタクトを大きくする事による改善効果も期待出来る上、第3図に示す様に特に昇温部(900℃から焼結温度まで)の低酸素分圧によるコアー損失の改善効果、第2図に示す様に焼成温度(1250℃以上1400℃以下)の範囲で上記添加物の効果が有効且安定に引出せる事が明かとなった。
【0038】
此等の作用効果は課題が一見類似している所から先行技術と同一視され易いが、電力として制御出来る原子エネルギーと爆弾としての原子エネルギーの如く、結晶成長の程度を制御する前提條件として燐と硼素が限界量として作用している。従って、先行技術が開示しているものとは全て逆の傾向を示す場合、例えば前述の昇温中の酸素量と燐の関係等、も出て来る。これは組成成分が定まれば直に電気・磁気的特性が定まるという一般化学物質と異るのは混合体の一種である固溶体本来の性質からであろう。基本組成・成分と結晶化促進成分、特性調整成分の内、特に強力結晶化促進成分である硼素・燐を低く押えた事が安定で且多量に(工程品質能力Cpを大きく出来る)供給出来る製造條件が設定し得る事になったと考えられる。
【0039】
従って、これは硼素・燐の「添加(量)による作用効果」に起因する特性改善効果と云う従来の技術思想とは異り、「急激結晶促進成分の少い領域で安定化して改善要因間の相互作用を課題に究明」した結果、一見同様に見えるが固溶体特有の新しい知見が得られたものである。前述の先行技術間等で、理解出来ない請求範囲及び詳細な説明の相違はこの事を裏付けるものである。又、此等の作用は成分組織の一部又は全部を溶液にて混合し、更に噴霧焙焼して混合の均一化を計っても組成成分及び添加量による基本的作用効果の傾向は変らず、若干の製造條件の調整によって高周波電源材料としての最適値を得る事が出来る事は変らない。
【0040】
【実施例1】
燐及び硼素含有量の異なるFeCl2 及びMnCl2 を混合した溶液を、酸化焙焼して得た酸化鉄及び酸化マンガンの混合物に、亜鉛フェライト(ZnFe2 O4 )と、SiO2 ,CaCO3 ,Nb2 O5 及びV2 O5 を添加して混合・粉砕を行いMnZnフェライト材料を作成した。
これらのフェライト材料に、バインダーを加えてトロイダル形状に加圧成型し、空気と窒素ガスを混合した雰囲気中で本焼成した。
以上のようにして得られたフェライトコアのコア損失を図1,図2及び図3に示す。燐及び硼素含有量の少ない試料、昇温部の酸素分圧の低い焼成条件でコア損失が低減した。
【0041】
【実施例2】
FeCl2 及びMnCl2 を混合した溶液を、酸化焙焼して得た酸化鉄及び酸化マンガンの混合物に、亜鉛フェライト(ZnFe2 O4 )と、SiO2 ,CaCO3 ,Nb2 O5 ,V2 O5 ,SnO2 及びTiO2 を添加して混合・粉砕を行い、表1に示すNo.1〜9の試料を作成した。
これらの試料に、バインダーを加えてトロイダル形状に加圧成型し、空気と窒素ガスを混合した雰囲気中で1320℃で4時間本焼成した。
以上のようにして得られたフェライトコアのコア損失を表1に示す。燐及び硼素含有量が少なくて(燐・硼素各々が0.0005wt% )、且つNb2 O5 ,V2 O5 ,ZrO2 ,SnO2 及びTiO2 の1種以上を含有する試料でコア損失が低減した。
【0042】
【実施例3】
FeCl2 及びMnCl2 を混合した溶液に、Si,Ca,Nb,Zr及びSnを塩化物か、または可溶性の形態で添加した後に、酸化焙焼して酸化鉄及び酸化マンガンの混合物を得た。これに亜鉛フェライト(ZnFe2 O4 )を混合して粉砕を行い、表1に示すNo.10の試料を作成した。
この試料に、バインダーを加えてトロイダル形状に加圧成型し、空気と窒素ガスを混合した雰囲気中で1320℃で4時間本焼成した。
【0043】
以上のようにして得られたフェライトコアのコア損失を表1に示す。焙焼後に微量成分を添加したNo.9の試料に比べて、No.10の試料でコア損失がさらに低減した。
【0044】
【表1】

Figure 0003747234
【0045】
【発明の効果】
本発明によれば、硼素と燐の含有量及びコンタミ量を含めて各々0.0020wt% ,0.0020wt% 以下,和として0.004wt% 以下(零を含まず)に押え、Fe2 O3 ,MnO,及びZnOを主成分とし副成分としてSiO2 換算で0.005〜0.025wt% のSi,CaO換算で0.02〜0.15wt% のCaを含み、添加物としてNb2 O5 換算で0.05wt% 以下の ,V2 O5 換算で0.05wt% 以下のV,SnO2 換算で0.4wt% 以下のSn及びTiO2 換算で0.3wt% 以下のTiの1種以上を添加することによって小型軽量な高周波電源を実現できる。
【図面の簡単な説明】
【図1】フェライト中の燐及び硼素含有量によるコアの損失の変化を示すグラフである。
【図2】燐含有量及び焼成温度によるコア損失の変化を示すグラフである。
【図3】燐含有量及び焼成昇温部の酸素分圧によるコア損失の変化を示すグラフである。[0001]
[Industrial application fields]
In recent years, with the widespread use of electronic devices, there has been an increasing demand for smaller and lighter devices. In particular, the miniaturization of the power source, which occupies the main part in terms of both weight and volume, is the target. It is increasing. Since the ferrite magnetic material used in this application is operated in a high frequency and strong magnetic field, the power loss is significantly larger than that of a general application.
[0002]
The present invention relates to a method of manufacturing a soft ferrite for a high frequency power source that can reduce the high frequency power loss and can be miniaturized.
[0003]
[Prior art]
Conventionally, in the production of this kind of high magnetic permeability and low loss magnetic material, it is vaguely necessary to use a material with extremely low impurities contained in the starting material. In particular, in the case of improving the characteristics by adding a trace amount of added component, it has become a situation that a raw material having a sufficiently low impurity as compared with the trace amount of added component must be selected. However, if the required characteristics are improved only by selecting raw materials with high purity, the cost is naturally increased, and in some cases, the practicality of the product is lost.
[0004]
As countermeasures, for example, CaO and SiO2 are typical impurities for manganese zinc-based ferrites, and at the same time, they are effective and often used as additives for reducing loss as will be described later. It is known. It is also known that the addition / containment of a substantial amount of phosphorus or mixing in the process has a vague effect on the properties of ferrite due to “only the cause of the composition component”.
[0005]
For example, Japanese Patent Laid-Open No. 2-30660 discloses that the crystal grain size is small when the amount of phosphorus as a minor component is less than 0.001 wt%, and increases when the amount is more than 0.007 wt%. Therefore, it is described as being inappropriate, and the claims also clearly state that “phosphorus is 0.001 to 0.007 wt%”. That is, the range of phosphorus content is specified as an essential requirement for a low-loss oxide magnetic material. It is noted that the amount of the additive containing phosphorus, etc. is preliminarily analyzed and considered in the raw material.
[0006]
According to Japanese Patent Laid-Open No. 4-92822, the amount of phosphorus added is 0.008 wt% to 0.015 wt%, which has the effect of lowering the final sintering temperature by 20 ° C. Although it has contributed to the improvement of the life and thermal energy of the steel, it is described that the loss could be reduced by “limiting the amount of phosphorus added”. In the examples, it is explained that the core loss can be reduced by adding 0.0033 wt% phosphorus. Further, in the example for confirming the relationship between the phosphorus content and the loss, the level of the amount of phosphorus added is 0.0012 to 0.01 wt% (the graph showing the effect is shown in FIG. 1). The loss measurement is performed at 16KHz.
[0007]
Therefore, the idea of these prior arts is to contain a considerable amount of phosphorus (0.0012 wt% or more) in order to lower the sintering temperature. However, if the amount is kept below 0.005 wt%, the core loss can be kept low. In the claims of the above-mentioned JP-A-2-30660 published before the filing of the present application, the amount of phosphorus is limited to 0.001 to 0.007 wt% and is based on the same logic. It is understood that the effect of interaction between the addition amount or the small amount of phosphorus of 0.002 wt% or less and the firing conditions is not recognized. The lack of any examination or explanation of boron / phosphorus in the raw material suggests that “a considerable amount can be included”.
[0008]
Japanese Patent Laid-Open No. 5-217733 discloses that the core loss at (25 KHz-200 mt-100 ° C.) is 55 KW / m 3 or less, including that containing phosphorus in the raw material, 0.001 wt% or less. It is necessary to make it. However, if manufacturing conditions other than components and subcomponents (when the sintering temperature is too low) are inappropriate, even if phosphorus is 0.001 wt% or less, phosphorus may be worse than 0.001 wt% or more. Some have been suggested and acknowledged the lack of reproducibility.
[0009]
Further, in JP-A-6-140231, it is desirable that the phosphorus content in the soft ferrite is controlled to 0.003 wt% or less, that is, 0 to 0.003 wt%. In Example 1, the phosphorus content in the sample No. 1 is controlled. It is described that the total was less than 0.003 wt%, and Samples Nos. 2 to 49 were the same. In this prior art, only phosphorus and its presence are not related to the amount, but only vaguely suggest that sintered ferrite is affected. Accordingly, it is understood that phosphorus does not interact with subcomponents in the range of 0 to 0.003 wt%.
[0010]
In order to compare and grasp the prior art as a problem to be solved by the invention, the measurement frequency of the low loss material is extremely important, and the same material may sometimes show the opposite loss value around 20KHz and around 100KHz. is there. That is, even with the same component composition, the electrical characteristics differ depending on the crystal growth state, the grain boundary, and the degree of oxidation within the crystal.
[0011]
The main component expected to improve the properties and costs of manganese-zinc ferrites, such as preventing impurities from being mixed, making the composition uniform, and making the particles finer and sintered.・ Many of the solution mixing / spray roasting methods of subcomponents are disclosed. For example, in JP-A-3-116803, when known additives Si, Ca, and Hf of conventional oxide mixing methods are sprayed, Hf dissolves not only in grain boundaries but also in ferrite, so that it has a higher resistance. It is said that power loss is reduced due to particles.
[0012]
In Japanese Patent Laid-Open No. 4-12504, if the Si and Ca subcomponents are dissolved and added simultaneously before spray roasting of Mn—Zn ferrite, the entire process is simplified and the characteristics are slightly improved.
[0013]
In Japanese Patent Laid-Open No. 4-192310, when adding 0.05 wt% or less of Bi to Mn—Zn ferrite to obtain a High μ material, the composition is uniform by dissolving and mixing the Bi or Bi salt compound and spray roasting. In addition, the crystal grains are uniform, the grain size is increased, and the number of pores is reduced, so that the μi characteristic is greatly improved.
[0014]
Furthermore, Japanese Patent Laid-Open No. 4-307903 states that the loss characteristics can be greatly improved by adding Si, Ca, Zr to soft ferrite by spray roasting. However, in any of the prior art, if the additive component is spray roasted simultaneously with the main component, it becomes fine particles with a uniform composition and a uniform structure, but the effect of the additive is the same tendency and the wrinkle improvement compared with the conventional method There are few results that are not expected at all because the sintering conditions are slightly shifted.
[0015]
In JP-A-3-163802, phosphorus oxide / boron oxide is 0.01 wt% or less (preferably 0.00005 wt% or more), and in JP-A-3-223119, phosphorus oxide / boron oxide is 0.003 wt% or less (preferably Is 0.0001 wt% or more), but all are clearly described as useful components that can reduce iron loss by adding a small amount. Iron loss tends to decrease with increasing amount of additive Is not only seen, but compared to the upper limit Preferred amount of phosphorus added , 0.00005 wt% and 0.0001 wt% are values that can be expressed as being hardly included even in the light of detection accuracy, and it is judged that the amount of phosphorus directly affects the reduction of iron loss. This prior art suggests that there are other essential main factors, and the present application has found this essential requirement.
[0016]
Summarizing the prior art described above, in order to reduce the core loss of Mn—Zn ferrite, the phosphorus content is appropriately set in JP-A-2-3060, JP-A-4-92822, and JP-A-5-217733. In addition, it has been proposed to add a small amount of boron alone or in combination in Japanese Patent Application Laid-Open No. 3-163802 and Japanese Patent Application Laid-Open No. 3-223119. In order to reliably reduce the loss of the ferrite core with good reproducibility, it is not necessary to control the phosphorus / boron content, but the amount of each of phosphorus and boron mixed in the ferrite and raw materials and in the manufacturing process. And the total amount is controlled to a specific amount below a certain amount, and it has been found that it is essential to adjust the firing conditions including the control of the oxygen amount from the time of temperature rise. In JP-A-3-116803, JP-A-4-12504, and JP-A-4-192310, attempts have been made to mix solutions of main components, subcomponents, additives, spray roasting, etc. The product and impurity control effects show the same tendency, and the improvement effect is only emphasized or the manufacturing conditions are slightly shifted.
[0017]
[Problems to be solved by the invention]
In general, it is more advantageous to increase the processing frequency as described above in order to reduce the size and weight of the power supply device. However, in reality, it is considered that the range of about 500 KHz can be realized due to various restrictions. Conventionally, as this type of ferrite, those mainly composed of manganese, zinc, iron oxide and the like are considered suitable. In addition, we have been responding to this demand by studying and improving subcomponents, additives, manufacturing conditions, etc., but since they operate in a relatively strong magnetic field unlike the loss of weak magnetic fields, The biggest problem lies in the fact that the magnetic loss is significantly increased at a high frequency as compared with the application, and an approach tailored to this viewpoint becomes necessary.
[0018]
Therefore, even if the main component is a conventionally known manganese zinc system, the saturation magnetic flux density Bs related to hysteresis loss and ΔB which is the difference between Bs and the residual magnetic flux density Br are large, and the specific resistance related to eddy current loss. Need to be big. Furthermore, when considering power consumption, a special characteristic is required as a ferrite that has the smallest amount of change in the operating temperature range, that is, it is desirable that the temperature coefficient of power loss be negative near room temperature.
[0019]
As the need for higher performance in this way increases, the demand for smaller product variations naturally increases, but industry demands allow for a minimum cost increase and are uniform and stable. The demands must be satisfied by investigating the manufacturing means. Therefore, since it is not possible to obtain products with sufficient target characteristics and costs by simply adjusting and balancing mainly by specifying the composition components as in the past, it is necessary to study and elucidate the confounding requirements from various aspects at the same time. became.
[0020]
The present invention provides a method for producing soft ferrite in which the core loss of ferrite is reduced by controlling phosphorus and boron mixed in the ferrite raw material and in the production process to a specific amount and further performing firing under appropriate conditions. For the purpose.
[0021]
[Means for Solving the Problems]
In the method for producing soft ferrite according to claim 1 of the present invention, the total amount of phosphorus and boron mixed in the raw material and in the production process is 0.004 wt% or less (excluding zero), and the amount of boron is 0.002 wt% or less (excluding zero), phosphorus amount to a specific amount of 0.002 wt% or less Refined to produce ferrite material When firing the material, the oxygen partial pressure of the atmosphere in the temperature rising portion from 900 ° C. to the firing temperature is set to 15% or less (excluding zero), and the firing temperature is set to 1250 ° C. or more and 1400 ° C. or less. Has been. Preferably, the sum of boron and phosphorus is 0.0035 wt% or less (excluding zero), the amount of boron is 0.002 wt% or less (excluding zero), and the amount of phosphorus is 0.0015 wt% or less. More preferably, the sum of the amount of boron and phosphorus is 0.0025 wt% or less (excluding zero), the amount of boron is 0.0015 wt% or less (excluding zero), and the amount of phosphorus is 0.001 wt%. The following is desirable.
[0022]
In the method for producing ferrite according to claim 2 of the present invention, the total amount of phosphorus and boron mixed in the raw material and in the production process is 0.004 wt% or less (excluding zero), and the amount of boron is 0.002 wt%. % Or less (excluding zero) and the amount of phosphorus is 0.002 wt% or less, and the main component is 30 to 41 mol% manganese oxide in terms of MnO and 6 to 16 mol% zinc oxide in terms of ZnO. And the remainder is iron oxide, containing 0.005 to 0.025 wt% silicon in terms of SiO2 and 0.02 to 0.15 wt% calcium in terms of CaO, and 0.06 wt% or less in terms of Nb2 O5 Niobium (not including zero), 0.08 wt% or less in terms of V2 O5 (not including zero), zirconium in 0.07 wt% or less (not including zero) in terms of ZrO2, 0.4 wt in terms of SnO2 % Or less (excluding zero) of tin and TiO2 It contains one or more of 0.3 wt% or less (excluding zero) of titanium, and part or all of its constituent elements or additives are mixed in a solution, and ferrite is produced by spray roasting. ing.
[0023]
[Action]
According to the method for producing soft ferrite according to claim 1 of the present invention, since the allowable region of the production condition for obtaining the low magnetic core loss at high frequency and high magnetic flux density of the soft magnetic ferrite becomes narrower as the amount of phosphorus and boron increases, the raw material The total amount of phosphorus and boron mixed in and in the manufacturing process is 0.004 wt% or less (excluding zero), the amount of boron is 0.002 wt% or less (excluding zero), and the amount of phosphorus is 0 To specific amount of less than 0.002 wt% Refined to produce ferrite material When firing the material, the oxygen partial pressure in the temperature rising portion from 900 ° C. to the firing temperature is 15% or less (excluding zero), and the firing temperature is 1250 ° C. or more and 1400 ° C. or less. As a result, the manufacturing process area can be expanded, and soft magnetic ferrite with high reproducibility and low loss at high frequency and high magnetic flux density can be obtained.
[0024]
According to the method for producing soft ferrite according to claim 2 of the present invention, among the manganese zinc-based ferrites, a material having a relatively high magnetic permeability and a low loss at a high frequency and a high magnetic flux density can be obtained stably.
[0025]
【Example】
At first glance, the present invention is easily received as “improvement of ferrite characteristics by a minor component composition” of the prior art, but as described above, a new “low loss at 100 KHz or more, low loss in a strong magnetic field”, and It was derived from a multifaceted investigation of difficult issues.
[0026]
The specific means is “to keep the amount of trace impurities that rapidly grow crystal grains low (purify when exceeding a certain amount)” and “oxygen from the beginning of crystallization, that is, from the time of sintering temperature rise. This is achieved by adopting the process of “reducing partial pressure”. In particular, it is important to pay attention to the fact that it does not act effectively after crystal growth is completed in order to reduce the loss at a high frequency of 100 KHz or higher.
[0027]
In the following, this means will be described in detail. In general, a high-purity main component material is used to produce high-performance ferrite, and the crystal structure is controlled by a trace composition and additives, but there are few impurities in the starting material. If it is better to select one with a small amount of all impurities, the quality cost cannot be balanced and it cannot be used industrially. For this purpose, as will be described later, components for adjusting grain boundary oxidation, such as Si and Ca, are also added in a relatively large amount. It can be solved by adjusting the crystal state as a whole.
[0028]
However, in order to target ultra-high quality low-loss materials as in the present invention, the presence or absence of extremely small amounts of phosphorus and boron, 1/10 to 1/100 of these additives, makes it impossible to solve the problem. With regard to these two components, variation in problem solving effects is suppressed by selecting and correcting raw materials having particularly low contents.
[0029]
Phosphorus and boron are components that rapidly change the sintering characteristics even in trace amounts, and react with the ferrite main component to form a liquid phase, which generally forms an inhomogeneous fine crystal structure and deteriorates magnetic properties. It is thought that Therefore, in order to obtain magnetic properties with high permeability and low loss at high frequencies, it is necessary to positively select a raw material source with a low content of these two components.・ A region where interaction with additive components and sintering conditions can be used cannot be obtained.
[0030]
According to the present invention, when each component is independent, it is 0.002 wt% for phosphorus, 0.002 wt% for boron, and when the two components coexist, the interaction is lost when the content is 0.004 wt% or more. It has been found that the amount is a limit amount that promotes crystal growth so rapidly that the magnetic properties cannot be adjusted even if other manufacturing requirements including additives are changed. Therefore, in order to solve the problem, at the time of selecting the main component raw material, at least 0.002 wt% (excluding zero) for boron, 0.002 wt% or less for phosphorus, and a total of 0. Select 004 wt% or less (excluding zero), and adjust to a specific amount below the above limit amount in consideration of the amount of contamination. Preferably, the sum of boron and phosphorus is 0.0035 wt% or less (excluding zero), the amount of boron is 0.002 wt% or less (excluding zero), and the amount of phosphorus is 0.0015 wt% or less. More preferably, the sum of the amount of boron and phosphorus is 0.0025 wt% or less (excluding zero), the amount of boron is 0.0015 wt% or less (excluding zero), and the amount of phosphorus is 0.001 wt%. The following is desirable.
[0031]
Further, as described above, various impurities may be contained in addition to these two components, and the fine structure changes depending on the type and amount, and thus often acts as a characteristic adjusting or improving component. In particular, in order to obtain high performance, the allowable amount of impurities is generally small as described above, but CaO and SiO2 are typical impurities for manganese zinc ferrite and are also known as adjusting additives.
[0032]
In general, when the amount of CaO increases, the low frequency μi gradually decreases, and the high frequency μi increases, but has an appropriate range in which it decreases below 0.025 wt%. In addition, it is considered that CaO is segregated at the grain boundaries and oxidized to contribute to a reduction in loss and improved. Similarly, segregation is observed for SiO2, but if the amount is too large, abnormal growth occurs, the specific resistance is lowered, and the improvement effect is reduced. Therefore, it is known that it is desirable to adjust the addition amount according to the target characteristics within the range of CaO of 0.25 wt% or less and SiO2 of 0.02 wt% or less including the amount in the raw material. It has been clarified that the region and the degree to which the effect is obtained are premised on the contents of phosphorus and boron and the firing conditions.
[0033]
The minimum amount of CaO and SiO2 is determined by the content in the raw material and the purpose of adjustment. It is known that if SiO2 and CaO are segregated at the grain boundaries, they are easily affected by the firing atmosphere, particularly the amount of oxygen, but if only the grain boundaries are oxidized, the specific resistance of the grain boundaries can be increased. However, in this respect as well, when phosphorus and boron exceed the limit values, in other words, if the crystal grows too rapidly, it is a means to obtain a low loss that cannot be achieved by the prior art. It is a new finding that the effect of improving characteristics cannot be expected.
[0034]
Also, the grain boundary itself and the distance between crystal grains are closely related to the magnetic properties, but they deteriorate even if they are partly too large. Therefore, the grain boundary forming substances such as Si and Ca need to be added in a dispersed state. More desirable results were obtained by spray sintering simultaneously with the main component if necessary. Furthermore, the characteristics required for the ferrite field for high-frequency power sources are basically high Bs and large ΔB, that is, low Br. Naturally, the characteristic is mainly high saturation magnetic flux density and high permeability. It is necessary to select a main component region that can also serve as a magnetic susceptibility.
[0035]
Therefore, a range in which 30 to 41 mol% manganese oxide in terms of MnO, 6 to 16 mol% zinc oxide in terms of ZnO, and the remainder being iron oxide is suitable. Outside this range, the core loss increases, the minimum temperature of the core loss becomes 60 ° C. or less, the Curie temperature becomes 200 ° C. or less, the initial permeability decreases, the residual magnetic flux density (Br) Or increase. Further, as fine-tuning balancing additives, in addition to the above SiO2 and CaO, niobium of 0.06 wt% or less in terms of Nb2 O5, vanadium of 0.08 wt% or less in terms of V2 O5, zirconium in terms of ZrO2 of 0.07 wt% or less, SnO2 Adjust by adding one or more of 0.4 wt% or less of tin in terms of TiO2 and 0.3 wt% or less of titanium in terms of TiO2. When Nb2 O5 exceeds 0.06 wt%, the core loss increases and the initial permeability decreases. When V2 O5 exceeds 0.08 wt%, the core loss increased and the initial permeability decreased. When ZrO2 exceeded 0.07 wt%, the core loss increased and the initial permeability decreased. When SnO2 exceeds 0.4 wt%, the minimum temperature of the core loss becomes 60 ° C. or less. When TiO2 exceeds 0.3 wt%, the minimum temperature of the core loss becomes 60 ° C. or less. In selecting this type of starting material, not only the control and correction of the composition components including the additive of the present invention, but also other impurities such as Sr and Ba are reduced to 0.05 wt% or less in total. It is desirable to hold down so as not to reduce the effect.
[0036]
Select a starting material with extremely low amounts of phosphorus and boron, which are rapid crystallization accelerating components, and make corrections in consideration of the amount of contamination, or if necessary, provide dephosphorization and deboronation processes, In the case of coexistence, the adjustment process is provided so that the total content is 0.002 wt% or less (excluding zero), and in the case of coexistence, the total content is 0.004 wt% or less (excluding zero). Preferably, the sum of boron and phosphorus is 0.0035 wt% or less (excluding zero), the amount of boron is 0.002 wt% or less (excluding zero), and the amount of phosphorus is 0.0015 wt% or less. More preferably, the sum of the amount of boron and phosphorus is 0.0025 wt% or less (excluding zero), the amount of boron is 0.0015 wt% or less (excluding zero), and the amount of phosphorus is 0.001 wt%. The following is desirable. In the adjustment process, after suppressing the rapid growth of the ferrite crystal, the low oxygen partial pressure is reduced during the temperature rise of sintering, thereby reducing the high frequency loss and adjusting the desired characteristics, ie, Ca, Si. , Nb, V, Sn, Ti, etc. are found to be widened in the field of production conditions where they are effective and stable.
[0037]
If boron and phosphorus, which rapidly accelerates crystal growth, are less than the above-mentioned limit amounts, the core loss peak of about 30% can be improved by selecting the temporary particle size, and mixing between solutions such as solution mixing As shown in Fig. 3, the improvement effect of the core loss by the low oxygen partial pressure in the heating part (from 900 ° C to the sintering temperature) is shown in Fig. 2. As shown, it became clear that the effect of the additive can be effectively and stably brought out within the range of the firing temperature (1250 ° C. or higher and 1400 ° C. or lower).
[0038]
These actions and effects are easy to identify with the prior art because the problems are similar at first glance. However, phosphorous is a prerequisite for controlling the degree of crystal growth, such as atomic energy that can be controlled as electric power and atomic energy as a bomb. And boron act as limit amounts. Therefore, when all of the trends shown in the prior art show the opposite tendency, for example, the relationship between the amount of oxygen and phosphorus during the temperature increase described above also appears. This is different from general chemical substances in which the electrical and magnetic properties are determined immediately after the composition components are determined, because of the inherent properties of solid solutions, which are a kind of mixture. Among the basic composition / components, crystallization promoting components, and property adjusting components, it is possible to supply a stable and large amount (which can increase the process quality capability Cp), especially by keeping boron / phosphorus, which are strong crystallization promoting components, low. It is thought that the incident could be set.
[0039]
Therefore, this is different from the conventional technical idea of improving the characteristics due to the “effect by adding (amount)” of boron and phosphorus. As a result of investigating the interaction between the two, it seems that it looks similar at first glance, but new knowledge specific to solid solutions has been obtained. The difference in the claims and the detailed explanation that cannot be understood between the above-mentioned prior arts and the like supports this. In addition, even if a part or all of the component structure is mixed in a solution and further uniformed by spray roasting to achieve uniform mixing, the tendency of the basic action and effect depending on the composition component and the added amount does not change. The optimum value as a high-frequency power supply material can be obtained by adjusting some manufacturing conditions.
[0040]
[Example 1]
A mixture of FeCl2 and MnCl2 having different phosphorus and boron contents is subjected to oxidation roasting to a mixture of iron oxide and manganese oxide, and zinc ferrite (ZnFe2 O4), SiO2, CaCO3, Nb2 O5 and V2 O5 are added. MnZn ferrite material was prepared by adding, mixing and grinding.
To these ferrite materials, a binder was added and pressure-formed into a toroidal shape, followed by firing in an atmosphere in which air and nitrogen gas were mixed.
The core loss of the ferrite core obtained as described above is shown in FIGS. The core loss was reduced under the conditions of low phosphorous and boron content and firing conditions with a low oxygen partial pressure in the temperature raising section.
[0041]
[Example 2]
Zinc ferrite (ZnFe2 O4), SiO2, CaCO3, Nb2 O5, V2 O5, SnO2 and TiO2 are added to a mixture of iron oxide and manganese oxide obtained by oxidizing and roasting a mixed solution of FeCl2 and MnCl2. After mixing and pulverization, No. 1 shown in Table 1 was obtained. Samples 1-9 were prepared.
These samples were press-molded into a toroidal shape by adding a binder, and then subjected to main firing at 1320 ° C. for 4 hours in an atmosphere in which air and nitrogen gas were mixed.
Table 1 shows the core loss of the ferrite core obtained as described above. Core loss was reduced in samples with low phosphorus and boron content (0.0005 wt% each of phosphorus and boron) and one or more of Nb2 O5, V2 O5, ZrO2, SnO2 and TiO2.
[0042]
[Example 3]
After adding Si, Ca, Nb, Zr, and Sn in a mixed form of FeCl2 and MnCl2 in a chloride or soluble form, oxidation roasting was performed to obtain a mixture of iron oxide and manganese oxide. This was mixed with zinc ferrite (ZnFe2 O4) and pulverized. Ten samples were made.
To this sample, a binder was added and pressure-molded into a toroidal shape, followed by firing at 1320 ° C. for 4 hours in an atmosphere in which air and nitrogen gas were mixed.
[0043]
Table 1 shows the core loss of the ferrite core obtained as described above. No. in which trace components were added after roasting. Compared to the sample of No. 9, The core loss was further reduced with 10 samples.
[0044]
[Table 1]
Figure 0003747234
[0045]
【The invention's effect】
According to the present invention, the content of boron and phosphorus, including the amount of contamination and the amount of contamination, is 0.0020 wt%, 0.0020 wt% or less, and the sum is controlled to 0.004 wt% or less (excluding zero), Fe2 O3, MnO , And ZnO as a main component, and 0.002 to 0.025 wt% of Si in terms of SiO2 as subcomponents and 0.02 to 0.15 wt% of Ca in terms of CaO, and 0.05 wt in terms of Nb2 O5 as an additive. By adding at least one of V below 0.05 wt% in terms of V2 O5, Sn less than 0.4 wt% in terms of SnO2 and Ti and up to 0.3 wt% in terms of TiO2 A power supply can be realized.
[Brief description of the drawings]
FIG. 1 is a graph showing changes in core loss depending on phosphorus and boron contents in ferrite.
FIG. 2 is a graph showing changes in core loss depending on phosphorus content and firing temperature.
FIG. 3 is a graph showing changes in core loss due to phosphorus content and oxygen partial pressure in a firing temperature raising portion.

Claims (2)

原材料中及び製造工程で混入する燐及び硼素の量の和を0.004wt%以下(零を含まず)で、且つ硼素の量を0.002wt%以下(零を含まず)、燐の量を0.002wt%以下の特定量に精製してフェライト材料を製造し、該材料の焼成に際し、900℃から焼成温度までの昇温部の雰囲気の酸素分圧を15%以下(零を含まず)にし、且つ、焼成温度を1250℃以上,1400℃以下にすることを特徴とするソフトフェライトの製造方法。The sum of the amount of phosphorus and boron mixed in the raw materials and in the manufacturing process is 0.004 wt% or less (excluding zero), the amount of boron is 0.002 wt% or less (excluding zero), and the amount of phosphorus is A ferrite material is produced by refining to a specific amount of 0.002 wt% or less, and when firing the material, the oxygen partial pressure in the temperature rising portion from 900 ° C. to the firing temperature is 15% or less (excluding zero) And a firing temperature of 1250 ° C. or higher and 1400 ° C. or lower. 請求項1記載のソフトフェライト材料を製造するに際し、主成分がMnO換算で30〜41mol%の酸化マンガンとZnO換算で6〜16mol%の酸化亜鉛と残りが酸化鉄であり、SiO2 換算で0.005〜0.025wt% の珪素とCaO換算で0.02〜0.15wt% のカルシウムを含み、さらにNb2 O5 換算で0.06wt% 以下(零を含まず)のニオブ,V2 O5 換算で0.08wt% 以下(零を含まず)のバナジウム,ZrO2 換算で0.07wt% 以下(零を含まず)のジルコニウム,SnO2 換算で0.4wt% 以下の(零を含まず)のスズ及びTiO2 換算で0.3wt% 以下(零を含まず)のチタンの1種以上を含み、その成分元素または添加物の一部または全部を溶液で混合し噴霧焙焼によって製造することを特徴とするソフトフェライトの製造方法。In producing the soft ferrite material according to claim 1, the main component is manganese oxide of 30 to 41 mol% in terms of MnO, 6 to 16 mol% of zinc oxide in terms of ZnO, and the remainder is iron oxide, and the amount is 0.002 in terms of SiO2. It contains 0.005 to 0.025 wt% silicon and 0.02 to 0.15 wt% calcium in terms of CaO, and 0.06 wt% or less niobium in terms of Nb2 O5 (excluding zero), and 0.02 in terms of V2 O5. Less than 08wt% (excluding zero) vanadium, ZrO2 converted 0.07wt% (excluding zero) zirconium, SnO2 converted 0.4wt% or less (excluding zero) tin and TiO2 converted Soft ferrite characterized in that it contains one or more of 0.3 wt% or less (excluding zero) of titanium and is produced by spray roasting by mixing part or all of its constituent elements or additives with a solution. Production method.
JP18779194A 1994-07-18 1994-07-18 Method for producing soft ferrite Expired - Fee Related JP3747234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18779194A JP3747234B2 (en) 1994-07-18 1994-07-18 Method for producing soft ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18779194A JP3747234B2 (en) 1994-07-18 1994-07-18 Method for producing soft ferrite

Publications (2)

Publication Number Publication Date
JPH0826732A JPH0826732A (en) 1996-01-30
JP3747234B2 true JP3747234B2 (en) 2006-02-22

Family

ID=16212293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18779194A Expired - Fee Related JP3747234B2 (en) 1994-07-18 1994-07-18 Method for producing soft ferrite

Country Status (1)

Country Link
JP (1) JP3747234B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10208926A (en) * 1997-01-21 1998-08-07 Fuji Elelctrochem Co Ltd Ferrite material, production thereof and deflection yoke core employing ferrite material
JP4299390B2 (en) * 1998-12-16 2009-07-22 Tdk株式会社 Manganese ferrite, transformer and choke coil using the same

Also Published As

Publication number Publication date
JPH0826732A (en) 1996-01-30

Similar Documents

Publication Publication Date Title
EP0936634A1 (en) Manganese-zinc ferrite
EP1101736B1 (en) Mn-Zn ferrite and production thereof
CN106915956A (en) MnZnLi based ferrites, magnetic core and transformer
JP6742440B2 (en) MnCoZn ferrite and method for producing the same
US6627103B2 (en) Mn-Zn ferrite production process, Mn-Zn ferrite, and ferrite core for power supplies
JP2008143744A (en) MnCoZn FERRITE AND MAGNETIC CORE FOR TRANSFORMER
EP1078901B1 (en) Magnetic ferrite material and manufacture method thereof
JP2003306376A (en) MANUFACTURING METHOD OF Mn-Zn FERRITE
JP3635410B2 (en) Method for producing manganese-zinc based ferrite
JP3747234B2 (en) Method for producing soft ferrite
JP3233420B2 (en) Manganese-zinc ferrite and magnetic core
JP5845137B2 (en) Method for producing Mn-Zn ferrite
JP6450649B2 (en) Iron oxide for MnZn ferrite raw material and method for producing MnZn ferrite
JP4656778B2 (en) Iron oxide for ferrite and method for producing Mn-Zn ferrite
JP5183856B2 (en) Method for producing Mn-Zn ferrite
JPH06267726A (en) Low loss manganese-zinc ferrite and manufacture thereof
JP3454472B2 (en) Manganese-zinc ferrite and method for producing the same
JP6585540B2 (en) Iron oxide for MnZn-based ferrite raw material, MnZn-based ferrite and method for producing MnZn-based ferrite
JPH0536516A (en) Manganese-zinc ferrite material, its manufacture and high frequency transformer
EP4342869A1 (en) Mnznco-based ferrite
JPH09180926A (en) Low loss oxide magnetic material
JPH08236335A (en) Low-loss oxide magnetic material
JPH05299230A (en) Manufacturing method for low loss oxide magnetic material
JP2005289667A (en) MnZn BASED FERRITE AND METHOD OF MANUFACTURING THE SAME
JPH06325920A (en) Low-loss magnetic material and manufacture thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees