JPH06323930A - Disurbing magnetic-field noise compensation device of magnetostrictive torque sensor - Google Patents

Disurbing magnetic-field noise compensation device of magnetostrictive torque sensor

Info

Publication number
JPH06323930A
JPH06323930A JP13547093A JP13547093A JPH06323930A JP H06323930 A JPH06323930 A JP H06323930A JP 13547093 A JP13547093 A JP 13547093A JP 13547093 A JP13547093 A JP 13547093A JP H06323930 A JPH06323930 A JP H06323930A
Authority
JP
Japan
Prior art keywords
signal
circuit
torque
dummy
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13547093A
Other languages
Japanese (ja)
Inventor
Hidenori Hasegawa
長谷川秀法
Yasushi Yoshida
吉田  康
Koji Nakajima
耕二 中嶋
Mitsuaki Ikeda
満昭 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP13547093A priority Critical patent/JPH06323930A/en
Publication of JPH06323930A publication Critical patent/JPH06323930A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To remove a noise component from a torque output signal by a method wherein a disturbing magnetic field generated by the rotation of a motor or an electromagnetic brake and a noise generated in a detection coil by only the influence of the eccentricity of a torque transmission shaft are detected. CONSTITUTION:Signals from detection coils are input respectively to initial-stage amplifiers 201, 202, amplified signals are full-wave-rectified 203, 204, rectified signals are differentially amplified 205 and an amplified signal is then input to a differential amplifier circuit 209. On the other hand, a signal from a dummy detection coil is amplified by an initial-stage amplifier 206, an exciting frequency component is then removed by a notch filter 207, and an amplified signal is gain-regulated 208, and a gain-regulated signal is input to the differential amplifier circuit 209. Then, a noise component is removed from a torque signal by the differential amplifier circuit 209, and torque output signal is then output through a filter 210. That is to say, since a magnetostrictive film does not exist in a part in which the dummy coil has been installed, only an influence due to magnetic fields (an exciting magnetic field and a disturbing magnetic field by the rotation of a motor or the like) and due to eccentricity appears. Only the noise component is removed from the signal from the dummy detection coil, and the noise component is removed from the torque signal by the circuit 209.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁歪式のトルクセンサ
の外乱磁界に起因するノイズの補償装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compensating device for noise caused by a disturbance magnetic field of a magnetostrictive torque sensor.

【0002】[0002]

【従来の技術】従来の磁歪式トルクセンサの構成例、及
び信号処理回路の構成を図3及び図4に示す。図3にお
いて、301はトルク伝達軸、302、303は軸方向
に対し各々45°及び−45°方向に形成された磁歪
膜、304は励磁コイル、305は検出コイルである。
図4において、401、402は初段アンプ、403、
404は全波整流回路、405は差動アンプ、406は
フィルタ回路、407は発振回路、408はパワーアン
プである。図3の矢印の方向にトルクが印加されると磁
歪膜302には引っ張り応力、磁歪膜303には圧縮応
力がかかり、それぞれの磁歪膜の透磁率は反対方向に変
化する。図4の407、408で構成される励磁回路に
より図3の304の励磁コイルを励磁することにより、
この透磁率の変化を検出コイルの電圧変化でとらえ、図
4の信号処理回路で処理することにより正負両方向のト
ルクを検出する。
2. Description of the Related Art An example of the structure of a conventional magnetostrictive torque sensor and the structure of a signal processing circuit are shown in FIGS. In FIG. 3, 301 is a torque transmission shaft, 302 and 303 are magnetostrictive films formed in the directions of 45 ° and −45 ° with respect to the axial direction, 304 is an exciting coil, and 305 is a detecting coil.
In FIG. 4, 401 and 402 are first-stage amplifiers, 403,
Reference numeral 404 is a full-wave rectification circuit, 405 is a differential amplifier, 406 is a filter circuit, 407 is an oscillation circuit, and 408 is a power amplifier. When torque is applied in the direction of the arrow in FIG. 3, a tensile stress is applied to the magnetostrictive film 302 and a compressive stress is applied to the magnetostrictive film 303, and the magnetic permeability of each magnetostrictive film changes in the opposite direction. By exciting the exciting coil of 304 of FIG. 3 by the exciting circuit composed of 407 and 408 of FIG.
The change in the magnetic permeability is detected by the change in the voltage of the detection coil, and is processed by the signal processing circuit in FIG. 4 to detect the torque in both the positive and negative directions.

【0003】[0003]

【発明が解決しようとする課題】ところが従来法では、
このトルクセンサをモータや電磁ブレーキに組み込んだ
時、モータや電磁ブレーキの回転により生じる外乱磁界
をトルク伝達軸の偏心により、トルク出力信号にノイズ
が生じるという問題があった。外乱磁界によるノイズ問
題は、トルクセンサをモータや電磁ブレーキの近傍に構
成すればするほどますます顕著になる。そこで本発明は
このノイズを除去することを目的とする。
However, according to the conventional method,
When this torque sensor is incorporated in a motor or an electromagnetic brake, there is a problem that a disturbance magnetic field generated by the rotation of the motor or the electromagnetic brake causes noise in the torque output signal due to the eccentricity of the torque transmission shaft. The noise problem due to the disturbance magnetic field becomes more pronounced as the torque sensor is arranged closer to the motor and electromagnetic brake. Therefore, an object of the present invention is to remove this noise.

【0004】[0004]

【課題を解決するための手段】上記問題を解決するた
め、本発明はトルク伝達軸の回転軸心方向と45°に形
成された磁歪膜と前記トルク伝達軸の回転軸心方向と−
45°に形成された磁歪膜と、2つの励磁コイルと2つ
の検出コイルと、ダミー励磁コイルとダミー検出コイル
と、前記磁歪膜上の前記検出コイル信号をそれぞれ全波
整流する全波整流回路と、前記全波整流回路の出力信号
を差動増幅する第1の差動増幅回路と、前記ダミー検出
コイルの信号から励磁周波数成分を除去するノッチフィ
ルタ回路と、前記ダミー検出コイルの信号レベルを調節
するゲイン調節回路と、前記ゲイン調節回路の出力信号
と前記第1の差動増幅回路の出力信号との差動をとる第
2の差動増幅回路とを備える。
In order to solve the above problems, the present invention relates to a magnetostrictive film formed at 45 ° with respect to the rotational axis direction of the torque transmission shaft and the rotational axis direction of the torque transmission shaft.
A magnetostrictive film formed at 45 °, two exciting coils and two detecting coils, a dummy exciting coil and a dummy detecting coil, and a full-wave rectifying circuit for full-wave rectifying the detecting coil signals on the magnetostrictive film. A first differential amplifier circuit that differentially amplifies an output signal of the full-wave rectifier circuit, a notch filter circuit that removes an excitation frequency component from a signal of the dummy detection coil, and a signal level of the dummy detection coil And a second differential amplifier circuit that takes a differential between the output signal of the gain adjustment circuit and the output signal of the first differential amplifier circuit.

【0005】[0005]

【作用】上記手段により、印加トルクに依存ぜずにモー
タや電磁ブレーキの回転により生じる外乱磁界とトルク
伝達軸の偏心の影響のみによって検出コイルに生じるノ
イズを検出できる。これにより、トルク検出信号からノ
イズ成分だけを除去することができる。
According to the above means, the noise generated in the detection coil can be detected only by the influence of the disturbance magnetic field generated by the rotation of the motor or the electromagnetic brake and the eccentricity of the torque transmission shaft without depending on the applied torque. As a result, only the noise component can be removed from the torque detection signal.

【0006】[0006]

【実施例】以下、本発明の実施例を図に基づいて説明す
る。図1は本発明のトルクセンサの構成図、図2はその
信号処理回路ブロック図である。図1において、101
はトルク伝達軸、102、103は磁歪膜、104は励
磁コイル、105は検出コイル、106はダミー励磁コ
イル、107はダミー検出コイルである。図では検出コ
イルを励磁コイルの外側に示しているが、検出コイルと
励磁コイルの配置を入れ変えてもよい。また、図2にお
いて、201、202は初段アンプ、203、204は
全波整流回路、205は差動アンプ、206は初段アン
プ、207はノッチフィルタ回路、208はゲイン調節
回路、209は差動アンプ、210はフィルタ回路、2
11は発振回路、212は発振回路の出力信号を電力に
増幅するパワーアンプである。次に図2の信号処理ブロ
ック図の動作を説明する。検出コイル105の信号は、
各々初段アンプ201、202に入力され、信号増幅し
た後、全波整流回路203、204で全波整流された
後、差動増幅回路205により差動増幅され、次の差動
増幅回路209の入力信号となる。一方ダミー検出コイ
ル107により検出された信号は、初段アンプ206に
入力され、信号増幅した後、励磁周波数f0 をカットオ
フ周波数とするノッチフィルタ207で励磁周波数成分
を取り除いた後、ゲイン調節回路208へ供給され、次
の差動増幅回路209の入力信号となる。差動増幅回路
209で、トルク信号からノイズ成分を除去した後、フ
ィルタ回路210を通して、トルク出力信号を出力す
る。図1のトルクセンサがモータもしくは電磁ブレーキ
に組み込まれた場合、モータの回転あるいは電磁ブレー
キの作動によって磁歪膜102、103上の検出コイル
にモータ(または電磁ブレーキ)の回転角に応じた磁界
の影響がノイズとなって現れる。これらの外乱磁界の大
きさが2つの検出コイルに対して同じ大きさならば、2
05の差動アンプによりこの磁界の影響はキャンセルさ
れるが、磁歪膜102と103では磁界発生源からの距
離が異なるため、これら検出コイルに現れる外乱磁界の
影響にはアンバランスを生じ、差動増幅後にもノイズと
なって現れる。ダミーコイル106、107を設置した
部分には、磁歪膜がないため、ダミー検出コイル107
にはトルクに依存せず磁界の影響と偏心による影響のみ
が現れる。このダミー検出コイル信号に励磁周波数をカ
ットオフ周波数とするノッチフィルタ207をかけて、
励磁周波数成分を取り除き磁界に応じた信号のみを取り
出す。次にゲイン調節回路によりこの信号レベルを調節
する。この信号レベルの調節は、モータまたは電磁ブレ
ーキを回転させ、差動アンプ205に現れる回転角に応
じた磁界によるリップルレベルに合わせるようにする。
実際には、モータまたは電磁ブレーキを動作させ、最終
のトルク信号をモニタし、磁界によるリップルがなくな
るように調節すれば良い。差動アンプ205の出力とゲ
イン調節回路208の出力の差動をとることにより、外
乱磁界によるリップルは除去される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of a torque sensor of the present invention, and FIG. 2 is a signal processing circuit block diagram thereof. In FIG. 1, 101
Is a torque transmission shaft, 102 and 103 are magnetostrictive films, 104 is an exciting coil, 105 is a detecting coil, 106 is a dummy exciting coil, and 107 is a dummy detecting coil. Although the detection coil is shown outside the exciting coil in the figure, the arrangement of the detecting coil and the exciting coil may be interchanged. In FIG. 2, 201 and 202 are first-stage amplifiers, 203 and 204 are full-wave rectifier circuits, 205 is a differential amplifier, 206 is a first-stage amplifier, 207 is a notch filter circuit, 208 is a gain adjusting circuit, and 209 is a differential amplifier. , 210 is a filter circuit, 2
Reference numeral 11 is an oscillation circuit, and 212 is a power amplifier for amplifying an output signal of the oscillation circuit into electric power. Next, the operation of the signal processing block diagram of FIG. 2 will be described. The signal of the detection coil 105 is
The signals are input to the first-stage amplifiers 201 and 202, respectively, and after signal amplification, full-wave rectification by the full-wave rectification circuits 203 and 204, differential amplification by the differential amplification circuit 205, and input to the next differential amplification circuit 209. Become a signal. On the other hand, the signal detected by the dummy detection coil 107 is input to the first-stage amplifier 206, the signal is amplified, the excitation frequency component is removed by the notch filter 207 having the excitation frequency f 0 as the cutoff frequency, and then the gain adjustment circuit 208. To the input signal of the next differential amplifier circuit 209. The differential amplifier circuit 209 removes noise components from the torque signal, and then outputs the torque output signal through the filter circuit 210. When the torque sensor of FIG. 1 is incorporated in a motor or an electromagnetic brake, the detection coil on the magnetostrictive films 102 and 103 is affected by a magnetic field according to the rotation angle of the motor (or the electromagnetic brake) due to the rotation of the motor or the operation of the electromagnetic brake. Appears as noise. If the magnitudes of these disturbance magnetic fields are the same for the two detection coils, then 2
Although the influence of this magnetic field is canceled by the differential amplifier of 05, since the magnetostrictive films 102 and 103 have different distances from the magnetic field generation source, the influence of the disturbance magnetic field appearing in these detection coils causes an imbalance, and the differential It appears as noise even after amplification. Since the portion where the dummy coils 106 and 107 are installed does not have a magnetostrictive film, the dummy detection coil 107
Does not depend on the torque, and only the effects of the magnetic field and eccentricity appear. A notch filter 207 having an excitation frequency as a cutoff frequency is applied to the dummy detection coil signal,
The excitation frequency component is removed and only the signal corresponding to the magnetic field is extracted. Then, the gain adjusting circuit adjusts the signal level. The signal level is adjusted by rotating the motor or the electromagnetic brake so as to match the ripple level due to the magnetic field corresponding to the rotation angle appearing in the differential amplifier 205.
In practice, the motor or the electromagnetic brake may be operated, the final torque signal may be monitored, and adjustment may be made so that the ripple due to the magnetic field is eliminated. By taking the difference between the output of the differential amplifier 205 and the output of the gain adjusting circuit 208, the ripple due to the disturbance magnetic field is removed.

【0007】[0007]

【発明の効果】以上述べたように、本発明によればモー
タまたは電磁ブレーキにより生じる外乱磁界に影響され
ないトルク信号を得ることができるという効果がある。
As described above, according to the present invention, it is possible to obtain a torque signal that is not affected by the disturbance magnetic field generated by the motor or the electromagnetic brake.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示すトルクセンサの構成図FIG. 1 is a configuration diagram of a torque sensor showing an embodiment of the present invention.

【図2】本発明の実施例を示すトルクセンサ信号処理回
路ブロック図
FIG. 2 is a block diagram of a torque sensor signal processing circuit showing an embodiment of the present invention.

【図3】トルクセンサの従来例FIG. 3 Conventional example of torque sensor

【図4】従来のトルクセンサ信号処理回路ブロック図FIG. 4 is a block diagram of a conventional torque sensor signal processing circuit.

【符号の説明】[Explanation of symbols]

101、301 トルク伝達軸 102、103、302、303 磁歪膜 104、304 励磁コイル 105、305 検出コイル 106 ダミー励磁コイル 107 ダミー検出コイル 201、202、206、401、402 初段アンプ 203、204、403、404 全波整流回路 205、209、405 差動増幅回路(差動アンプ) 207 ノッチフィルタ回路 208 ゲイン調節回路 210、406 フィルタ回路 211、407 発振回路 212、408 パワーアンプ 101, 301 Torque transmission shaft 102, 103, 302, 303 Magnetostrictive film 104, 304 Excitation coil 105, 305 Detection coil 106 Dummy excitation coil 107 Dummy detection coil 201, 202, 206, 401, 402 First stage amplifier 203, 204, 403, 404 Full-wave rectifier circuit 205, 209, 405 Differential amplifier circuit (differential amplifier) 207 Notch filter circuit 208 Gain adjustment circuit 210, 406 Filter circuit 211, 407 Oscillation circuit 212, 408 Power amplifier

フロントページの続き (72)発明者 池田 満昭 福岡県北九州市八幡西区黒崎城石2番1号 株式会社安川電機内Continuation of the front page (72) Inventor Mitsuaki Ikeda No. 2 Kurosaki Shiroishi, Hachimannishi-ku, Kitakyushu City, Fukuoka Yasukawa Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 トルク伝達軸に印加されるトルクを、磁
歪膜の透磁率の変化として非接触、検出するトルクセン
サにおいて、 前記トルク伝達軸の回転軸心方向と45°に形成された
磁歪膜と前記トルク伝達軸の回転軸心方向と−45°に
形成された磁歪膜と、 2つの励磁コイルと2つの検出コイルと、 ダミー励磁コイルとダミー検出コイルと、 前記磁歪膜上の前記検出コイル信号をそれぞれ全波整流
する全波整流回路と、 前記全波整流回路の出力信号を差動増幅する第1の差動
増幅回路と、 前記ダミー検出コイルの信号から励磁周波数成分を除去
するノッチフィルタ回路と、 前記ダミー検出コイルの信号レベルを調節するゲイン調
節回路と、 前記ゲイン調節回路の出力信号と前記第1の差動増幅回
路の出力信号との差動をとる第2の差動増幅回路とから
なることを特徴とする磁歪式トルクセンサの外乱磁界ノ
イズ補償装置。
1. A torque sensor for detecting a torque applied to a torque transmission shaft in a non-contact manner as a change in magnetic permeability of a magnetostrictive film, wherein the magnetostrictive film is formed at 45 ° with respect to the rotational axis direction of the torque transmission shaft. And a magnetostrictive film formed at −45 ° with respect to the rotational axis direction of the torque transmission shaft, two exciting coils and two detecting coils, a dummy exciting coil and a dummy detecting coil, and the detecting coil on the magnetostrictive film. A full-wave rectifier circuit for full-wave rectifying each signal, a first differential amplifier circuit for differentially amplifying an output signal of the full-wave rectifier circuit, and a notch filter for removing an excitation frequency component from the signal of the dummy detection coil A circuit, a gain adjustment circuit that adjusts the signal level of the dummy detection coil, and a second differential amplification circuit that takes a differential between the output signal of the gain adjustment circuit and the output signal of the first differential amplifier circuit. A disturbance magnetic field noise compensating device for a magnetostrictive torque sensor, comprising: a width circuit.
JP13547093A 1993-05-12 1993-05-12 Disurbing magnetic-field noise compensation device of magnetostrictive torque sensor Pending JPH06323930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13547093A JPH06323930A (en) 1993-05-12 1993-05-12 Disurbing magnetic-field noise compensation device of magnetostrictive torque sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13547093A JPH06323930A (en) 1993-05-12 1993-05-12 Disurbing magnetic-field noise compensation device of magnetostrictive torque sensor

Publications (1)

Publication Number Publication Date
JPH06323930A true JPH06323930A (en) 1994-11-25

Family

ID=15152471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13547093A Pending JPH06323930A (en) 1993-05-12 1993-05-12 Disurbing magnetic-field noise compensation device of magnetostrictive torque sensor

Country Status (1)

Country Link
JP (1) JPH06323930A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003511691A (en) * 1999-10-11 2003-03-25 ファースト テクノロジー アーゲー Torque measuring device
WO2016129572A1 (en) * 2015-02-10 2016-08-18 日本精工株式会社 Torque sensor and electric power steering device equipped with same
CN111751033A (en) * 2019-03-28 2020-10-09 株式会社昭和 Torque detection device and power steering device
US10983019B2 (en) 2019-01-10 2021-04-20 Ka Group Ag Magnetoelastic type torque sensor with temperature dependent error compensation
US11486776B2 (en) 2016-12-12 2022-11-01 Kongsberg Inc. Dual-band magnetoelastic torque sensor
US11821763B2 (en) 2016-05-17 2023-11-21 Kongsberg Inc. System, method and object for high accuracy magnetic position sensing
US12025521B2 (en) 2020-02-11 2024-07-02 Brp Megatech Industries Inc. Magnetoelastic torque sensor with local measurement of ambient magnetic field

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003511691A (en) * 1999-10-11 2003-03-25 ファースト テクノロジー アーゲー Torque measuring device
WO2016129572A1 (en) * 2015-02-10 2016-08-18 日本精工株式会社 Torque sensor and electric power steering device equipped with same
JPWO2016129572A1 (en) * 2015-02-10 2017-05-25 日本精工株式会社 Torque sensor and electric power steering apparatus equipped with the same
US11821763B2 (en) 2016-05-17 2023-11-21 Kongsberg Inc. System, method and object for high accuracy magnetic position sensing
US11486776B2 (en) 2016-12-12 2022-11-01 Kongsberg Inc. Dual-band magnetoelastic torque sensor
US10983019B2 (en) 2019-01-10 2021-04-20 Ka Group Ag Magnetoelastic type torque sensor with temperature dependent error compensation
CN111751033A (en) * 2019-03-28 2020-10-09 株式会社昭和 Torque detection device and power steering device
US12025521B2 (en) 2020-02-11 2024-07-02 Brp Megatech Industries Inc. Magnetoelastic torque sensor with local measurement of ambient magnetic field

Similar Documents

Publication Publication Date Title
US4566338A (en) Noncontact torque sensor
EP1188943B1 (en) Magnetic levitation rotating machine
JPH06323930A (en) Disurbing magnetic-field noise compensation device of magnetostrictive torque sensor
EP1498714A1 (en) Torque detector
JP2005030872A (en) Magnetic body quantity detector
JP3971895B2 (en) Differential magnetic sensor device
JPH01157220A (en) Detection of dc cross magnetization of transformer
JP3161867B2 (en) Magnetostrictive torque sensor
JP2633125B2 (en) Compensation device for temperature characteristics of torque sensor
JP2608498B2 (en) Magnetostrictive torque sensor
JPH076739U (en) Magnetostrictive stress sensor
JP2759303B2 (en) Stress detector
JPH0545537U (en) Magnetostrictive torque sensor
JP3028395B2 (en) Shaft deflection detector
JP2816528B2 (en) Torque detector
JPH07159258A (en) Magnetostrictive torque sensor
JP3100538B2 (en) Temperature compensation device for torque sensor
JPH06229710A (en) Flexure detector for shaft
JPH07229801A (en) Signal processing circuit for magnetostrictive strain gauge
JPS6325917Y2 (en)
JPH10185714A (en) Magnetostriction type torque sensor
JPH0996577A (en) Torque detecting circuit of torque sensor
JPH02271229A (en) Strain detector
JPH08304344A (en) Transformation ratio measuring device of metallic material
JPH08271359A (en) Magnetostrictive strain sensor