WO2016129572A1 - Torque sensor and electric power steering device equipped with same - Google Patents

Torque sensor and electric power steering device equipped with same Download PDF

Info

Publication number
WO2016129572A1
WO2016129572A1 PCT/JP2016/053729 JP2016053729W WO2016129572A1 WO 2016129572 A1 WO2016129572 A1 WO 2016129572A1 JP 2016053729 W JP2016053729 W JP 2016053729W WO 2016129572 A1 WO2016129572 A1 WO 2016129572A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
frequency
excitation
torque sensor
unit
Prior art date
Application number
PCT/JP2016/053729
Other languages
French (fr)
Japanese (ja)
Inventor
貴弘 椿
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to JP2016571768A priority Critical patent/JP6191788B2/en
Publication of WO2016129572A1 publication Critical patent/WO2016129572A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/08Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque
    • B62D6/10Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque characterised by means for sensing or determining torque
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating

Definitions

  • the present invention relates to a torque sensor and an electric power steering apparatus equipped with the torque sensor and configured to apply assist force by a motor to a steering system of a vehicle.
  • a torque sensor that detects torque using a detection coil whose impedance changes according to the generated torque
  • a torque sensor that can remove noise of a specific frequency from a signal generated by a change in impedance in an excited detection coil.
  • an electric power steering apparatus equipped with the same.
  • An electric power steering device that assists and controls the steering system of a vehicle with the rotational force of a motor uses a driving force of the motor to transmit a steering assist force to a steering shaft or a rack shaft by a transmission mechanism such as a gear or a belt via a speed reducer. Is supposed to be granted.
  • Such a conventional electric power steering apparatus performs feedback control of motor current in order to accurately generate assist control torque (steering assist torque).
  • the motor applied voltage is adjusted so that the difference between the steering assist command value (current command value) and the motor current detection value becomes small. -It is done by adjusting the tee.
  • a column shaft (steering shaft, handle shaft) 2 of a handle 1 is a reduction gear 3, universal joints 4a and 4b, a pinion rack mechanism 5, a tie rod 6a, 6b is further connected to the steering wheels 8L and 8R via hub units 7a and 7b.
  • the column shaft 2 is provided with a torque sensor 100 that detects the steering torque of the handle 1, and a motor 20 that assists the steering force of the handle 1 is connected to the column shaft 2 via the reduction gear 3.
  • the control unit (ECU) 30 that controls the electric power steering apparatus is supplied with electric power from the battery 13 and also receives an ignition key signal via the ignition key 11.
  • the control unit 30 calculates a current command value serving as an assist command based on the steering torque Th detected by the torque sensor 100 and the vehicle speed Vel detected by the vehicle speed sensor 12, and compensates for the calculated current command value.
  • the current supplied to the motor 20 is controlled by the voltage control value Vref subjected to the above.
  • the steering angle sensor 14 for detecting the steering angle is not essential and may not be provided, and may be obtained from a rotation sensor such as a resolver connected to the motor 20.
  • the control unit 30 is connected to a CAN (Controller Area Network) 40 that transmits and receives various types of vehicle information, and the vehicle speed Vel can also be received from the CAN 40.
  • the control unit 30 can be connected to a non-CAN 41 that exchanges communications, analog / digital signals, radio waves, and the like other than the CAN 40.
  • control unit 30 is mainly composed of a CPU (including an MPU and MCU). General functions executed by a program inside the CPU are shown in FIG. The structure is
  • the function and operation of the control unit 30 will be described with reference to FIG. 2.
  • the steering torque Th from the torque sensor 100 and the vehicle speed Vel from the vehicle speed sensor 12 are input to the current command value calculation unit 31, and the current command value calculation unit 31.
  • the calculated current command value Iref1 is added by the adding unit 32A and the compensation signal CM from the compensating unit 34 for improving the characteristics, and the added current command value Iref2 is limited to the maximum value by the current limiting unit 33.
  • the current command value Irefm whose maximum value is limited is input to the subtraction unit 32B and subtracted from the motor current detection value Im.
  • the duty is calculated in synchronization with the CF, and the motor 20 is PWM driven via the inverter 37 with a PWM signal.
  • the motor current value Im of the motor 20 is detected by the motor current detector 38, and is input to the subtraction unit 32B and fed back.
  • the compensation unit 34 adds the detected or estimated self-aligning torque (SAT) 343 to the inertia compensation value 342 by the addition unit 344, and further adds the convergence control value 341 to the addition result by the addition unit 345.
  • the addition result is input as a compensation signal CM to the adding unit 32A, and the characteristics of the current command value are improved.
  • the electric power steering apparatus is equipped with the torque sensor 100 for detecting the steering torque Th.
  • Some torque sensors convert the torsion bar torsion proportional to the torque into a change in inductance of the detection coil, and detect the change with a bridge circuit composed of a pair of detection coils and resistors (for example, a patent) No. 3649057 (Patent Document 1) and Japanese Patent No. 3649069 (Patent Document 2)).
  • the schematic structure and operation of the torque sensor will be described below.
  • FIG. 3 is a cross-sectional view showing a main part of the electric power steering apparatus including the torque sensor 100
  • FIG. 4 is a partial cross-sectional perspective view of the torque sensor 100.
  • reference numerals 110a and 110b denote housings having a two-part structure of an input shaft side 110a and an output shaft side 110b. Inside the housings 110a and 110b are an input shaft 2a for the column shaft 2, a torsion bar 111 disposed therein, an output shaft 2b connected to the input shaft 2a via the torsion bar 111, and bearings 112a, 112b and 112c is rotatably supported by 112c.
  • the input shaft 2a, the torsion bar 111, and the output shaft 2b are coaxially arranged.
  • the input shaft 2a and the torsion bar 111 are spline-coupled, and the torsion bar 111 and the output shaft 2b are also spline-coupled. Further, a pinion shaft 113 is formed integrally with the output shaft 2b, and the pinion shaft 113 meshes with a rack 114 to constitute a rack and pinion type steering mechanism.
  • the pinion shaft 113 is a column shaft and has a substantially similar structure.
  • a worm wheel 115 that is coaxial with the output shaft 2b and rotates integrally with the output shaft 2b is fixed to the output shaft 2b and meshes with a worm 116 driven by the motor 20.
  • the rotational force of the motor 20 is transmitted to the output shaft 2b via the worm 116 and the worm wheel 115, and by appropriately switching the rotational direction of the motor 20, steering assist torque in an arbitrary direction is applied to the output shaft 2b.
  • the torque detection unit includes a sensor shaft unit 120 of the input shaft 2a, a pair of detection coils L1 and L2 disposed inside the housing 110a, and a cylindrical member 121 disposed therebetween.
  • a plurality of ridges 121a extending in the axial direction are formed at equal intervals along the circumferential direction on the surface of the sensor shaft portion 120, and groove portions 121b wider than the width of the ridges 121a are formed between the ridges 121a. Is formed.
  • a cylindrical member 121 made of a conductive and nonmagnetic material is coaxially disposed outside the sensor shaft portion 120, and the extension 121e of the cylindrical member 121 is connected to the end 2e of the output shaft 2b. It is fixed on the outside.
  • the cylindrical member 121 includes a first window row composed of a plurality of rectangular windows 123 arranged at equal intervals in the circumferential direction at positions facing the ridges 121a, and an axial direction from the first window row.
  • a second window row composed of a plurality of rectangular windows 124 having different circumferential phases is provided at the shifted position.
  • the outer periphery of the cylindrical member 121 is surrounded by a yoke 125 around which the detection coils L1 and L2 are wound. That is, the detection coils L1 and L2 are arranged coaxially with the cylindrical member 121, the detection coil L1 surrounds the first window row portion, and the detection coil L2 surrounds the second window row portion.
  • the yoke 125 is fixed inside the housing 110a, and the lead wires of the detection coils L1 and L2 are connected to a torque sensor circuit (circuit board) 150 disposed inside the housing 110a.
  • a frictional force such as a frictional force between the steered wheel and the road surface or meshing of a gear coupled to the output shaft 2b acts on the output shaft 2b. Therefore, the input shaft 2a and the output shaft 2b are coupled to each other.
  • the torsion bar 111 is twisted, and relative rotation occurs between the ridge 121 a and the cylindrical member 121.
  • FIG. 5 is a characteristic diagram showing a change example of the magnitude of the steering torque Th and the inductance L1i of the detection coil L1 and the inductance L2i of the detection coil L2, and the impedances change in opposite directions. That is, when the right steering torque is generated, the cylindrical member 121 rotates clockwise, so that the inductance L1i of the detection coil L1 increases and the inductance L2i of the detection coil L2 decreases as the steering torque Th increases. Further, when the left steering torque is generated, the cylindrical member 121 rotates counterclockwise, so that the inductance L1i of the detection coil L1 decreases and the inductance L2i of the detection coil L2 increases as the steering torque Th increases.
  • FIG. 6 shows an electrical connection relationship between the torque sensor 100 and the control unit (ECU) 30.
  • the torque sensor 100 is composed of a pair of detection coils L1, L2 and a torque sensor circuit 150, and the detection coil L1. , L2 and the torque sensor circuit 150 are connected via pins P1 to P4.
  • the torque sensor circuit 150 and the control unit 30 are commonly connected by a ground portion TS-GND (ground), and the power supply voltage TS-Vcc for the circuit and the reference voltage TS for the constant voltage from the control unit 30 to the torque sensor circuit 150 -Vref is supplied, and the main torque signal TS-Main and the sub torque signal TS-Sub are input from the torque sensor circuit 150 to the control unit 30.
  • TS-GND ground
  • FIG. 7 shows a configuration example of the torque sensor circuit 150.
  • the bridge circuit that detects the steering torque Th is a first arm in which the detection coil L1 and the resistor Z1 are connected in series, and the detection coil L2 and the resistor Z2 are in series. And a second arm connected to the.
  • the oscillating unit 152 oscillates and outputs an AC voltage having a predetermined frequency (excitation frequency) to excite the detection coils L1 and L2.
  • the AC voltage is amplified by the current amplifying unit 151, and the amplified AC voltage Vosc is the first voltage. Supplied to the arm and the second arm.
  • the voltage V1 at the junction point P1 of the detection coil L1 and the voltage V2 at the junction point P3 of the detection coil L2 are input to the main amplification full-wave rectification unit 153, converted into a differential voltage signal, amplified, and rectified. Further, after the output waveform is adjusted by the main smoothing neutral adjustment unit 155, it is output as the main torque signal TS-Main through the noise filter 163.
  • the voltage V1 and the voltage V2 are also input to the sub-amplification full-wave rectification unit 154, converted to a differential voltage signal, amplified and rectified, and the output waveform is adjusted by the sub-smoothing neutral adjustment unit 156. After that, it passes through the noise filter 163 and is output as a sub torque signal TS-Sub.
  • the main torque signal TS-Main becomes the steering torque Th.
  • Two sets of main amplified full-wave rectifying unit 153, main smoothing neutral rectifying unit 155, sub-amplifying full-wave rectifying unit 154 and sub-smoothing neutral adjusting unit 156 are provided, and two sets of torque signals (main torque signal TS-Main, sub-torque signal TS -Sub) is output in order to detect disconnection or short circuit of the detection coil, failure of the circuit element, or the like by comparing the two sets of detection torque signals in the control unit 30. Therefore, when detection of a failure or the like is unnecessary, the sub-amplification full-wave rectification unit 154 and the sub-smooth neutral adjustment unit 156 may be deleted.
  • the torque sensor circuit 150 exists independently of the control unit 30, but the torque sensor circuit 150 may be included in the control unit 30.
  • the noise filter 163 is normally configured as a low-pass filter in order to remove high-frequency noise and the like, but various noises are superimposed on the torque signal, and the conventional noise filter alone may not be sufficient. Therefore, a method has been proposed in which noise to be removed is identified and removed according to the noise characteristics.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2010-190674 (Patent Document 3) and Japanese Patent No. 5546691 (Patent Document 4), a detection system is made redundant for countermeasures against a malfunction of a torque sensor, and two pairs of detection coils are provided.
  • a low-pass filter specialized for removing the noise is provided.
  • Patent No. 5456576 Patent Document 5
  • a band cut filter or a notch filter is used to suppress vibration due to mechanical resonance of the structure of the power steering device or the vehicle front structure.
  • noise generated due to excitation is also superimposed on the torque signal. That is, for example, when the detection coil is excited with an AC voltage having an excitation frequency of 10 kHz, the voltage signal subjected to full-wave rectification has a time-series waveform as shown in FIG. 8 when no torque is applied. When this signal is subjected to FFT (Fast Fourier Transform), the amplitude spectrum is as shown in FIG. 9, and a large noise spectrum appears at 20 kHz, which is twice the excitation frequency. This noise adversely affects the torque signal.
  • FFT Fast Fourier Transform
  • the present invention has been made under the circumstances described above, and an object of the present invention is to use it as a torque signal in a torque sensor that detects torque by exciting a detection coil whose impedance changes according to the generated torque.
  • a torque sensor that can accurately eliminate noise generated due to excitation without affecting the frequency component to be mounted, and it reduces unpleasant vibration such as pulsation and improves steering feeling.
  • Another object is to provide an electric power steering apparatus.
  • the present invention relates to a torque sensor that detects the torque by a detection coil whose impedance changes according to torque generated on a rotating shaft, and the object of the present invention is to provide an oscillation unit that excites the detection coil at a predetermined excitation frequency;
  • a detection unit configured to detect the torque based on a signal generated by the impedance change in the excited detection coil, and the detection unit removes a frequency component calculated from the excitation frequency from the signal; This is achieved by providing an excitation component removing unit having a narrow stop band.
  • the above-described object of the present invention is such that the excitation component removal unit removes at least one integer multiple of the excitation frequency, or the excitation component removal unit comprises at least one notch filter.
  • the detection unit can be more effectively achieved by including at least one low-pass filter whose cutoff frequency is equal to or lower than the excitation frequency in addition to the excitation component removal unit. .
  • the object of the present invention includes an oscillating unit that excites the detection coil at a predetermined excitation frequency, and a detection unit that detects the torque based on a signal generated by the impedance change in the excited detection coil.
  • the detection unit is achieved by including an excitation component removal unit including a phase lag compensation filter that removes a frequency component calculated from the excitation frequency from the signal.
  • the object of the present invention is that the excitation component removing unit removes at least one integral multiple frequency component of the excitation frequency, or the detecting unit is not only the excitation component removing unit, This is achieved more effectively by including at least one low-pass filter whose cut-off frequency is equal to or lower than the excitation frequency.
  • an uncomfortable vibration such as pulsation can be reduced, and an electric power steering apparatus with improved steering feeling can be achieved.
  • the torque sensor according to the present invention has a function of removing only the frequency component calculated from the excitation frequency, the frequency component to be used as a torque signal is noise generated by exciting the detection coil. Can be removed accurately without affecting.
  • the electric power steering apparatus equipped with the torque sensor according to the present invention since the amplitude and phase of the frequency component to be used as the torque signal are not excessively attenuated, stable operation is possible, pulsation, etc. The unpleasant vibration can be reduced and the steering feeling can be improved.
  • FIG. 1 is a cross-sectional structure diagram of an electric power steering device equipped with a torque sensor. It is a partial cross section perspective view of a torque sensor. It is a characteristic view which shows the example of an output of the inductance of a torque sensor. It is a block diagram which shows the connection relation of a torque sensor and a controller. It is a block diagram which shows an example of the conventional torque sensor circuit. It is a figure which shows the example of a waveform of the voltage signal by which the full wave rectification in the state where torque is not acting.
  • the torque sensor according to the present invention includes an excitation component removing unit specialized for removing noise generated due to excitation by exciting a pair of detection coils at a predetermined excitation frequency in order to detect generated torque.
  • the oscillating unit oscillates and outputs an alternating voltage having a predetermined excitation frequency. Therefore, as shown in FIG. 9, noise having a peak at a frequency that is an integral multiple of the excitation frequency ⁇ 2 frequency (hereinafter referred to as “frequency after full wave rectification”) is generated.
  • the excitation component removal unit removes these noises, but prevents them from affecting the frequency components below the frequency to be used as torque signals (hereinafter referred to as “effective frequency components”).
  • a notch filter with a narrow range of or a phase lag compensation filter (second order filter) having a flat characteristic at an effective frequency component is used. Since the notch filter or the phase lag compensation filter is designed to remove a specific frequency component, when removing a plurality of frequency components, the excitation component is equal to the number of frequency components to be removed. A removal unit is configured. In addition, it is not practical to implement a notch filter or phase lag compensation filter with a program that operates on a microcomputer or the like due to the large calculation load. Therefore, capacitors, resistors, operational amplifiers (operational amplifiers), switching elements, etc. were used. It is realized by an analog circuit or a DSP (digital signal processor).
  • DSP digital signal processor
  • the notch filter when the notch filter is realized by an analog circuit, the configuration is as shown in FIG. In FIG. 10, R 1 , R 2 , R 3 and R 4 are resistors, C 1 and C 2 are capacitors, and OP 1 and OP 2 are operational amplifiers.
  • R 1 , R 2 , R 3 and R 4 are resistors
  • C 1 and C 2 are capacitors
  • OP 1 and OP 2 are operational amplifiers.
  • noise removal specialized for noise generated due to excitation can be performed.
  • noise can be removed without affecting other frequency components, etc., so that the effective frequency component is not attenuated excessively, and the stable operation of the electric power steering apparatus equipped with the torque sensor of the present invention is achieved. This makes it possible to reduce unpleasant vibrations such as pulsation and improve steering feeling.
  • a band stop filter having a slightly wider stop band than the notch filter may be used instead of the notch filter in order to reduce the cost.
  • Low-pass filter Noise other than noise generated due to excitation is removed with a low-pass filter (LPF).
  • the cut-off frequency of the low-pass filter is set below the excitation frequency, but the frequency is set so that the effective frequency component is not excessively attenuated.
  • a plurality of low-pass filters may be used. Some low-pass filters can be realized by a program operating on a microcomputer or the like, but may be realized by an analog circuit or a DSP.
  • FIG. 11 shows a configuration example (first embodiment) of the torque sensor according to the present invention in correspondence with the conventional FIG.
  • an excitation component removing unit 171 and a low-pass filter 172 are provided instead of the noise filter 163.
  • the detection unit 170 includes a circuit element 161, a constant voltage supply unit 162, a current amplification unit 151, a main amplification full wave rectification unit 153, a sub amplification full wave rectification unit 154, a main smoothing neutral adjustment unit 155, a sub smoothing neutral adjustment unit 156,
  • An excitation component removing unit 171, a low-pass filter 172, and resistors Z1 and Z2 are included.
  • the excitation component removal unit 171 includes a notch filter, and removes a predetermined frequency component from the voltage signal output from the main smoothing neutral adjustment unit 155 and the sub-smooth neutral adjustment unit 156.
  • the low-pass filter 172 attenuates a frequency component equal to or higher than a predetermined frequency of the voltage signal output from the excitation component removing unit 171.
  • FIG. 11 An example of the operation of the torque sensor having such a configuration will be described.
  • the same components as those of the conventional torque sensor shown in FIG. 7 are denoted by the same reference numerals, and the operation is the same.
  • the voltage signal VS1r output from the main smoothing neutral adjustment unit 155 and the voltage signal VS2r output from the sub-smoothing neutral adjustment unit 156 are input to the excitation component removal unit 171.
  • the excitation component removing unit 171 includes a notch filter (secondary filter) having a frequency characteristic represented by the transfer function of the following formula 1, and the frequency components (total frequency) of the frequency fe after the full-wave rectification from the voltage signals VS1r and VS2r. (Frequency component after wave rectification) is removed.
  • a notch filter secondary filter having a frequency characteristic represented by the transfer function of the following formula 1, and the frequency components (total frequency) of the frequency fe after the full-wave rectification from the voltage signals VS1r and VS2r. (Frequency component after wave rectification) is removed.
  • s is a Laplace operator
  • ⁇ n1 and ⁇ d1 are attenuation coefficients.
  • the amplitude characteristic and phase characteristic of the notch filter when the frequency fe after full-wave rectification is 20 kHz (excitation frequency is 10 kHz), the attenuation coefficient ⁇ n1 is 0.025, and ⁇ d1 is 1.0 are shown in FIG. It looks like the solid line in (B).
  • the amplitude characteristic and phase characteristic when the removal of the frequency component after full-wave rectification, which is the same as that of the notch filter, is realized by a conventional filter (first-order low-pass filter) are as shown by broken lines in FIGS. .
  • the amplitude characteristics at the frequency after full-wave rectification are designed to be the same, and the cut-off frequency is 500 Hz.
  • the phase characteristic at the frequency (100 Hz) to be used as the torque signal is ⁇ 0.48 [deg] for the notch filter and ⁇ 11.3 [deg] for the conventional filter. It can be seen that the effect on the effective frequency component can be significantly reduced when the notch filter is used.
  • the voltage signals VS1r and VS2r from which the frequency components after full-wave rectification have been removed by the notch filter are output as voltage signals VS1f and VS2f, respectively.
  • the characteristic of the notch filter is not limited to the characteristic represented by Equation 1, and may be a characteristic represented by another mathematical expression.
  • the voltage signals VS1f and VS2f are input to the low-pass filter 172.
  • the low-pass filter 172 is designed so that the cutoff frequency is equal to or lower than the excitation frequency (for example, 8 kHz), attenuates the frequency component higher than the cutoff frequency from the voltage signal VS1f, and outputs the main torque signal TS-Main as the steering torque Th.
  • the frequency component equal to or higher than the cutoff frequency is attenuated from the voltage signal VS2f, and the sub torque signal TS-Sub is output.
  • the main torque signal TS-Main (steering torque Th) is used to control the current supplied to the motor mounted on the electric power steering apparatus.
  • the voltage signal is input in the order of the excitation component removing unit 171 and the low-pass filter 172.
  • the voltage signal is opposite to the low-pass filter 172 and the excitation component removing unit 171. It is good also as a structure (2nd Embodiment) input in this order.
  • FIG. 14 shows a configuration example (third embodiment) of the torque sensor according to the present invention in correspondence with the conventional FIG.
  • an excitation component removing unit 271 and a low-pass filter 172 are provided instead of the noise filter 163.
  • the detection unit 270 includes a circuit element 161, a constant voltage supply unit 162, a current amplification unit 151, a main amplification full wave rectification unit 153, a sub amplification full wave rectification unit 154, a main smoothing neutral adjustment unit 155, a sub smoothing neutral adjustment unit 156,
  • An excitation component removing unit 271, a low-pass filter 172, and resistors Z 1 and Z 2 are included.
  • the excitation component removing unit 271 includes a phase lag compensation filter, and removes a predetermined frequency component from the voltage signal output from the main smoothing neutral adjustment unit 155 and the sub-smooth neutral adjustment unit 156.
  • the low-pass filter 172 attenuates a frequency component equal to or higher than a predetermined frequency of the voltage signal output from the excitation component removing unit 171.
  • FIG. 14 the same components as those of the conventional torque sensor shown in FIG. 7 are denoted by the same reference numerals, and the operation is the same, so that the description thereof is omitted.
  • the voltage signal VS1r output from the main smoothing neutral adjustment unit 155 and the voltage signal VS2r output from the sub-smooth neutral adjustment unit 156 are input to the excitation component removal unit 271.
  • the excitation component removing unit 271 includes a phase lag compensation filter (second-order filter) having a frequency characteristic represented by a transfer function of the following formula 2, and the frequency component of the frequency fn after full-wave rectification from the voltage signals VS1r and VS2r. (Frequency component after full wave rectification) is removed.
  • a phase lag compensation filter second-order filter having a frequency characteristic represented by a transfer function of the following formula 2
  • ⁇ n2 2 ⁇ ⁇ fn
  • ⁇ d2 2 ⁇ ⁇ fd (fd ⁇ fn)
  • s is a Laplace operator
  • ⁇ n2 and ⁇ d2 are attenuation coefficients.
  • the amplitude characteristics and phase characteristics of the phase lag compensation filter when the frequency fn after full wave rectification is 20 kHz (excitation frequency is 10 kHz)
  • fd is 5 kHz
  • the attenuation coefficient ⁇ n2 is 0.2
  • ⁇ d2 is 0.5. As shown by the solid lines in FIGS.
  • the amplitude characteristic and the phase characteristic when the removal of the frequency component after full-wave rectification, which is the same as that of the present phase delay compensation filter, is realized by a conventional filter (first-order low-pass filter) are as shown by the broken lines in FIGS. become.
  • the phase lag compensation filter it is designed so that the amplitude characteristics at the frequency after full-wave rectification are the same, and the cutoff frequency is 500 Hz. Comparing the phase characteristics of both filters, the phase characteristic at the frequency (100 Hz) to be used as the torque signal is -1.0 [deg] for the phase lag compensation filter and -11.3 [deg] for the conventional filter.
  • phase delay compensation filter when used, the influence on the effective frequency component can be greatly reduced.
  • the voltage signals VS1r and VS2r from which the frequency components after full-wave rectification are removed by the phase lag compensation filter are output as voltage signals VS1f ′ and VS2f ′, respectively.
  • the characteristics of the phase lag compensation filter are not limited to the characteristics expressed by Equation 2, and may be characteristics expressed by other mathematical expressions.
  • the voltage signals VS1f ′ and VS2f ′ are input to the low-pass filter 172.
  • the low-pass filter 172 is designed so that the cutoff frequency is equal to or lower than the excitation frequency (for example, 8 kHz), attenuates the frequency component higher than the cutoff frequency from the voltage signal VS1f ′, and outputs the main torque signal TS-Main as the steering torque Th.
  • the frequency component equal to or higher than the cutoff frequency is attenuated from the voltage signal VS2f ′, and the sub torque signal TS-Sub is output.
  • the main torque signal TS-Main (steering torque Th) is used to control the current supplied to the motor mounted on the electric power steering apparatus.
  • the voltage signal is input in the order of the excitation component removing unit 271 and the low-pass filter 172.
  • a configuration (fourth embodiment) may be adopted in which the input is performed in the reverse order of the excitation component removal unit 271.
  • the excitation component removing unit 171 in the first embodiment and the second embodiment and the excitation component removing unit 271 in the third embodiment and the fourth embodiment are arranged in the control unit 30 instead of in the torque sensor circuit.
  • a configuration may be adopted in which a predetermined frequency component is removed from the main torque signal TS-Main and the sub torque signal TS-Sub.
  • the excitation component removing unit 171 includes a notch filter that removes the frequency component after full-wave rectification.
  • the notch filter for removing other frequency components, for example, frequency components that are integral multiples of the frequency after full-wave rectification. It is good also as a structure which added.
  • the excitation component removal unit 271 includes a phase lag compensation filter that removes the frequency component after full-wave rectification, but removes other frequency components, for example, frequency components that are integer multiples of the frequency after full-wave rectification. It is also possible to adopt a configuration in which a phase delay compensation filter is added. In these cases, the frequency characteristic is represented by a series transfer function.
  • a torque sensor other than the sleeve type shown in FIG. 4 (for example, a ring type) may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Steering Mechanism (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

[Problem] To provide a torque sensor for detecting torque by exciting a detection coil in which the impedance varies according to the torque generated, wherein noise generated due to excitation can be reliably eliminated, without affecting the frequency component to be used as a torque signal; and an electric power steering device equipped with said sensor, said device reducing pulsation and other such uncomfortable vibration, and improving the steering feel. [Solution] Provided is a torque sensor for detecting torque using a detection coil in which the impedance varies according to torque generated in a rotating shaft, wherein the sensor is equipped with an oscillator unit for exciting a detection coil at a prescribed excitation frequency, and a detection unit for detecting torque on the basis of a signal generated by variation of the impedance of the excited detection coil. The detection unit is provided with an excitation component elimination unit having a narrow stopband, for eliminating from a signal a frequency component calculated from the excitation frequency.

Description

トルクセンサ及びそれを搭載した電動パワーステアリング装置Torque sensor and electric power steering apparatus equipped with the same
 本発明は、トルクセンサ及びそれを搭載し、車両の操舵系にモータによるアシスト力を付与するようにした電動パワーステアリング装置に関する。特に、発生するトルクに応じてインピーダンスが変化する検出コイルによりトルクを検出するトルクセンサにおいて、励磁された検出コイルにインピーダンスの変化により発生する信号から特定の周波数のノイズを除去できるようにしたトルクセンサ及びそれを搭載した電動パワーステアリング装置に関する。 The present invention relates to a torque sensor and an electric power steering apparatus equipped with the torque sensor and configured to apply assist force by a motor to a steering system of a vehicle. In particular, in a torque sensor that detects torque using a detection coil whose impedance changes according to the generated torque, a torque sensor that can remove noise of a specific frequency from a signal generated by a change in impedance in an excited detection coil. And an electric power steering apparatus equipped with the same.
 車両の操舵系をモータの回転力でアシスト制御する電動パワーステアリング装置(EPS)は、モータの駆動力で減速機を介してギア又はベルト等の伝達機構により、ステアリングシャフト或いはラック軸に操舵補助力を付与するようになっている。かかる従来の電動パワーステアリング装置は、アシスト制御のトルク(操舵補助トルク)を正確に発生させるため、モータ電流のフィードバック制御を行っている。フィードバック制御は、操舵補助指令値(電流指令値)とモータ電流検出値との差が小さくなるようにモータ印加電圧を調整するものであり、モータ印加電圧の調整は、一般的にPWM制御のデュ-ティの調整で行っている。 An electric power steering device (EPS) that assists and controls the steering system of a vehicle with the rotational force of a motor uses a driving force of the motor to transmit a steering assist force to a steering shaft or a rack shaft by a transmission mechanism such as a gear or a belt via a speed reducer. Is supposed to be granted. Such a conventional electric power steering apparatus performs feedback control of motor current in order to accurately generate assist control torque (steering assist torque). In feedback control, the motor applied voltage is adjusted so that the difference between the steering assist command value (current command value) and the motor current detection value becomes small. -It is done by adjusting the tee.
 電動パワーステアリング装置の一般的な構成を図1に示して説明すると、ハンドル1のコラム軸(ステアリングシャフト、ハンドル軸)2は減速ギア3、ユニバーサルジョイント4a及び4b、ピニオンラック機構5、タイロッド6a,6bを経て、更にハブユニット7a,7bを介して操向車輪8L,8Rに連結されている。また、コラム軸2には、ハンドル1の操舵トルクを検出するトルクセンサ100が設けられており、ハンドル1の操舵力を補助するモータ20が減速ギア3を介してコラム軸2に連結されている。電動パワーステアリング装置を制御するコントロールユニット(ECU)30には、バッテリ13から電力が供給されると共に、イグニションキー11を経てイグニションキー信号が入力される。コントロールユニット30は、トルクセンサ100で検出された操舵トルクThと車速センサ12で検出された車速Velとに基づいて、アシスト指令となる電流指令値の演算を行い、演算された電流指令値に補償等を施した電圧制御値Vrefによってモータ20に供給する電流を制御する。操舵角を検出する舵角センサ14は必須のものではなく、配設されていなくても良く、モータ20に連結されたレゾルバ等の回転センサから得ることもできる。 The general configuration of the electric power steering apparatus will be described with reference to FIG. 1. A column shaft (steering shaft, handle shaft) 2 of a handle 1 is a reduction gear 3, universal joints 4a and 4b, a pinion rack mechanism 5, a tie rod 6a, 6b is further connected to the steering wheels 8L and 8R via hub units 7a and 7b. The column shaft 2 is provided with a torque sensor 100 that detects the steering torque of the handle 1, and a motor 20 that assists the steering force of the handle 1 is connected to the column shaft 2 via the reduction gear 3. . The control unit (ECU) 30 that controls the electric power steering apparatus is supplied with electric power from the battery 13 and also receives an ignition key signal via the ignition key 11. The control unit 30 calculates a current command value serving as an assist command based on the steering torque Th detected by the torque sensor 100 and the vehicle speed Vel detected by the vehicle speed sensor 12, and compensates for the calculated current command value. The current supplied to the motor 20 is controlled by the voltage control value Vref subjected to the above. The steering angle sensor 14 for detecting the steering angle is not essential and may not be provided, and may be obtained from a rotation sensor such as a resolver connected to the motor 20.
 コントロールユニット30には、車両の各種情報を授受するCAN(Controller Area Network)40が接続されており、車速VelはCAN40から受信することも可能である。また、コントロールユニット30には、CAN40以外の通信、アナログ/ディジタル信号、電波等を授受する非CAN41も接続可能である。 The control unit 30 is connected to a CAN (Controller Area Network) 40 that transmits and receives various types of vehicle information, and the vehicle speed Vel can also be received from the CAN 40. The control unit 30 can be connected to a non-CAN 41 that exchanges communications, analog / digital signals, radio waves, and the like other than the CAN 40.
 このような電動パワーステアリング装置において、コントロールユニット30は主としてCPU(MPUやMCUを含む)で構成されるが、そのCPU内部においてプログラムで実行される一般的な機能を示すと、例えば図2に示されるような構成となっている。 In such an electric power steering apparatus, the control unit 30 is mainly composed of a CPU (including an MPU and MCU). General functions executed by a program inside the CPU are shown in FIG. The structure is
 図2を参照してコントロールユニット30の機能及び動作を説明すると、トルクセンサ100からの操舵トルクTh及び車速センサ12からの車速Velは電流指令値演算部31に入力され、電流指令値演算部31は操舵トルクTh及び車速Velに基づいて、アシストマップ等を用いて電流指令値Iref1を演算する。演算された電流指令値Iref1は加算部32Aで、特性を改善するための補償部34からの補償信号CMと加算され、加算された電流指令値Iref2が電流制限部33で最大値を制限され、最大値を制限された電流指令値Irefmが減算部32Bに入力され、モータ電流検出値Imと減算される。 The function and operation of the control unit 30 will be described with reference to FIG. 2. The steering torque Th from the torque sensor 100 and the vehicle speed Vel from the vehicle speed sensor 12 are input to the current command value calculation unit 31, and the current command value calculation unit 31. Calculates the current command value Iref1 using an assist map or the like based on the steering torque Th and the vehicle speed Vel. The calculated current command value Iref1 is added by the adding unit 32A and the compensation signal CM from the compensating unit 34 for improving the characteristics, and the added current command value Iref2 is limited to the maximum value by the current limiting unit 33. The current command value Irefm whose maximum value is limited is input to the subtraction unit 32B and subtracted from the motor current detection value Im.
 減算部32Bでの減算結果である偏差I(=Irefm-Im)はPI(比例積分)制御部35でPI制御され、PI制御された電圧制御値VrefがPWM制御部36に入力され、キャリア信号CFに同期してデューティを演算され、PWM信号でインバータ37を介してモータ20をPWM駆動する。モータ20のモータ電流値Imはモータ電流検出器38で検出され、減算部32Bに入力されてフィードバックされる。 Deviation I (= Irefm−Im), which is the result of subtraction in subtraction unit 32B, is PI-controlled by PI (proportional integration) control unit 35, and voltage control value Vref that is PI-controlled is input to PWM control unit 36, and carrier signal The duty is calculated in synchronization with the CF, and the motor 20 is PWM driven via the inverter 37 with a PWM signal. The motor current value Im of the motor 20 is detected by the motor current detector 38, and is input to the subtraction unit 32B and fed back.
 補償部34は、検出若しくは推定されたセルフアライニングトルク(SAT)343を加算部344で慣性補償値342と加算し、その加算結果に更に加算部345で収れん性制御値341を加算し、その加算結果を補償信号CMとして加算部32Aに入力し、電流指令値の特性改善を行う。 The compensation unit 34 adds the detected or estimated self-aligning torque (SAT) 343 to the inertia compensation value 342 by the addition unit 344, and further adds the convergence control value 341 to the addition result by the addition unit 345. The addition result is input as a compensation signal CM to the adding unit 32A, and the characteristics of the current command value are improved.
 このように電動パワーステアリング装置は、操舵トルクThを検出するためのトルクセンサ100を搭載している。トルクセンサとしては、トルクに比例したトーションバーの捩れを検出コイルのインダクタンスの変化に変換し、その変化を1対の検出コイルと抵抗体で構成されるブリッジ回路で検出するものがある(例えば特許第3649057号公報(特許文献1)や特許第3649069号公報(特許文献2))。トルクセンサの概略の構造及び動作を以下に説明する。 Thus, the electric power steering apparatus is equipped with the torque sensor 100 for detecting the steering torque Th. Some torque sensors convert the torsion bar torsion proportional to the torque into a change in inductance of the detection coil, and detect the change with a bridge circuit composed of a pair of detection coils and resistors (for example, a patent) No. 3649057 (Patent Document 1) and Japanese Patent No. 3649069 (Patent Document 2)). The schematic structure and operation of the torque sensor will be described below.
 図3はトルクセンサ100を含む電動パワーステアリング装置の主要部を示す断面図であり、図4はトルクセンサ100の一部断面斜視図である。図3及び図4において、110a及び110bはハウジングであり、入力軸側110a及び出力軸側110bの2分割構造となっている。ハウジング110a及び110bの内部には、コラム軸2の入力軸2a、その内部に配置されたトーションバー111、トーションバー111を介して入力軸2aに連結された出力軸2bが、軸受112a、112b及び112cによって回転自在に支持されている。入力軸2a、トーションバー111及び出力軸2bは同軸に配置されており、入力軸2aとトーションバー111とはスプライン結合し、トーションバー111と出力軸2bもスプライン結合している。また、出力軸2bにはピニオン軸113が一体的に形成されており、ピニオン軸113はラック114と噛合してラックアンドピニオン式ステアリング機構を構成している。 3 is a cross-sectional view showing a main part of the electric power steering apparatus including the torque sensor 100, and FIG. 4 is a partial cross-sectional perspective view of the torque sensor 100. 3 and 4, reference numerals 110a and 110b denote housings having a two-part structure of an input shaft side 110a and an output shaft side 110b. Inside the housings 110a and 110b are an input shaft 2a for the column shaft 2, a torsion bar 111 disposed therein, an output shaft 2b connected to the input shaft 2a via the torsion bar 111, and bearings 112a, 112b and 112c is rotatably supported by 112c. The input shaft 2a, the torsion bar 111, and the output shaft 2b are coaxially arranged. The input shaft 2a and the torsion bar 111 are spline-coupled, and the torsion bar 111 and the output shaft 2b are also spline-coupled. Further, a pinion shaft 113 is formed integrally with the output shaft 2b, and the pinion shaft 113 meshes with a rack 114 to constitute a rack and pinion type steering mechanism.
 なお、コラム式電動パワーステアリング装置においても、ピニオン軸113がコラム軸を呈しており、ほぼ同様な構造である。 In the column type electric power steering apparatus, the pinion shaft 113 is a column shaft and has a substantially similar structure.
 出力軸2bには、これと同軸で且つ一体に回転するウォームホイール115が固着されており、モータ20で駆動されるウォーム116と噛合している。モータ20の回転力は、ウォーム116及びウォームホイール115を介して出力軸2bに伝達され、モータ20の回転方向を適宜切り換えることにより、出力軸2bに任意の方向の操舵補助トルクが付与される。 A worm wheel 115 that is coaxial with the output shaft 2b and rotates integrally with the output shaft 2b is fixed to the output shaft 2b and meshes with a worm 116 driven by the motor 20. The rotational force of the motor 20 is transmitted to the output shaft 2b via the worm 116 and the worm wheel 115, and by appropriately switching the rotational direction of the motor 20, steering assist torque in an arbitrary direction is applied to the output shaft 2b.
 次に、トルクセンサ100のトルク検出部の構成を説明する。トルク検出部は入力軸2aのセンサシャフト部120と、ハウジング110aの内側に配置された1対の検出コイルL1,L2と、両者の間に配置された円筒部材121とから構成される。センサシャフト部120の表面には、軸方向に延びた複数の凸条121aが円周方向に沿って等間隔に形成されており、凸条121aの間にはその幅よりも幅広の溝部121bが形成されている。また、センサシャフト部120の外側には、導電性で且つ非磁性の材料で構成された円筒部材121が同軸に配置されており、円筒部材121の延長部121eは出力軸2bの端部2eの外側に固定されている。円筒部材121には、凸条121aに対向する位置に、円周方向に等間隔に配置された複数個の長方形の窓123から成る第1の窓列と、第1の窓列から軸方向にずれた位置に、円周方向の位相が異なる複数個の長方形の窓124から成る第2の窓列とが設けられている。 Next, the configuration of the torque detector of the torque sensor 100 will be described. The torque detection unit includes a sensor shaft unit 120 of the input shaft 2a, a pair of detection coils L1 and L2 disposed inside the housing 110a, and a cylindrical member 121 disposed therebetween. A plurality of ridges 121a extending in the axial direction are formed at equal intervals along the circumferential direction on the surface of the sensor shaft portion 120, and groove portions 121b wider than the width of the ridges 121a are formed between the ridges 121a. Is formed. In addition, a cylindrical member 121 made of a conductive and nonmagnetic material is coaxially disposed outside the sensor shaft portion 120, and the extension 121e of the cylindrical member 121 is connected to the end 2e of the output shaft 2b. It is fixed on the outside. The cylindrical member 121 includes a first window row composed of a plurality of rectangular windows 123 arranged at equal intervals in the circumferential direction at positions facing the ridges 121a, and an axial direction from the first window row. A second window row composed of a plurality of rectangular windows 124 having different circumferential phases is provided at the shifted position.
 円筒部材121の外周は、検出コイルL1及びL2が捲回されたヨーク125で包囲されている。即ち、検出コイルL1及びL2は円筒部材121と同軸に配置され、検出コイルL1は第1の窓列部分を包囲し、検出コイルL2は第2の窓列部分を包囲する。ヨーク125はハウジング110aの内部に固定され、検出コイルL1及びL2のリード線は、ハウジング110aの内部に配置されたトルクセンサ回路(回路基板)150に接続される。 The outer periphery of the cylindrical member 121 is surrounded by a yoke 125 around which the detection coils L1 and L2 are wound. That is, the detection coils L1 and L2 are arranged coaxially with the cylindrical member 121, the detection coil L1 surrounds the first window row portion, and the detection coil L2 surrounds the second window row portion. The yoke 125 is fixed inside the housing 110a, and the lead wires of the detection coils L1 and L2 are connected to a torque sensor circuit (circuit board) 150 disposed inside the housing 110a.
 操舵系が直進状態にあって操舵トルクThが零である場合はトーションバー111には捩れが発生せず、入力軸2aと出力軸2bとは相対回転しない。従って、入力軸2aの側にあるセンサシャフト部120の表面の凸条121aと、出力軸2bの側にある円筒部材121との間にも相対回転が生じない。一方、ハンドル1を操舵して入力軸2aに回転力が加わると、その回転力はトーションバー111を経て出力軸2bに伝達される。このとき、出力軸2bには舵輪と路面との間の摩擦力や出力軸2bに結合されているギアの噛み合い等の摩擦力が作用するから、入力軸2aと出力軸2bとの間を結合するトーションバー111に捩れが発生し、凸条121aと円筒部材121との間に相対回転が生ずる。 When the steering system is in the straight traveling state and the steering torque Th is zero, the torsion bar 111 is not twisted, and the input shaft 2a and the output shaft 2b do not rotate relative to each other. Therefore, relative rotation does not occur between the protrusion 121a on the surface of the sensor shaft portion 120 on the input shaft 2a side and the cylindrical member 121 on the output shaft 2b side. On the other hand, when the steering wheel 1 is steered and a rotational force is applied to the input shaft 2a, the rotational force is transmitted to the output shaft 2b via the torsion bar 111. At this time, a frictional force such as a frictional force between the steered wheel and the road surface or meshing of a gear coupled to the output shaft 2b acts on the output shaft 2b. Therefore, the input shaft 2a and the output shaft 2b are coupled to each other. The torsion bar 111 is twisted, and relative rotation occurs between the ridge 121 a and the cylindrical member 121.
 図5は、操舵トルクThの大きさと検出コイルL1のインダクタンスL1i及び検出コイルL2のインダクタンスL2iの変化例を示す特性図であり、互いに逆方向にインピーダンスが変化する。つまり、右操舵トルク発生時は、円筒部材121が時計方向に回転するから、操舵トルクThが増大するに従って検出コイルL1のインダクタンスL1iは増加し、検出コイルL2のインダクタンスL2iは減少する。また、左操舵トルク発生時は、円筒部材121が反時計方向に回転するから、操舵トルクThが増大するに従って検出コイルL1のインダクタンスL1iは減少し、検出コイルL2のインダクタンスL2iは増加する。 FIG. 5 is a characteristic diagram showing a change example of the magnitude of the steering torque Th and the inductance L1i of the detection coil L1 and the inductance L2i of the detection coil L2, and the impedances change in opposite directions. That is, when the right steering torque is generated, the cylindrical member 121 rotates clockwise, so that the inductance L1i of the detection coil L1 increases and the inductance L2i of the detection coil L2 decreases as the steering torque Th increases. Further, when the left steering torque is generated, the cylindrical member 121 rotates counterclockwise, so that the inductance L1i of the detection coil L1 decreases and the inductance L2i of the detection coil L2 increases as the steering torque Th increases.
 図6は、トルクセンサ100とコントロールユニット(ECU)30の電気的な接続関係を示しており、トルクセンサ100は1対の検出コイルL1,L2とトルクセンサ回路150とで構成され、検出コイルL1,L2とトルクセンサ回路150とはピンP1~P4を介して接続されている。トルクセンサ回路150とコントロールユニット30とは接地部TS-GND(グランド)で共通接続されると共に、コントロールユニット30からトルクセンサ回路150へ回路用の電源電圧TS-Vcc、定電圧用の基準電圧TS-Vrefが供給され、トルクセンサ回路150からコントロールユニット30へメイントルク信号TS-Main及びサブトルク信号TS-Subが入力される。 FIG. 6 shows an electrical connection relationship between the torque sensor 100 and the control unit (ECU) 30. The torque sensor 100 is composed of a pair of detection coils L1, L2 and a torque sensor circuit 150, and the detection coil L1. , L2 and the torque sensor circuit 150 are connected via pins P1 to P4. The torque sensor circuit 150 and the control unit 30 are commonly connected by a ground portion TS-GND (ground), and the power supply voltage TS-Vcc for the circuit and the reference voltage TS for the constant voltage from the control unit 30 to the torque sensor circuit 150 -Vref is supplied, and the main torque signal TS-Main and the sub torque signal TS-Sub are input from the torque sensor circuit 150 to the control unit 30.
 図7はトルクセンサ回路150の構成例を示しており、操舵トルクThを検出するブリッジ回路は、検出コイルL1及び抵抗Z1が直列に接続された第1アームと、検出コイルL2及び抵抗Z2が直列に接続された第2アームとから構成されている。発振部152は検出コイルL1,L2を励磁させるために所定の周波数(励磁周波数)の交流電圧を発振出力し、交流電圧は電流増幅部151で増幅され、増幅された交流電圧Voscが第1のアーム及び第2のアームに供給される。なお、トルクが作用していない状態で、ブリッジ回路の第1アーム及び第2アームに等しい電流が流れて検出コイルL1の端部(ピン)P1の電圧V1と、検出コイルL2の端部(ピン)P3の電圧V2とが等しくなるように、予め検出コイルL1及びL2の特性を揃えておく。 FIG. 7 shows a configuration example of the torque sensor circuit 150. The bridge circuit that detects the steering torque Th is a first arm in which the detection coil L1 and the resistor Z1 are connected in series, and the detection coil L2 and the resistor Z2 are in series. And a second arm connected to the. The oscillating unit 152 oscillates and outputs an AC voltage having a predetermined frequency (excitation frequency) to excite the detection coils L1 and L2. The AC voltage is amplified by the current amplifying unit 151, and the amplified AC voltage Vosc is the first voltage. Supplied to the arm and the second arm. In the state where no torque is applied, an equal current flows through the first arm and the second arm of the bridge circuit, and the voltage V1 of the end (pin) P1 of the detection coil L1 and the end (pin) of the detection coil L2 ) The characteristics of the detection coils L1 and L2 are aligned in advance so that the voltage V2 of P3 is equal.
 検出コイルL1の接合点P1の電圧V1と、検出コイルL2の接合点P3の電圧V2は、メイン増幅全波整流部153に入力され、その差分の電圧信号に変換されて増幅されると共に整流され、更にメイン平滑中立調整部155で出力波形が調整された後、ノイズフィルタ163を経てメイントルク信号TS-Mainとして出力される。また、電圧V1と電圧V2は、サブ増幅全波整流部154にも入力され、その差分の電圧信号に変換されて増幅されると共に整流され、更にサブ平滑中立調整部156で出力波形が調整された後、ノイズフィルタ163を経てサブトルク信号TS-Subとして出力される。メイントルク信号TS-Mainが操舵トルクThとなる。 The voltage V1 at the junction point P1 of the detection coil L1 and the voltage V2 at the junction point P3 of the detection coil L2 are input to the main amplification full-wave rectification unit 153, converted into a differential voltage signal, amplified, and rectified. Further, after the output waveform is adjusted by the main smoothing neutral adjustment unit 155, it is output as the main torque signal TS-Main through the noise filter 163. The voltage V1 and the voltage V2 are also input to the sub-amplification full-wave rectification unit 154, converted to a differential voltage signal, amplified and rectified, and the output waveform is adjusted by the sub-smoothing neutral adjustment unit 156. After that, it passes through the noise filter 163 and is output as a sub torque signal TS-Sub. The main torque signal TS-Main becomes the steering torque Th.
 メイン増幅全波整流部153及びメイン平滑中立調整部155とサブ増幅全波整流部154及びサブ平滑中立調整部156と2組設けて2組のトルク信号(メイントルク信号TS-Main、サブトルク信号TS-Sub)を出力するようにしているのは、コントロールユニット30においてこの2組の検出トルク信号を比較することで、検出コイルの断線や短絡、回路要素の故障等を検出するためである。よって、故障等の検出が不要の場合、サブ増幅全波整流部154及びサブ平滑中立調整部156を削除しても良い。 Two sets of main amplified full-wave rectifying unit 153, main smoothing neutral rectifying unit 155, sub-amplifying full-wave rectifying unit 154 and sub-smoothing neutral adjusting unit 156 are provided, and two sets of torque signals (main torque signal TS-Main, sub-torque signal TS -Sub) is output in order to detect disconnection or short circuit of the detection coil, failure of the circuit element, or the like by comparing the two sets of detection torque signals in the control unit 30. Therefore, when detection of a failure or the like is unnecessary, the sub-amplification full-wave rectification unit 154 and the sub-smooth neutral adjustment unit 156 may be deleted.
 なお、図6及び図7では、トルクセンサ回路150はコントロールユニット30から独立して存在しているが、トルクセンサ回路150をコントロールユニット30内に含ませても良い。 6 and 7, the torque sensor circuit 150 exists independently of the control unit 30, but the torque sensor circuit 150 may be included in the control unit 30.
 ノイズフィルタ163は高周波ノイズ等を除去するために通常ローパスフィルタとして構成されているが、トルク信号には種々のノイズが重畳し、従来のノイズフィルタだけでは十分除去できないことがある。そのために、除去するノイズを特定し、そのノイズの特性に応じて除去する方法が提案されている。 The noise filter 163 is normally configured as a low-pass filter in order to remove high-frequency noise and the like, but various noises are superimposed on the torque signal, and the conventional noise filter alone may not be sufficient. Therefore, a method has been proposed in which noise to be removed is identified and removed according to the noise characteristics.
 例えば、特開2010-190674号公報(特許文献3)及び特許第5454691号公報(特許文献4)では、トルクセンサの不具合対策のために検出系統を冗長化し、検出コイルの対を2組備えているが、それぞれの検出コイル対を励磁する励磁周波数の差に起因するビート周波数で発振するAM変調ノイズが発生するために、そのノイズ除去に特化したローパスフィルタを設けている。特許第5456576号公報(特許文献5)では、パワーステアリング装置の構造物又は車両前部構造物の機械共振による振動を抑制するために、バンドカットフィルタ又はノッチフィルタを使用している。 For example, in Japanese Patent Application Laid-Open No. 2010-190674 (Patent Document 3) and Japanese Patent No. 5546691 (Patent Document 4), a detection system is made redundant for countermeasures against a malfunction of a torque sensor, and two pairs of detection coils are provided. However, in order to generate AM modulation noise that oscillates at a beat frequency resulting from a difference in excitation frequency for exciting each detection coil pair, a low-pass filter specialized for removing the noise is provided. In Japanese Patent No. 5456576 (Patent Document 5), a band cut filter or a notch filter is used to suppress vibration due to mechanical resonance of the structure of the power steering device or the vehicle front structure.
特許第3649057号公報Japanese Patent No. 3649057 特許第3649069号公報Japanese Patent No. 3649069 特開2010-190674号公報JP 2010-190674 A 特許第5454691号公報Japanese Patent No. 5454691 特許第5456576号公報Japanese Patent No. 5456576
 しかしながら、トルク信号には励磁に起因して発生するノイズも重畳される。即ち、例えば励磁周波数が10kHzの交流電圧で検出コイルを励磁した場合、トルクが作用していない状態では、全波整流された電圧信号は図8のような時系列波形となる。この信号をFFT(高速フーリエ変換)すると、振幅スペクトルは図9のようになり、励磁周波数の2倍である20kHzに大きなノイズスペクトルが現れる。このノイズがトルク信号に悪影響を及ぼす。このノイズを従来のローパスフィルタ(LPF)のノイズフィルタにより除去しようとすると、トルク信号として使用すべき周波数(100Hz前後)以下の振幅や位相を減衰し過ぎてしまうために、トルク信号が不安定となり、電動パワーステアリング装置の動作に悪影響を及ぼす。特許文献3~5の方法でも本ノイズには対応できていない。 However, noise generated due to excitation is also superimposed on the torque signal. That is, for example, when the detection coil is excited with an AC voltage having an excitation frequency of 10 kHz, the voltage signal subjected to full-wave rectification has a time-series waveform as shown in FIG. 8 when no torque is applied. When this signal is subjected to FFT (Fast Fourier Transform), the amplitude spectrum is as shown in FIG. 9, and a large noise spectrum appears at 20 kHz, which is twice the excitation frequency. This noise adversely affects the torque signal. If this noise is removed by a conventional low-pass filter (LPF) noise filter, the torque signal becomes unstable because the amplitude and phase below the frequency (about 100 Hz) to be used as the torque signal are attenuated excessively. This adversely affects the operation of the electric power steering device. Even the methods of Patent Documents 3 to 5 cannot cope with this noise.
 本発明は上述のような事情よりなされたものであり、本発明の目的は、発生するトルクに応じてインピーダンスが変化する検出コイルを励磁することによりトルクを検出するトルクセンサにおいて、トルク信号として使用すべき周波数成分には影響を与えずに、励磁に起因して発生するノイズを的確に除去できるトルクセンサ及びそれを搭載して脈動感等の不快な振動を低減し、操舵フィーリングを向上させた電動パワーステアリング装置を提供することにある。 The present invention has been made under the circumstances described above, and an object of the present invention is to use it as a torque signal in a torque sensor that detects torque by exciting a detection coil whose impedance changes according to the generated torque. A torque sensor that can accurately eliminate noise generated due to excitation without affecting the frequency component to be mounted, and it reduces unpleasant vibration such as pulsation and improves steering feeling. Another object is to provide an electric power steering apparatus.
 本発明は、回転軸に生じるトルクに応じてインピーダンスが変化する検出コイルにより前記トルクを検出するトルクセンサに関し、本発明の上記目的は、前記検出コイルを所定の励磁周波数で励磁する発振部と、励磁された前記検出コイルに前記インピーダンスの変化により発生する信号に基づいて前記トルクを検出する検出部とを具備し、前記検出部は、前記励磁周波数より算出される周波数成分を前記信号から除去する阻止帯域が狭い励磁成分除去部を備えることにより達成される。 The present invention relates to a torque sensor that detects the torque by a detection coil whose impedance changes according to torque generated on a rotating shaft, and the object of the present invention is to provide an oscillation unit that excites the detection coil at a predetermined excitation frequency; A detection unit configured to detect the torque based on a signal generated by the impedance change in the excited detection coil, and the detection unit removes a frequency component calculated from the excitation frequency from the signal; This is achieved by providing an excitation component removing unit having a narrow stop band.
 また、本発明の上記目的は、前記励磁成分除去部は、前記励磁周波数の少なくとも1つの整数倍の周波数成分を除去することにより、或いは、前記励磁成分除去部は、少なくとも1つのノッチフィルタで構成されることにより、或いは、前記検出部は、前記励磁成分除去部の他に、カットオフ周波数が前記励磁周波数以下であるローパスフィルタを少なくとも1つ備えていることにより、より効果的に達成される。 In addition, the above-described object of the present invention is such that the excitation component removal unit removes at least one integer multiple of the excitation frequency, or the excitation component removal unit comprises at least one notch filter. Alternatively, the detection unit can be more effectively achieved by including at least one low-pass filter whose cutoff frequency is equal to or lower than the excitation frequency in addition to the excitation component removal unit. .
 本発明の上記目的は、前記検出コイルを所定の励磁周波数で励磁する発振部と、励磁された前記検出コイルに前記インピーダンスの変化により発生する信号に基づいて前記トルクを検出する検出部とを具備し、前記検出部は、前記信号から前記励磁周波数より算出される周波数成分を除去する位相遅れ補償フィルタで構成された励磁成分除去部を備えることにより達成される。 The object of the present invention includes an oscillating unit that excites the detection coil at a predetermined excitation frequency, and a detection unit that detects the torque based on a signal generated by the impedance change in the excited detection coil. The detection unit is achieved by including an excitation component removal unit including a phase lag compensation filter that removes a frequency component calculated from the excitation frequency from the signal.
 また、本発明の上記目的は、前記励磁成分除去部は、前記励磁周波数の少なくとも1つの整数倍の周波数成分を除去することにより、或いは、前記検出部は、前記励磁成分除去部の他に、カットオフ周波数が前記励磁周波数以下であるローパスフィルタを少なくとも1つ備えていることにより、より効果的に達成される。 Further, the object of the present invention is that the excitation component removing unit removes at least one integral multiple frequency component of the excitation frequency, or the detecting unit is not only the excitation component removing unit, This is achieved more effectively by including at least one low-pass filter whose cut-off frequency is equal to or lower than the excitation frequency.
 また、上記トルクセンサを搭載することにより、脈動感等の不快な振動を低減し、操舵フィーリングを向上させた電動パワーステアリング装置を達成できる。 Also, by mounting the torque sensor, an uncomfortable vibration such as pulsation can be reduced, and an electric power steering apparatus with improved steering feeling can be achieved.
 本発明に係るトルクセンサによれば、励磁周波数より算出される周波数成分のみを除去する機能を有しているので、検出コイルを励磁することにより発生するノイズを、トルク信号として使用すべき周波数成分には影響を与えずに的確に除去することができる。 Since the torque sensor according to the present invention has a function of removing only the frequency component calculated from the excitation frequency, the frequency component to be used as a torque signal is noise generated by exciting the detection coil. Can be removed accurately without affecting.
 また、本発明に係るトルクセンサを搭載した電動パワーステアリング装置によれば、トルク信号として使用すべき周波数成分の振幅と位相を減衰し過ぎることがないので、安定した動作が可能で、脈動感等の不快な振動を低減でき、操舵フィーリングを向上することができる。 In addition, according to the electric power steering apparatus equipped with the torque sensor according to the present invention, since the amplitude and phase of the frequency component to be used as the torque signal are not excessively attenuated, stable operation is possible, pulsation, etc. The unpleasant vibration can be reduced and the steering feeling can be improved.
電動パワーステアリング処置の概要を示す構成図である。It is a block diagram which shows the outline | summary of an electric power steering treatment. 電動パワーステアリング装置の制御系の構成例を示すブロック図である。It is a block diagram which shows the structural example of the control system of an electric power steering apparatus. トルクセンサを搭載した電動パワーステアリング装置の断面構造図である。1 is a cross-sectional structure diagram of an electric power steering device equipped with a torque sensor. トルクセンサの一部断面斜視図である。It is a partial cross section perspective view of a torque sensor. トルクセンサのインダクタンスの出力例を示す特性図である。It is a characteristic view which shows the example of an output of the inductance of a torque sensor. トルクセンサとコントローラの接続関係を示すブロック図である。It is a block diagram which shows the connection relation of a torque sensor and a controller. 従来のトルクセンサ回路の一例を示すブロック図である。It is a block diagram which shows an example of the conventional torque sensor circuit. トルクが作用していない状態での全波整流された電圧信号の波形例を示す図である。It is a figure which shows the example of a waveform of the voltage signal by which the full wave rectification in the state where torque is not acting. トルクが作用していない状態での全波整流された電圧信号の振幅スペクトル例を示す図である。It is a figure which shows the example of an amplitude spectrum of the voltage signal by which the full wave rectification in the state where torque is not acting. ノッチフィルタの構成例を示すアナログ回路図である。It is an analog circuit diagram which shows the structural example of a notch filter. 本発明の構成例(第1実施形態)を示すブロック図である。It is a block diagram which shows the structural example (1st Embodiment) of this invention. ノッチフィルタと従来のフィルタの周波数特性を示す図である。It is a figure which shows the frequency characteristic of a notch filter and the conventional filter. 本発明の構成例(第2実施形態)を示すブロック図である。It is a block diagram which shows the structural example (2nd Embodiment) of this invention. 本発明の構成例(第3実施形態)を示すブロック図である。It is a block diagram which shows the structural example (3rd Embodiment) of this invention. 位相遅れ補償フィルタと従来のフィルタの周波数特性を示す図である。It is a figure which shows the frequency characteristic of a phase lag compensation filter and the conventional filter. 本発明の構成例(第4実施形態)を示すブロック図である。It is a block diagram which shows the structural example (4th Embodiment) of this invention.
 本発明に係るトルクセンサは、発生するトルクを検出するために1対の検出コイルを所定の励磁周波数で励磁し、その励磁に起因して発生するノイズの除去に特化した励磁成分除去部を備えている。1対の検出コイルを励磁するために発振部が所定の励磁周波数の交流電圧を発振出力するが、検出コイルの各対の電圧の差である電圧信号は図8に示されるように全波整流されるので、図9に示されるように励磁周波数×2の周波数(以下、「全波整流後周波数」と称す)の整数倍の周波数にピークをもつノイズが発生する。励磁成分除去部はこれらのノイズを除去するが、トルク信号として使用すべき周波数以下の周波数成分(以下、「有効周波数成分」と称す)等に影響を与えないようにするために、阻止する周波数の範囲が狭いノッチフィルタ、又は有効周波数成分での特性がフラットである位相遅れ補償フィルタ(2次フィルタ)を使用する。ノッチフィルタ又は位相遅れ補償フィルタは特定の周波数成分を除去するように設計されるので、複数の周波数成分を除去する場合は、除去する周波数成分の数だけのノッチフィルタ又は位相遅れ補償フィルタで励磁成分除去部を構成する。また、ノッチフィルタ又は位相遅れ補償フィルタをマイコン等で動作するプログラムで実現するのは、演算負荷が大きいために実用的ではないので、コンデンサ、抵抗、オペアンプ(演算増幅器)、スイッチング素子等を用いたアナログ回路やDSP(デジタルシグナルプロセッサ)等で実現する。例えば、ノッチフィルタをアナログ回路で実現する場合、図10に示されるような構成となる。図10において、R,R,R,Rは抵抗、C,Cはコンデンサ、OP,OPはオペアンプである。ノッチフィルタ又は位相遅れ補償フィルタを使用することにより、励磁に起因して発生するノイズに特化したノイズ除去を行うことができる。また、他の周波数成分等には影響を与えずにノイズ除去を行うことができるので、有効周波数成分を減衰し過ぎることがなく、本発明のトルクセンサを搭載した電動パワーステアリング装置の安定動作が可能となり、脈動感等の不快な振動も低減でき、操舵フィーリングを向上することができる。なお、ノッチフィルタを使用する場合、コストを抑えるべく、ノッチフィルタの代わりにノッチフィルタよりもやや阻止帯域が広いバンドストップフィルタを使用しても良い。 The torque sensor according to the present invention includes an excitation component removing unit specialized for removing noise generated due to excitation by exciting a pair of detection coils at a predetermined excitation frequency in order to detect generated torque. I have. In order to excite a pair of detection coils, the oscillating unit oscillates and outputs an alternating voltage having a predetermined excitation frequency. Therefore, as shown in FIG. 9, noise having a peak at a frequency that is an integral multiple of the excitation frequency × 2 frequency (hereinafter referred to as “frequency after full wave rectification”) is generated. The excitation component removal unit removes these noises, but prevents them from affecting the frequency components below the frequency to be used as torque signals (hereinafter referred to as “effective frequency components”). A notch filter with a narrow range of or a phase lag compensation filter (second order filter) having a flat characteristic at an effective frequency component is used. Since the notch filter or the phase lag compensation filter is designed to remove a specific frequency component, when removing a plurality of frequency components, the excitation component is equal to the number of frequency components to be removed. A removal unit is configured. In addition, it is not practical to implement a notch filter or phase lag compensation filter with a program that operates on a microcomputer or the like due to the large calculation load. Therefore, capacitors, resistors, operational amplifiers (operational amplifiers), switching elements, etc. were used. It is realized by an analog circuit or a DSP (digital signal processor). For example, when the notch filter is realized by an analog circuit, the configuration is as shown in FIG. In FIG. 10, R 1 , R 2 , R 3 and R 4 are resistors, C 1 and C 2 are capacitors, and OP 1 and OP 2 are operational amplifiers. By using a notch filter or a phase delay compensation filter, noise removal specialized for noise generated due to excitation can be performed. In addition, noise can be removed without affecting other frequency components, etc., so that the effective frequency component is not attenuated excessively, and the stable operation of the electric power steering apparatus equipped with the torque sensor of the present invention is achieved. This makes it possible to reduce unpleasant vibrations such as pulsation and improve steering feeling. When a notch filter is used, a band stop filter having a slightly wider stop band than the notch filter may be used instead of the notch filter in order to reduce the cost.
 励磁に起因して発生するノイズ以外のノイズについては、ローパスフィルタ(LPF)で除去する。ローパスフィルタのカットオフ周波数は励磁周波数以下を設定するが、有効周波数成分を減衰し過ぎないような周波数にする。また、特許文献3のような特定のノイズを除去したい場合等においては、複数のローパスフィルタを使用しても良い。ローパスフィルタはマイコン等で動作するプログラムで実現可能なものもあるが、アナログ回路やDSPで実現しても良い。 ノ イ ズ Noise other than noise generated due to excitation is removed with a low-pass filter (LPF). The cut-off frequency of the low-pass filter is set below the excitation frequency, but the frequency is set so that the effective frequency component is not excessively attenuated. Further, when it is desired to remove specific noise as in Patent Document 3, a plurality of low-pass filters may be used. Some low-pass filters can be realized by a program operating on a microcomputer or the like, but may be realized by an analog circuit or a DSP.
 以下に、本発明の実施の形態を、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 先ずは、ノッチフィルタを使用する場合について説明する。 First, the case where a notch filter is used will be described.
 図11は本発明に係るトルクセンサの構成例(第1実施形態)を、従来の図7と対応させて示している。本実施形態では、ノイズフィルタ163に代わり、励磁成分除去部171及びローパスフィルタ172を具備している。検出部170は、回路要素161、定電圧供給部162、電流増幅部151、メイン増幅全波整流部153、サブ増幅全波整流部154、メイン平滑中立調整部155、サブ平滑中立調整部156、励磁成分除去部171、ローパスフィルタ172及び抵抗Z1,Z2より構成される。 FIG. 11 shows a configuration example (first embodiment) of the torque sensor according to the present invention in correspondence with the conventional FIG. In the present embodiment, an excitation component removing unit 171 and a low-pass filter 172 are provided instead of the noise filter 163. The detection unit 170 includes a circuit element 161, a constant voltage supply unit 162, a current amplification unit 151, a main amplification full wave rectification unit 153, a sub amplification full wave rectification unit 154, a main smoothing neutral adjustment unit 155, a sub smoothing neutral adjustment unit 156, An excitation component removing unit 171, a low-pass filter 172, and resistors Z1 and Z2 are included.
 励磁成分除去部171はノッチフィルタで構成され、メイン平滑中立調整部155及びサブ平滑中立調整部156が出力する電圧信号から所定の周波数成分を除去する。ローパスフィルタ172は、励磁成分除去部171が出力する電圧信号の所定の周波数以上の周波数成分を減衰させる。 The excitation component removal unit 171 includes a notch filter, and removes a predetermined frequency component from the voltage signal output from the main smoothing neutral adjustment unit 155 and the sub-smooth neutral adjustment unit 156. The low-pass filter 172 attenuates a frequency component equal to or higher than a predetermined frequency of the voltage signal output from the excitation component removing unit 171.
 このような構成のトルクセンサの動作例について説明する。なお、図11において、図7に示される従来のトルクセンサと同一構成については同一符号を付しており、動作は同じであるから説明は省略する。 An example of the operation of the torque sensor having such a configuration will be described. In FIG. 11, the same components as those of the conventional torque sensor shown in FIG. 7 are denoted by the same reference numerals, and the operation is the same.
 メイン平滑中立調整部155から出力された電圧信号VS1r及びサブ平滑中立調整部156から出力された電圧信号VS2rは励磁成分除去部171に入力される。 The voltage signal VS1r output from the main smoothing neutral adjustment unit 155 and the voltage signal VS2r output from the sub-smoothing neutral adjustment unit 156 are input to the excitation component removal unit 171.
 励磁成分除去部171は下記数1の伝達関数で表される周波数特性をもつノッチフィルタ(2次フィルタ)で構成されており、電圧信号VS1r及びVS2rから全波整流後周波数feの周波数成分(全波整流後周波数成分)を除去する。 The excitation component removing unit 171 includes a notch filter (secondary filter) having a frequency characteristic represented by the transfer function of the following formula 1, and the frequency components (total frequency) of the frequency fe after the full-wave rectification from the voltage signals VS1r and VS2r. (Frequency component after wave rectification) is removed.
Figure JPOXMLDOC01-appb-M000001
ここで、ωn1=ωd1=2π×feで、sはラプラス演算子、ζn1,ζd1は減衰係数である。全波整流後周波数feを20kHz(励磁周波数は10kHz)、減衰係数ζn1を0.025、ζd1を1.0とした場合のノッチフィルタの振幅特性及び位相特性は、図12(A)及び(B)の実線のようになる。本ノッチフィルタと同じ全波整流後周波数成分の除去を従来のフィルタ(1次のローパスフィルタ)で実現した場合の振幅特性及び位相特性は図12(A)及び(B)の破線のようになる。ノッチフィルタと同じ効果を得るために、全波整流後周波数での振幅特性が同じとなるように設計されており、カットオフ周波数は500Hzとなっている。両フィルタの位相特性を比較すると、トルク信号として使用すべき周波数(100Hz)での位相特性は、ノッチフィルタでは-0.48[deg]で、従来のフィルタでは-11.3[deg]となっており、ノッチフィルタを使用した場合、有効周波数成分への影響を大幅に軽減できることがわかる。ノッチフィルタにより全波整流後周波数成分を除去された電圧信号VS1r及びVS2rは、それぞれ電圧信号VS1f及びVS2fとして出力される。なお、ノッチフィルタの特性は数1で表される特性に限られるものではなく、他の数式で表される特性でも良い。
Figure JPOXMLDOC01-appb-M000001
Here, ω n1 = ω d1 = 2π × fe, s is a Laplace operator, and ζ n1 and ζ d1 are attenuation coefficients. The amplitude characteristic and phase characteristic of the notch filter when the frequency fe after full-wave rectification is 20 kHz (excitation frequency is 10 kHz), the attenuation coefficient ζ n1 is 0.025, and ζ d1 is 1.0 are shown in FIG. It looks like the solid line in (B). The amplitude characteristic and phase characteristic when the removal of the frequency component after full-wave rectification, which is the same as that of the notch filter, is realized by a conventional filter (first-order low-pass filter) are as shown by broken lines in FIGS. . In order to obtain the same effect as the notch filter, the amplitude characteristics at the frequency after full-wave rectification are designed to be the same, and the cut-off frequency is 500 Hz. Comparing the phase characteristics of both filters, the phase characteristic at the frequency (100 Hz) to be used as the torque signal is −0.48 [deg] for the notch filter and −11.3 [deg] for the conventional filter. It can be seen that the effect on the effective frequency component can be significantly reduced when the notch filter is used. The voltage signals VS1r and VS2r from which the frequency components after full-wave rectification have been removed by the notch filter are output as voltage signals VS1f and VS2f, respectively. Note that the characteristic of the notch filter is not limited to the characteristic represented by Equation 1, and may be a characteristic represented by another mathematical expression.
 電圧信号VS1f,VS2fはローパスフィルタ172に入力される。ローパスフィルタ172は、カットオフ周波数が励磁周波数以下(例えば8kHz)で設計されており、電圧信号VS1fからカットオフ周波数以上の周波数成分を減衰させ、操舵トルクThとしてメイントルク信号TS-Mainを出力し、同様に電圧信号VS2fからカットオフ周波数以上の周波数成分を減衰させ、サブトルク信号TS-Subを出力する。 The voltage signals VS1f and VS2f are input to the low-pass filter 172. The low-pass filter 172 is designed so that the cutoff frequency is equal to or lower than the excitation frequency (for example, 8 kHz), attenuates the frequency component higher than the cutoff frequency from the voltage signal VS1f, and outputs the main torque signal TS-Main as the steering torque Th. Similarly, the frequency component equal to or higher than the cutoff frequency is attenuated from the voltage signal VS2f, and the sub torque signal TS-Sub is output.
 メイントルク信号TS-Main(操舵トルクTh)は、電動パワーステアリング装置に搭載されているモータに供給される電流の制御に使用される。 The main torque signal TS-Main (steering torque Th) is used to control the current supplied to the motor mounted on the electric power steering apparatus.
 第1実施形態では、電圧信号は励磁成分除去部171、ローパスフィルタ172の順で入力される構成となっているが、図13に示されるように、ローパスフィルタ172、励磁成分除去部171と逆の順で入力される構成(第2実施形態)としても良い。 In the first embodiment, the voltage signal is input in the order of the excitation component removing unit 171 and the low-pass filter 172. However, as shown in FIG. 13, the voltage signal is opposite to the low-pass filter 172 and the excitation component removing unit 171. It is good also as a structure (2nd Embodiment) input in this order.
 次に、位相遅れ補償フィルタを使用する場合について説明する。 Next, the case where a phase lag compensation filter is used will be described.
 図14は本発明に係るトルクセンサの構成例(第3実施形態)を、従来の図7と対応させて示している。本実施形態では、ノイズフィルタ163に代わり、励磁成分除去部271及びローパスフィルタ172を具備している。検出部270は、回路要素161、定電圧供給部162、電流増幅部151、メイン増幅全波整流部153、サブ増幅全波整流部154、メイン平滑中立調整部155、サブ平滑中立調整部156、励磁成分除去部271、ローパスフィルタ172及び抵抗Z1,Z2より構成される。 FIG. 14 shows a configuration example (third embodiment) of the torque sensor according to the present invention in correspondence with the conventional FIG. In the present embodiment, an excitation component removing unit 271 and a low-pass filter 172 are provided instead of the noise filter 163. The detection unit 270 includes a circuit element 161, a constant voltage supply unit 162, a current amplification unit 151, a main amplification full wave rectification unit 153, a sub amplification full wave rectification unit 154, a main smoothing neutral adjustment unit 155, a sub smoothing neutral adjustment unit 156, An excitation component removing unit 271, a low-pass filter 172, and resistors Z 1 and Z 2 are included.
 励磁成分除去部271は位相遅れ補償フィルタで構成され、メイン平滑中立調整部155及びサブ平滑中立調整部156が出力する電圧信号から所定の周波数成分を除去する。ローパスフィルタ172は、励磁成分除去部171が出力する電圧信号の所定の周波数以上の周波数成分を減衰させる。 The excitation component removing unit 271 includes a phase lag compensation filter, and removes a predetermined frequency component from the voltage signal output from the main smoothing neutral adjustment unit 155 and the sub-smooth neutral adjustment unit 156. The low-pass filter 172 attenuates a frequency component equal to or higher than a predetermined frequency of the voltage signal output from the excitation component removing unit 171.
 このような構成のトルクセンサの動作例について説明する。なお、図14において、図7に示される従来のトルクセンサと同一構成については同一符号を付しており、動作は同じであるから説明は省略する。 An example of the operation of the torque sensor having such a configuration will be described. In FIG. 14, the same components as those of the conventional torque sensor shown in FIG. 7 are denoted by the same reference numerals, and the operation is the same, so that the description thereof is omitted.
 メイン平滑中立調整部155から出力された電圧信号VS1r及びサブ平滑中立調整部156から出力された電圧信号VS2rは励磁成分除去部271に入力される。 The voltage signal VS1r output from the main smoothing neutral adjustment unit 155 and the voltage signal VS2r output from the sub-smooth neutral adjustment unit 156 are input to the excitation component removal unit 271.
 励磁成分除去部271は下記数2の伝達関数で表される周波数特性をもつ位相遅れ補償フィルタ(2次フィルタ)で構成されており、電圧信号VS1r及びVS2rから全波整流後周波数fnの周波数成分(全波整流後周波数成分)を除去する。 The excitation component removing unit 271 includes a phase lag compensation filter (second-order filter) having a frequency characteristic represented by a transfer function of the following formula 2, and the frequency component of the frequency fn after full-wave rectification from the voltage signals VS1r and VS2r. (Frequency component after full wave rectification) is removed.
Figure JPOXMLDOC01-appb-M000002
ここで、ωn2=2π×fn、ωd2=2π×fd(fd<fn)、sはラプラス演算子、ζn2及びζd2は減衰係数である。全波整流後周波数fnを20kHz(励磁周波数は10kHz)、fdを5kHz、減衰係数ζn2を0.2、ζd2を0.5とした場合の位相遅れ補償フィルタの振幅特性及び位相特性は、図15(A)及び(B)の実線のようになる。本位相遅れ補償フィルタと同じ全波整流後周波数成分の除去を従来のフィルタ(1次のローパスフィルタ)で実現した場合の振幅特性及び位相特性は図15(A)及び(B)の破線のようになる。位相遅れ補償フィルタと同じ効果を得るために、全波整流後周波数での振幅特性が同じとなるように設計されており、カットオフ周波数は500Hzとなっている。両フィルタの位相特性を比較すると、トルク信号として使用すべき周波数(100Hz)での位相特性は、位相遅れ補償フィルタでは-1.0[deg]で、従来のフィルタでは-11.3[deg]となっており、位相遅れ補償フィルタを使用した場合、有効周波数成分への影響を大幅に軽減できることがわかる。位相遅れ補償フィルタにより全波整流後周波数成分を除去された電圧信号VS1r及びVS2rは、それぞれ電圧信号VS1f’及びVS2f’として出力される。なお、位相遅れ補償フィルタの特性は数2で表される特性に限られるものではなく、他の数式で表される特性でも良い。
Figure JPOXMLDOC01-appb-M000002
Here, ω n2 = 2π × fn, ω d2 = 2π × fd (fd <fn), s is a Laplace operator, and ζ n2 and ζ d2 are attenuation coefficients. The amplitude characteristics and phase characteristics of the phase lag compensation filter when the frequency fn after full wave rectification is 20 kHz (excitation frequency is 10 kHz), fd is 5 kHz, the attenuation coefficient ζ n2 is 0.2, and ζ d2 is 0.5. As shown by the solid lines in FIGS. The amplitude characteristic and the phase characteristic when the removal of the frequency component after full-wave rectification, which is the same as that of the present phase delay compensation filter, is realized by a conventional filter (first-order low-pass filter) are as shown by the broken lines in FIGS. become. In order to obtain the same effect as the phase lag compensation filter, it is designed so that the amplitude characteristics at the frequency after full-wave rectification are the same, and the cutoff frequency is 500 Hz. Comparing the phase characteristics of both filters, the phase characteristic at the frequency (100 Hz) to be used as the torque signal is -1.0 [deg] for the phase lag compensation filter and -11.3 [deg] for the conventional filter. Thus, it can be seen that when the phase delay compensation filter is used, the influence on the effective frequency component can be greatly reduced. The voltage signals VS1r and VS2r from which the frequency components after full-wave rectification are removed by the phase lag compensation filter are output as voltage signals VS1f ′ and VS2f ′, respectively. Note that the characteristics of the phase lag compensation filter are not limited to the characteristics expressed by Equation 2, and may be characteristics expressed by other mathematical expressions.
 電圧信号VS1f’,VS2f’はローパスフィルタ172に入力される。ローパスフィルタ172は、カットオフ周波数が励磁周波数以下(例えば8kHz)で設計されており、電圧信号VS1f’からカットオフ周波数以上の周波数成分を減衰させ、操舵トルクThとしてメイントルク信号TS-Mainを出力し、同様に電圧信号VS2f’からカットオフ周波数以上の周波数成分を減衰させ、サブトルク信号TS-Subを出力する。 The voltage signals VS1f ′ and VS2f ′ are input to the low-pass filter 172. The low-pass filter 172 is designed so that the cutoff frequency is equal to or lower than the excitation frequency (for example, 8 kHz), attenuates the frequency component higher than the cutoff frequency from the voltage signal VS1f ′, and outputs the main torque signal TS-Main as the steering torque Th. Similarly, the frequency component equal to or higher than the cutoff frequency is attenuated from the voltage signal VS2f ′, and the sub torque signal TS-Sub is output.
 メイントルク信号TS-Main(操舵トルクTh)は、電動パワーステアリング装置に搭載されているモータに供給される電流の制御に使用される。 The main torque signal TS-Main (steering torque Th) is used to control the current supplied to the motor mounted on the electric power steering apparatus.
 第3実施形態では、電圧信号は励磁成分除去部271、ローパスフィルタ172の順で入力される構成となっているが、第2実施形態と同様に、図16に示されるように、ローパスフィルタ172、励磁成分除去部271と逆の順で入力される構成(第4実施形態)としても良い。 In the third embodiment, the voltage signal is input in the order of the excitation component removing unit 271 and the low-pass filter 172. However, as in the second embodiment, as shown in FIG. Also, a configuration (fourth embodiment) may be adopted in which the input is performed in the reverse order of the excitation component removal unit 271.
 なお、第1実施形態及び第2実施形態での励磁成分除去部171並びに第3実施形態及び第4実施形態での励磁成分除去部271をトルクセンサ回路内ではなく、コントロールユニット30内に配置し、メイントルク信号TS-Main及びサブトルク信号TS-Subから所定の周波数成分を除去する構成としても良い。 The excitation component removing unit 171 in the first embodiment and the second embodiment and the excitation component removing unit 271 in the third embodiment and the fourth embodiment are arranged in the control unit 30 instead of in the torque sensor circuit. A configuration may be adopted in which a predetermined frequency component is removed from the main torque signal TS-Main and the sub torque signal TS-Sub.
 また、励磁成分除去部171は全波整流後周波数成分を除去するノッチフィルタで構成されているが、他の周波数成分、例えば全波整流後周波数の整数倍の周波数成分を除去するためのノッチフィルタを追加した構成としても良い。同様に、励磁成分除去部271は全波整流後周波数成分を除去する位相遅れ補償フィルタで構成されているが、他の周波数成分、例えば全波整流後周波数の整数倍の周波数成分を除去するための位相遅れ補償フィルタを追加した構成としても良い。これらの場合、周波数特性は直列の伝達関数で表される。 The excitation component removing unit 171 includes a notch filter that removes the frequency component after full-wave rectification. The notch filter for removing other frequency components, for example, frequency components that are integral multiples of the frequency after full-wave rectification. It is good also as a structure which added. Similarly, the excitation component removal unit 271 includes a phase lag compensation filter that removes the frequency component after full-wave rectification, but removes other frequency components, for example, frequency components that are integer multiples of the frequency after full-wave rectification. It is also possible to adopt a configuration in which a phase delay compensation filter is added. In these cases, the frequency characteristic is represented by a series transfer function.
 さらに、トルクセンサとして図4に示されるスリーブ・タイプ以外のタイプ(例えばリングタイプ)のものを使用しても良い。 Furthermore, a torque sensor other than the sleeve type shown in FIG. 4 (for example, a ring type) may be used.
1           ハンドル
2           コラム軸(ステアリングシャフト、ハンドル軸)
12          車速センサ
13          バッテリ
14          舵角センサ
20          モータ
30          コントロールユニット(ECU)
31          電流指令値演算部
33          電流制限部
34          補償部
35          PI制御部
36          PWM制御部
37          インバータ
100         トルクセンサ
111         トーションバー
113         ピニオン軸
115         ウォームホイール
116         ウォーム
120         センサシャフト部
150、157、158、257、258 トルクセンサ回路(回路基板)
151         電流増幅部
152         発振部
153         メイン増幅全波整流部
154         サブ増幅全波整流部
155         メイン平滑中立調整部
156         サブ平滑中立調整部
163         ノイズフィルタ
170、173、270、273 検出部
171、271     励磁成分除去部
172         ローパスフィルタ(LPF)
1 Handle 2 Column shaft (steering shaft, handle shaft)
12 Vehicle speed sensor 13 Battery 14 Rudder angle sensor 20 Motor 30 Control unit (ECU)
31 Current command value calculator 33 Current limiter 34 Compensator 35 PI controller 36 PWM controller 37 Inverter 100 Torque sensor 111 Torsion bar 113 Pinion shaft 115 Worm wheel 116 Worm 120 Sensor shaft 150, 157, 158, 257, 258 Torque sensor circuit (circuit board)
151 Current amplification unit 152 Oscillation unit 153 Main amplification full wave rectification unit 154 Sub amplification full wave rectification unit 155 Main smoothing neutral adjustment unit 156 Sub smoothing neutral adjustment unit 163 Noise filter 170, 173, 270, 273 Detection unit 171, 271 Excitation component Removal unit 172 Low-pass filter (LPF)

Claims (8)

  1.  回転軸に生じるトルクに応じてインピーダンスが変化する検出コイルにより前記トルクを検出するトルクセンサにおいて、
     前記検出コイルを所定の励磁周波数で励磁する発振部と、
     励磁された前記検出コイルに前記インピーダンスの変化により発生する信号に基づいて前記トルクを検出する検出部とを具備し、
     前記検出部は、前記励磁周波数より算出される周波数成分を前記信号から除去する阻止帯域が狭い励磁成分除去部を備えることを特徴とするトルクセンサ。
    In the torque sensor that detects the torque by a detection coil whose impedance changes according to the torque generated in the rotating shaft,
    An oscillation unit for exciting the detection coil at a predetermined excitation frequency;
    A detector that detects the torque based on a signal generated by the change in the impedance in the excited detection coil;
    The said sensor is provided with the excitation component removal part with a narrow stop band which removes the frequency component calculated from the said excitation frequency from the said signal, The torque sensor characterized by the above-mentioned.
  2.  前記励磁成分除去部は、前記励磁周波数の少なくとも1つの整数倍の周波数成分を除去する請求項1に記載のトルクセンサ。 The torque sensor according to claim 1, wherein the excitation component removal unit removes at least one integral multiple frequency component of the excitation frequency.
  3.  前記励磁成分除去部は、少なくとも1つのノッチフィルタで構成される請求項1又は2に記載のトルクセンサ。 The torque sensor according to claim 1 or 2, wherein the excitation component removing unit includes at least one notch filter.
  4.  前記検出部は、前記励磁成分除去部の他に、カットオフ周波数が前記励磁周波数以下であるローパスフィルタを少なくとも1つ備えている請求項1乃至3のいずれかに記載のトルクセンサ。 The torque sensor according to any one of claims 1 to 3, wherein the detection unit includes at least one low-pass filter having a cutoff frequency equal to or lower than the excitation frequency in addition to the excitation component removal unit.
  5.  回転軸に生じるトルクに応じてインピーダンスが変化する検出コイルにより前記トルクを検出するトルクセンサにおいて、
     前記検出コイルを所定の励磁周波数で励磁する発振部と、
     励磁された前記検出コイルに前記インピーダンスの変化により発生する信号に基づいて前記トルクを検出する検出部とを具備し、
     前記検出部は、前記信号から前記励磁周波数より算出される周波数成分を除去する位相遅れ補償フィルタで構成された励磁成分除去部を備えることを特徴とするトルクセンサ。
    In the torque sensor that detects the torque by a detection coil whose impedance changes according to the torque generated in the rotating shaft,
    An oscillation unit for exciting the detection coil at a predetermined excitation frequency;
    A detector that detects the torque based on a signal generated by the change in the impedance in the excited detection coil;
    The torque sensor according to claim 1, wherein the detection unit includes an excitation component removal unit including a phase lag compensation filter that removes a frequency component calculated from the excitation frequency from the signal.
  6.  前記励磁成分除去部は、前記励磁周波数の少なくとも1つの整数倍の周波数成分を除去する請求項5に記載のトルクセンサ。 The torque sensor according to claim 5, wherein the excitation component removing unit removes a frequency component that is at least one integer multiple of the excitation frequency.
  7.  前記検出部は、前記励磁成分除去部の他に、カットオフ周波数が前記励磁周波数以下であるローパスフィルタを少なくとも1つ備えている請求項5又は6に記載のトルクセンサ。 The torque sensor according to claim 5 or 6, wherein the detection unit includes at least one low-pass filter having a cutoff frequency equal to or lower than the excitation frequency in addition to the excitation component removal unit.
  8.  請求項1乃至7のいずれかに記載のトルクセンサを搭載していることを特徴とする電動パワーステアリング装置。 An electric power steering apparatus, wherein the torque sensor according to any one of claims 1 to 7 is mounted.
PCT/JP2016/053729 2015-02-10 2016-02-09 Torque sensor and electric power steering device equipped with same WO2016129572A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016571768A JP6191788B2 (en) 2015-02-10 2016-02-09 Torque sensor and electric power steering apparatus equipped with the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015024313 2015-02-10
JP2015-024313 2015-02-10
JP2015-024312 2015-02-10
JP2015024312 2015-02-10

Publications (1)

Publication Number Publication Date
WO2016129572A1 true WO2016129572A1 (en) 2016-08-18

Family

ID=56615267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053729 WO2016129572A1 (en) 2015-02-10 2016-02-09 Torque sensor and electric power steering device equipped with same

Country Status (2)

Country Link
JP (1) JP6191788B2 (en)
WO (1) WO2016129572A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262536A (en) * 1987-04-06 1988-10-28 ゼネラル・モータース・コーポレーション Torque sensor
JPH06323930A (en) * 1993-05-12 1994-11-25 Yaskawa Electric Corp Disurbing magnetic-field noise compensation device of magnetostrictive torque sensor
JPH08271359A (en) * 1995-03-31 1996-10-18 Yaskawa Electric Corp Magnetostrictive strain sensor
JP2001124640A (en) * 1999-10-29 2001-05-11 Mitsubishi Electric Corp Torque detector
WO2012176358A1 (en) * 2011-06-21 2012-12-27 日本精工株式会社 Torque detection device, and electric power steering device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3858443A (en) * 1972-06-21 1975-01-07 Columbia Research Lab Inc Torque measuring and control system
JPS61162726A (en) * 1985-01-11 1986-07-23 Toyota Central Res & Dev Lab Inc Stress detector
JP3476987B2 (en) * 1996-01-12 2003-12-10 株式会社日立国際電気 Multi-user demodulation method and apparatus
JP2009090087A (en) * 2007-09-19 2009-04-30 Fujifilm Corp Endoscope
JP5821496B2 (en) * 2011-10-07 2015-11-24 日本精工株式会社 Torque sensor and electric power steering apparatus having the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262536A (en) * 1987-04-06 1988-10-28 ゼネラル・モータース・コーポレーション Torque sensor
JPH06323930A (en) * 1993-05-12 1994-11-25 Yaskawa Electric Corp Disurbing magnetic-field noise compensation device of magnetostrictive torque sensor
JPH08271359A (en) * 1995-03-31 1996-10-18 Yaskawa Electric Corp Magnetostrictive strain sensor
JP2001124640A (en) * 1999-10-29 2001-05-11 Mitsubishi Electric Corp Torque detector
WO2012176358A1 (en) * 2011-06-21 2012-12-27 日本精工株式会社 Torque detection device, and electric power steering device

Also Published As

Publication number Publication date
JP6191788B2 (en) 2017-09-06
JPWO2016129572A1 (en) 2017-05-25

Similar Documents

Publication Publication Date Title
JP7153244B2 (en) vehicle steering system
US10099721B2 (en) Electric power steering apparatus
US8219283B2 (en) Active steering nibble control algorithm for electric steering systems
US9254862B2 (en) Electric power steering control device
JP2914610B2 (en) Electric power steering device
WO2011052470A1 (en) Electric power steering control device
JP5994959B2 (en) Electric power steering device
US9809246B2 (en) Electric power steering apparatus
JP7211438B2 (en) vehicle steering system
US20180178828A1 (en) Electric power steering apparatus
JP6022117B2 (en) Electric power steering device
JP2016179746A (en) Electric power steering device
US20150094912A1 (en) System and Method for Wheel Disturbance Order Detection and Correction
GB2454788A (en) Active nibble control for electric steering
JP6222411B2 (en) Electric power steering device
WO2019167661A1 (en) Vehicle steering device
JP2018002013A (en) Steering control device
JP6191788B2 (en) Torque sensor and electric power steering apparatus equipped with the same
JP2016068676A (en) Electric power steering device
WO2020213285A1 (en) Vehicle steering apparatus
US11952057B2 (en) Motor control system and power steering system
JP6164073B2 (en) Torque sensor and electric power steering apparatus equipped with the same
JP6582935B2 (en) Motor control device and electric power steering device provided with the same
JP2014167453A (en) Electric power steering device and failure detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16749216

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016571768

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16749216

Country of ref document: EP

Kind code of ref document: A1