JPH07229801A - Signal processing circuit for magnetostrictive strain gauge - Google Patents

Signal processing circuit for magnetostrictive strain gauge

Info

Publication number
JPH07229801A
JPH07229801A JP4480194A JP4480194A JPH07229801A JP H07229801 A JPH07229801 A JP H07229801A JP 4480194 A JP4480194 A JP 4480194A JP 4480194 A JP4480194 A JP 4480194A JP H07229801 A JPH07229801 A JP H07229801A
Authority
JP
Japan
Prior art keywords
differential amplifier
output
circuit
detection
full
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4480194A
Other languages
Japanese (ja)
Inventor
Hidenori Hasegawa
秀法 長谷川
Yasushi Yoshida
吉田  康
Koji Nakajima
耕二 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP4480194A priority Critical patent/JPH07229801A/en
Publication of JPH07229801A publication Critical patent/JPH07229801A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To achieve the high accuracy by providing a differential amplifier for compensation which amplifies the difference between output signals from a differential amplifier for detection and a BPF thereby removing the fluctuation in a distortion signal caused by disturbance noise or the like. CONSTITUTION:When a sensor shaft 102 is subjected to strain, the permeability of a magnetostrictive film 103 varies to cause variation in the voltage amplitude of a detection coil 104. Since the magnetostrictive film 103 is not present on the detection coil 105 side, the voltage amplitude does not vary. The AC detection voltages are amplified by amplifiers 106, 107 and converted through full-wave rectifying circuits 108, 109 into DC voltages. The difference thereof is amplified through a differential amplifier 110 for detection and the difference from an output signal from a BPF 112 is then determined by a first differential amplifier 11 for compensation. The differential output signal is rectified, along with the output signal from the BPF 112, through a rectifier circuit 113 and the difference between signals processed through a zero adjusting circuit 114 and a gain adjusting circuit 115 is determined by a second differential amplifier 116 for compensation. This circuitry removes fluctuation due to disturbance noise perfectly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁歪式歪センサの高精
度化のための信号処理回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a signal processing circuit for improving the accuracy of a magnetostrictive strain sensor.

【0002】[0002]

【従来の技術】一般的な磁歪式歪センサの構成を図7に
示す。図7において、102 はセンサシャフト、103 は磁
歪膜、101a,101b は励磁コイル、104,105 は検出コイル
である。従来例としての磁歪式歪センサの信号処理回路
を図8に示す。図8において、119 は発振器、118 はパ
ワーアンプであり、これら発振器119 とパワーアンプ11
8 で励磁回路が構成され、106,107 は初段アンプ、108,
109 は全波整流回路、110 は検出用差動アンプ、117 は
ローパスフィルタであり、これら初段アンプ106,107 か
らローパスフィルタ117 までの検出用の信号処理回路が
構成される。そして、センサシャフト102 に歪が加わる
と、磁歪膜103 の透磁率が変化し、センサシャフト102
の磁束量の増減に基づき検出コイル104 の電圧振幅が変
化する。検出コイル側105 には磁歪膜103 を設けていな
いので、基本的には検出電圧振幅は変化しない。これら
の交流検出電圧は初段アンプ106,107 で初段増幅された
後、全波整流回路108,109 で直流電圧に変換される。こ
れらの直流電圧を検出用差動アンプ110 で差動増幅した
後、ローパスフィルタ117 を通してセンサ出力の歪出力
信号とする。なお、他に見るべき先行例が見当らないが
敢えて挙げれば、磁気抵抗効果センサのオフセットドリ
フト電位を補正する方法として、例えば特開昭63-91580
号が見られる。これは電源から磁気抵抗効果素子へ電流
を流して歪みを計測するときに、ジュール熱がこれらの
素子に発生し、その放熱状態が悪く、内部側と外部側で
温度が異なるため、検出信号に温度ドリフトを含むの
で、表面温度分布を均一にして、オフセットドリフト電
圧を補正し解決する手段に過ぎない。
2. Description of the Related Art The structure of a general magnetostrictive strain sensor is shown in FIG. In FIG. 7, 102 is a sensor shaft, 103 is a magnetostrictive film, 101a and 101b are excitation coils, and 104 and 105 are detection coils. FIG. 8 shows a signal processing circuit of a magnetostrictive strain sensor as a conventional example. In FIG. 8, 119 is an oscillator and 118 is a power amplifier.
The excitation circuit is composed of 8, 106 and 107 are the first stage amplifier, and 108 and
Reference numeral 109 is a full-wave rectifier circuit, 110 is a detection differential amplifier, and 117 is a low-pass filter, and a signal processing circuit for detection from the first-stage amplifiers 106 and 107 to the low-pass filter 117 is configured. When strain is applied to the sensor shaft 102, the magnetic permeability of the magnetostrictive film 103 changes and the sensor shaft 102
The voltage amplitude of the detection coil 104 changes according to the increase or decrease in the amount of magnetic flux. Since the magnetostrictive film 103 is not provided on the detection coil side 105, the detection voltage amplitude basically does not change. These AC detection voltages are first-stage amplified by first-stage amplifiers 106 and 107, and then converted into DC voltages by full-wave rectifier circuits 108 and 109. These DC voltages are differentially amplified by the detection differential amplifier 110 and then passed through the low-pass filter 117 to be used as the distortion output signal of the sensor output. Incidentally, although there is no other precedent to be seen, if one dare to mention it, as a method for correcting the offset drift potential of the magnetoresistive effect sensor, for example, Japanese Patent Laid-Open No. 63-91580.
You can see the issue. This is because Joule heat is generated in these elements when a current is passed from the power supply to the magnetoresistive effect element to measure the strain, and the heat dissipation state is bad, and the temperature differs between the internal side and the external side. Since it includes a temperature drift, it is only a means for making the surface temperature distribution uniform and correcting the offset drift voltage.

【0003】[0003]

【発明が解決しようとする課題】ところが、従来例にお
いては、例えば、配電線,電車線等にセンサを取り付け
た場合に、センサ[所謂センサシャフト]に電流が流れ
た時やその他の外乱ノイズにより、歪出力信号に変動が
生じるといった問題点があった。この変動が本来の歪出
力信号の上に正・負等しい振幅で重畳されていれば、従
来の出力段に具えるローパスフィルタ等で除去すること
が可能であるが、例えばセンサシャフトに電流が流れた
時など本来の歪信号の片側のみに変動が現れるため、従
来例のローパスフィルタ等を通してもDC[直流]的な
変動が生じてしまい、完全にセンサに流れる電流や、そ
の他の外乱ノイズによる影響を除去することができなか
った。そこで本発明は、このセンサに流れる電流やその
他の外乱ノイズによるセンサ出力の歪信号変動を完全に
除去し、センサの高精度化を図ることを目的とする。
However, in the conventional example, for example, when a sensor is attached to a distribution line, an electric train line, etc., when a current flows through the sensor [so-called sensor shaft] or other disturbance noise, However, there is a problem that the distortion output signal varies. If this fluctuation is superimposed on the original distortion output signal with equal positive and negative amplitudes, it can be removed by a low-pass filter or the like provided in the conventional output stage. Since the fluctuation appears only on one side of the original distorted signal, DC [DC] fluctuation occurs even through the low-pass filter of the conventional example, and the influence of the current completely flowing through the sensor and other disturbance noises. Could not be removed. Therefore, an object of the present invention is to completely eliminate the distortion signal fluctuation of the sensor output due to the current flowing in the sensor and other disturbance noises, and to improve the accuracy of the sensor.

【0004】[0004]

【課題を解決するための手段】上記問題点を解決するた
めに、本発明は、検出用差動アンプ出力信号と、この検
出用差動アンプ出力信号をバンドパスフィルタもしくは
ACカップリング装置に適した信号の差動をとり、さら
にこの差動出力信号と、バンドパスフィルタもしくはA
Cカップリング装置の出力信号を全波整流し、零点調
整,ゲイン調整を行った信号との差動をとることによ
り、センサに流れる電流やその他の外乱ノイズによる変
動を完全に除去した歪出力信号を得ることを第1の手段
とする。また、他の解決手段としては、検出用差動アン
プの出力信号をバンドパスフィルタもしくはACカップ
リング装置を通した信号を全波整流し、零点調整,ゲイ
ン調整を行った信号と、検出用差動アンプの出力信号を
ノッチフィルタを通した信号との差動をとることによ
り、センサに流れる電流やその他の外乱ノイズによる変
動を完全に除去した歪出力信号を得ることを第2の手段
とする。さらに、別の解決手段としては、各検出信号を
全波整流した後の信号から、センサに流れる電流による
交流変動信号のみをバンドパスフィルタにより取り出
し、これらを検出用差動アンプと同じゲインで差動増幅
した信号と、検出用差動アンプ出力との差動をとること
により、センサに流れる電流の影響を受けない歪出力信
号を得ることを第3の手段とする。さらにまた、ほかの
解決手段としては、検出用差動アンプの出力からセンサ
に流れる電流による交流変動信号のみをバンドパスフィ
ルタにより取り出し、この信号と、検出用差動アンプの
出力信号との差動をとることにより、センサに流れる電
流の影響を受けない歪出力信号を得ることを第4の手段
とする。
In order to solve the above problems, the present invention is suitable for a detection differential amplifier output signal and the detection differential amplifier output signal for a bandpass filter or an AC coupling device. The differential signal is taken, and this differential output signal is further passed through a bandpass filter or A
Distorted output signal in which fluctuations due to current flowing in the sensor and other disturbance noises are completely removed by full-wave rectifying the output signal of the C coupling device and taking the differential with the signal with zero adjustment and gain adjustment. Is obtained as the first means. As another solution, the output signal of the detection differential amplifier is subjected to full-wave rectification of a signal that has passed through a bandpass filter or an AC coupling device, and a signal for which zero point adjustment and gain adjustment have been performed and a detection difference signal. The second means is to obtain a distorted output signal in which fluctuations due to the current flowing in the sensor and other disturbance noises are completely removed by taking the differential of the output signal of the dynamic amplifier from the signal passed through the notch filter. . Furthermore, as another solution, from the signal after full-wave rectification of each detection signal, only the AC fluctuation signal due to the current flowing through the sensor is extracted by a bandpass filter, and these are filtered with the same gain as the detection differential amplifier. The third means is to obtain a distorted output signal that is not affected by the current flowing in the sensor by taking the differential between the dynamically amplified signal and the detection differential amplifier output. Furthermore, as another solution, only an AC fluctuation signal due to the current flowing through the sensor from the output of the detection differential amplifier is taken out by a bandpass filter, and the differential signal between this signal and the output signal of the detection differential amplifier is extracted. The fourth means is to obtain a distorted output signal that is not affected by the current flowing through the sensor.

【0005】[0005]

【作用】上記手段により、本発明はセンサに電流が流れ
たり、その他の外乱ノイズが生じても歪出力信号に現れ
るノイズ変動成分のみを除去できるので、電流や、その
他の外乱ノイズに影響されない高精度な歪信号を得るこ
とができる。
With the above means, the present invention can remove only the noise fluctuation component appearing in the distortion output signal even if a current flows through the sensor or other disturbance noise occurs, so that it is not affected by the current or other disturbance noise. An accurate distortion signal can be obtained.

【0006】[0006]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は、本発明の第1の実施例の回路構成を示す
ブロック図である。なお、全ての図面において、同一符
号は同一もしくは相当部材を示す。図1において、セン
サの励磁回路と検出回路の中の差動アンプ110 までは図
4と同じであるが、検出用差動アンプ110 を経た検出信
号は第1の補償用差動アンプ111 ,バンドパスフィルタ
もしくはACカップリング装置112 ,全波整流回路113
,零点調整回路114 ,ゲイン調整回路115 ,第2の補
償用差動アンプ116 からローパスフィルタ117 を経由し
て出力される構成である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the circuit configuration of the first embodiment of the present invention. In all the drawings, the same reference numerals indicate the same or corresponding members. In FIG. 1, the excitation circuit of the sensor and the differential amplifier 110 in the detection circuit are the same as those in FIG. 4, but the detection signal passed through the detection differential amplifier 110 is the first compensation differential amplifier 111, band. Pass filter or AC coupling device 112, full-wave rectification circuit 113
, The zero adjustment circuit 114, the gain adjustment circuit 115, and the second compensation differential amplifier 116 are output via the low-pass filter 117.

【0007】 また、図5は本発明の第1の原理を説明
するための各部波形図である。例えば、センサシャフト
102 に電流が流れず通常動作の場合には、検出用差動ア
ンプ110 の出力は図5(a) のように変動のない歪出力信
号となる。ここで、例えば60Hzの交流電流がセンサ
シャフト102 に流れると、図5(b) のように主に倍周波
数の120Hzの変動信号が直流電圧信号に、しかも本
来の歪出力信号[図5(a) ]の片側に重畳して現れるこ
とが、実験によって確かめられている。このため、本発
明では、検出用差動アンプ110 の出力をバンドパスフィ
ルタ[この場合は通過域中心周波数120Hz]もしく
はACカップリング装置112 を通し、図5(c) のような
ノイズによる交流変動分だけ取り出して、第1の補償用
差動アンプ111 により検出用差動アンプ110 の出力との
差動をとることにより、図5(d) のような直流信号を得
る。
Further, FIG. 5 is a waveform chart of each part for explaining the first principle of the present invention. For example, sensor shaft
In the case of normal operation in which no current flows through 102, the output of the detection differential amplifier 110 is a distortion-free output signal as shown in FIG. 5 (a). Here, for example, when an alternating current of 60 Hz flows through the sensor shaft 102, a fluctuation signal of 120 Hz having a doubled frequency is mainly converted into a DC voltage signal as shown in FIG. 5B, and the original distortion output signal [FIG. It has been confirmed by an experiment that it appears superimposed on one side of)]. Therefore, in the present invention, the output of the detection differential amplifier 110 is passed through a bandpass filter [passband center frequency 120 Hz in this case] or an AC coupling device 112, and AC fluctuation due to noise as shown in FIG. By picking up only that portion and taking the differential with the output of the detection differential amplifier 110 by the first compensation differential amplifier 111, a DC signal as shown in FIG. 5D is obtained.

【0008】 この直流信号は、例えばノイズによる変
動振幅をAとした時、A/2の大きさのノイズによる直
流信号が重畳されて出力されている。このノイズによる
直流信号分をなくすため、まず、検出用差動アンプ110
の交流出力信号を全波整流回路113 により直流信号に変
換する。検出用差動アンプ110 の交流出力信号が正弦波
で、振幅をAとすると、図5(e) のように全波整流回路
113の直流出力信号はA/πの大きさとなる。従って、
第2の補償用差動アンプ116により、第1の補償用差動
アンプ111 とこの全波整流回路113 の直流出力信号にゲ
イン√2をかけた信号との差動をとることにより、図5
(f) のようにセンサに流れる電流による影響を受けない
信号を得ることができる。
For example, assuming that the fluctuation amplitude due to noise is A, this DC signal is output by superimposing the DC signal due to noise having a size of A / 2. In order to eliminate the DC signal component due to this noise, first, the detection differential amplifier 110
The AC output signal of is converted into a DC signal by the full-wave rectification circuit 113. Assuming that the AC output signal of the detection differential amplifier 110 is a sine wave and the amplitude is A, a full-wave rectifier circuit as shown in Fig. 5 (e).
The DC output signal of 113 has a magnitude of A / π. Therefore,
The second compensating differential amplifier 116 takes a differential between the first compensating differential amplifier 111 and a signal obtained by multiplying the DC output signal of the full-wave rectifying circuit 113 by a gain √2, so that
It is possible to obtain a signal that is not affected by the current flowing in the sensor as in (f).

【0009】 ここで、変動成分が完全な正弦波でな
く、高調波成分を含むような場合には、全波整流回路11
3 の直流出力信号はA/πの大きさにはならない。ま
た、回路等の特性からセンサに流れる電流が零の時に
も、全波整流回路113 の出力にオフセットが生じること
も考えられる。そこで、本実施例においては全波整流回
路113 の出力信号の零点およびゲインを調整する零点調
整回路114およびゲイン調整回路115 を設けている。ま
た、第2の補償用差動アンプ116 の出力信号を最終段の
ローパスフィルタ117 を通して、高調波ノイズを除去
し、歪出力信号とする。
Here, when the fluctuation component is not a perfect sine wave but includes a harmonic component, the full-wave rectifier circuit 11
The DC output signal of 3 does not have a magnitude of A / π. Further, due to the characteristics of the circuit and the like, even when the current flowing through the sensor is zero, an offset may occur in the output of the full-wave rectification circuit 113. Therefore, in the present embodiment, a zero point adjusting circuit 114 and a gain adjusting circuit 115 for adjusting the zero point and the gain of the output signal of the full-wave rectifying circuit 113 are provided. Further, the output signal of the second compensating differential amplifier 116 is passed through a low-pass filter 117 at the final stage to remove the harmonic noise and produce a distorted output signal.

【0010】 本実施例はセンサに流れる電流以外の外
乱ノイズに対しても有効に動作する。但し、ノイズの周
波数が確定できない場合にはバンドパスフィルタでなく
ACカップリング装置112 を用いる。このACカップリ
ング装置112 とは、信号ラインに直列にコンデンサを挿
入介在して接続し,そのコンデンサの出力端に抵抗を介
して接地した所謂、信号ラインに接続された高周波通過
濾波器である。
The present embodiment effectively operates against disturbance noise other than the current flowing through the sensor. However, when the noise frequency cannot be determined, the AC coupling device 112 is used instead of the bandpass filter. The AC coupling device 112 is a so-called high-frequency pass filter connected to the signal line in which a capacitor is connected in series to the signal line with the capacitor interposed and the output end of the capacitor is grounded via a resistor.

【0011】 次に、本発明の第2の実施例を図2の回
路構成を示すブロック図に基づいて説明する。図2の回
路構成は図1の回路構成に較べて、第1の補償用差動ア
ンプ111 を除き、代わりにノッチ[帯域阻止]フィルタ
120 を設けている。本実施例では、検出用差動アンプ11
0 の交流出力信号を変動周波数を阻止域中心周波数とす
るノッチフィルタ120 に通し、ノイズによる交流変動分
を除去する。しかし、この信号には先の一実施例[図
1]の第1の補償用差動アンプ111 の出力信号と同じく
直流変動分が含まれている。従って、先の一実施例[図
1]と同じく検出用差動アンプ110 の交流出力信号を、
バンドパスフィルタもしくはACカップリング装置112
に通して、ノイズによる交流分だけを取り出し、この信
号を全波整流回路113 により全波整流して直流信号に変
換し、さらに、零点調整回路114 およびゲイン調整回路
115 により、零点調整およびゲイン調整を行う(ゲイン
はπ/2、ゲイン調整回路115 ではその微調整を行
う)。第2の補償用差動アンプ116 の出力信号と、ゲイ
ン調整回路115 の出力信号の差動をとることにより、先
の一実施例[図1]と同じく、センサによる影響を受け
ない信号を得ることができる。この信号を最終段のロー
パスフィルタ117 に通して、高調波ノイズを除去し、歪
出力信号とする。本実施例は、ノイズの周波数が確定で
きるものであれば、前述の通り確立した周波数ノイズに
対応するノッチフィルタ周波数特性として交流変動分を
除去できるから、センサに流れる電流による影響以外の
ノイズに対しても有効に動作する。
Next, a second embodiment of the present invention will be described based on the block diagram showing the circuit configuration of FIG. The circuit configuration of FIG. 2 is different from the circuit configuration of FIG. 1 except that the first compensating differential amplifier 111 is removed and a notch [band stop] filter is used instead.
120 are provided. In this embodiment, the detection differential amplifier 11
The AC output signal of 0 is passed through a notch filter 120 having the fluctuation frequency as the center frequency of the stop band, and the AC fluctuation due to noise is removed. However, this signal contains a DC fluctuation component like the output signal of the first compensation differential amplifier 111 of the previous embodiment [FIG. 1]. Therefore, as in the previous embodiment [FIG. 1], the AC output signal of the detection differential amplifier 110 is
Bandpass filter or AC coupling device 112
The full-wave rectifier circuit 113 full-wave rectifies this signal to convert it into a direct current signal, and the zero adjustment circuit 114 and the gain adjustment circuit
The zero point adjustment and the gain adjustment are performed by 115 (the gain is π / 2, and the gain adjustment circuit 115 performs the fine adjustment). By taking the differential between the output signal of the second compensating differential amplifier 116 and the output signal of the gain adjusting circuit 115, a signal that is not influenced by the sensor is obtained as in the previous embodiment [FIG. 1]. be able to. This signal is passed through a low-pass filter 117 at the final stage to remove harmonic noise and produce a distorted output signal. In this embodiment, if the frequency of the noise can be determined, the AC fluctuation can be removed as the notch filter frequency characteristic corresponding to the frequency noise established as described above. Even works effectively.

【0012】 さらに、本発明の第3の実施例の回路構
成のブロック図を図3に示す。図3において、112aは第
1のバンドパスフィルタ,112bは第2のバンドパスフィ
ルタである。なお、第1,第2のバンドパスフィルタの
周波数特性は同一である。図6は本発明の第2の原理を
説明するための各部波形図である。センサシャフト102
に電流が流れず通常動作の場合には、全波整流回路108,
109 の出力信号は図5(a) のように変動のない歪出力信
号となる。今、センサシャフト102 に、例えば60Hz
の交流電流が流れると、全波整流回路108,109 の出力信
号は図5(b) のように、主に倍周波数の120Hzの変
動信号が直流電圧信号に、重畳して現れることが実験に
よって確かめられている。
Further, FIG. 3 shows a block diagram of a circuit configuration of a third embodiment of the present invention. In FIG. 3, 112a is a first bandpass filter and 112b is a second bandpass filter. The frequency characteristics of the first and second bandpass filters are the same. FIG. 6 is a waveform chart of each part for explaining the second principle of the present invention. Sensor shaft 102
In the normal operation with no current flowing in the full-wave rectifier circuit 108,
The output signal of 109 is a distorted output signal without fluctuation as shown in FIG. 5 (a). Now, on the sensor shaft 102, for example, 60 Hz
It has been confirmed by experiments that the output signals of the full-wave rectification circuits 108 and 109 appear mainly when a fluctuation signal of 120 Hz with a doubled frequency is superimposed on the DC voltage signal when an AC current flows. ing.

【0013】 各相全波整流回路108,109 の出力信号に
おいて、この変動波形が大きさも同じで位相も揃ってい
れば、検出用差動アンプ110 においてキャンセルされ、
出力に影響を与えることはない。しかし、センサシャフ
ト102 の磁歪膜103 の有無、励磁コイル101a,101b およ
び検出コイル104,105 のインピーダンス等のアンバラン
ス、また各相回路要素(初段アンプ106,107 、全波整流
回路108,109 )のアンバランス等によって、この120
Hzの変動波形の大きさ、位相はそれぞれ異なり、歪出
力信号に大きな変動波形となって現れる[図6(c) ]。
In the output signals of the full-wave rectification circuits 108 and 109 of the respective phases, if the fluctuation waveforms have the same magnitude and the same phase, the differential amplifier for detection 110 cancels them.
It does not affect the output. However, due to the presence or absence of the magnetostrictive film 103 on the sensor shaft 102, the imbalance of the excitation coils 101a and 101b and the impedances of the detection coils 104 and 105, and the imbalance of each phase circuit element (first stage amplifier 106 and 107, full wave rectification circuit 108 and 109), This 120
The magnitude and phase of the fluctuation waveform of Hz are different, and a large fluctuation waveform appears in the distortion output signal [Fig. 6 (c)].

【0014】 このため、本発明では、全波整流回路10
8,109 の出力信号をバンドパスフィルタ112a,112b[こ
の場合は通過域中心周波数120Hz]に通し、図5
(d),(e) のように変動分のみを取り出し、これらの変動
信号を第2の補償用差動アンプ116 [ゲインは検出用差
動アンプ110 と同じ]で差動増幅する。その結果、検出
用差動アンプ110 の出力に現れる信号の変動分とこの補
償用差動アンプ113 の出力信号は大きさも位相も全く同
じ波形となる[図6(f) ]。検出用差動アンプ110 の出
力と補償用差動アンプ113 の出力を差動アンプ116 で差
動増幅することにより、センサシャフト102 に流れる電
流に影響されない変動のない信号を得ることができる
[図6(g) ]。この信号を最終段のローパスフィルタ11
4 に通し、高周波ノイズを除去し、歪出力信号とする。
Therefore, in the present invention, the full-wave rectifier circuit 10
The output signals of 8,109 are passed through band-pass filters 112a, 112b [passband center frequency 120 Hz in this case],
As in (d) and (e), only the fluctuation component is extracted, and these fluctuation signals are differentially amplified by the second compensation differential amplifier 116 [gain is the same as the detection differential amplifier 110]. As a result, the fluctuation amount of the signal appearing at the output of the detection differential amplifier 110 and the output signal of the compensation differential amplifier 113 have exactly the same waveform in magnitude and phase [FIG. 6 (f)]. By differentially amplifying the output of the detection differential amplifier 110 and the output of the compensation differential amplifier 113 with the differential amplifier 116, it is possible to obtain a signal that does not fluctuate and is not affected by the current flowing through the sensor shaft 102 [Fig. 6 (g)]. This signal is passed through the low-pass filter 11
Pass through 4 to remove high frequency noise and use as distortion output signal.

【0015】 図4は、本発明の第4の実施例の回路構
成を示すブロック図である。先の別の実施例[図3]は
センサに流れる電流による信号変動分を各相全波整流後
のバンドパスフィルタ112a,112bにより取り出すのに対
し、本実施例では検出用差動アンプ110 の出力に現れる
変動分のみをバンドパスフィルタ112 により取り出し、
この信号と検出用差動アンプ110 の出力を第2の補償用
差動アンプ116 により差動増幅することにより、センサ
シャフト102 に流れる電流に影響されない変動のない信
号を得ることができる。この信号を最終段のローパスフ
ィルタ114 に通し、高周波ノイズを除去し、歪信号出力
とする。
FIG. 4 is a block diagram showing the circuit configuration of the fourth embodiment of the present invention. In the above-mentioned another embodiment [FIG. 3], the signal fluctuation due to the current flowing in the sensor is taken out by the bandpass filters 112a and 112b after full-wave rectification of each phase, whereas in this embodiment, the detection differential amplifier 110 Only the fluctuations appearing in the output are taken out by the bandpass filter 112,
By differentially amplifying this signal and the output of the detection differential amplifier 110 by the second compensation differential amplifier 116, a signal that does not fluctuate and is not affected by the current flowing through the sensor shaft 102 can be obtained. This signal is passed through a low-pass filter 114 at the final stage to remove high frequency noise and output a distorted signal.

【0016】[0016]

【発明の効果】以上述べたように本発明によれば、セン
サに流れる電流の影響や、その他の外乱ノイズの影響を
受けない、高精度な歪信号を得ることができ磁歪式歪セ
ンサの信頼性の向上が得られるとう特段の効果がある。
As described above, according to the present invention, it is possible to obtain a highly accurate strain signal which is not affected by the current flowing through the sensor and other disturbance noises, so that the reliability of the magnetostrictive strain sensor is improved. There is a special effect that the improvement of the sex is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における回路構成を示す
ブロック図
FIG. 1 is a block diagram showing a circuit configuration according to a first embodiment of the present invention.

【図2】本発明の第2の実施例における回路構成を示す
ブロック図
FIG. 2 is a block diagram showing a circuit configuration according to a second embodiment of the present invention.

【図3】本発明の第3の実施例における回路構成を示す
ブロック図
FIG. 3 is a block diagram showing a circuit configuration according to a third embodiment of the present invention.

【図4】本発明の第4の実施例における回路構成を示す
ブロック図
FIG. 4 is a block diagram showing a circuit configuration according to a fourth embodiment of the present invention.

【図5】本発明の第1の原理を説明するための各部波形
FIG. 5 is a waveform chart of each part for explaining the first principle of the present invention.

【図6】本発明の第2の原理を説明するための各部波形
FIG. 6 is a waveform chart of each part for explaining the second principle of the present invention.

【図7】磁歪式歪センサの構成説明図FIG. 7 is an explanatory diagram of a configuration of a magnetostrictive strain sensor.

【図8】従来例の回路構成を示すブロック図FIG. 8 is a block diagram showing a circuit configuration of a conventional example.

【符号の説明】[Explanation of symbols]

101a 励磁コイル 101b 励磁コイル 102 センサシャフト 103 磁歪膜 104 検出コイル 105 検出コイル 106 初段アンプ 107 初段アンプ 108 全波整流回路 109 全波整流回路 110 検出用差動アンプ 111 第1の補償用差動アンプ 112 バンドパスフィルタ 112 ACカップリング装置[高周波通過濾波器] 112a バンドパスフィルタ 112b バンドパスフィルタ 113 全波整流回路 114 零点調整回路 115 ゲイン調整回路 116 第2の補償用差動アンプ 117 ローパスフィルタ 118 パワーアンプ 119 発振器 120 ノッチフィルタ[帯域阻止濾波器] 101a Excitation coil 101b Excitation coil 102 Sensor shaft 103 Magnetostrictive film 104 Detection coil 105 Detection coil 106 First stage amplifier 107 First stage amplifier 108 Full wave rectification circuit 109 Full wave rectification circuit 110 Detection differential amplifier 111 First compensation differential amplifier 112 Bandpass filter 112 AC coupling device [high-frequency pass filter] 112a Bandpass filter 112b Bandpass filter 113 Full-wave rectifier circuit 114 Zero adjustment circuit 115 Gain adjustment circuit 116 Second compensation differential amplifier 117 Lowpass filter 118 Power amplifier 119 Oscillator 120 Notch filter [Band stop filter]

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 センサシャフトと、前記センサシャフト
上に形成された磁歪膜と、前記センサシャフトを励磁す
る1対の励磁コイルと、前記センサシャフトからの磁束
量を検出する1対の検出コイルと、1対の検出コイルの
電圧をそれぞれ初段増幅する1対の初段アンプと、前記
初段アンプの出力信号を直流電圧信号に変換する第1,
第2の全波整流回路と、前記直流電圧信号を差動増幅す
る検出用差動アンプと、前記検出用差動アンプの出力か
ら高周波ノイズを除去するローパスフィルタとを設けた
磁歪式歪センサに適用される信号処理回路において、 前記検出用差動アンプから変動分のみを取り出すバンド
パスフィルタと、前記検出用差動アンプの出力信号と前
記バンドパスフィルタの出力信号を差動増幅する第1の
補償用差動アンプと、前記バンドパスフィルタの出力を
全波整流する第3の全波整流回路と、前記第3の全波整
流回路の出力の零点を調整する零点調整回路と、前記零
点調整回路の後段に前記第3の全波整流回路の出力信号
のゲインを調整するゲイン調整回路と、前記第1の補償
用差動アンプ出力と前記ゲイン調整回路出力を差動増幅
する第2の補償用差動アンプとを備え、前記第2の補償
用差動アンプの差動増幅出力を前記ローパスフィルタの
入力とすることを特徴とする磁歪式歪センサの信号処理
回路。
1. A sensor shaft, a magnetostrictive film formed on the sensor shaft, a pair of exciting coils for exciting the sensor shaft, and a pair of detecting coils for detecting the amount of magnetic flux from the sensor shaft. A pair of first stage amplifiers for respectively amplifying the voltages of the pair of detection coils in the first stage, and a first and a first for converting an output signal of the first stage amplifiers into a DC voltage signal.
A magnetostrictive strain sensor provided with a second full-wave rectifier circuit, a detection differential amplifier that differentially amplifies the DC voltage signal, and a low-pass filter that removes high-frequency noise from the output of the detection differential amplifier. In a signal processing circuit to be applied, a bandpass filter for extracting only a variation from the detection differential amplifier, and a first amplification circuit for differentially amplifying an output signal of the detection differential amplifier and an output signal of the bandpass filter. Compensation differential amplifier, third full-wave rectifying circuit for full-wave rectifying the output of the bandpass filter, zero-point adjusting circuit for adjusting the zero point of the output of the third full-wave rectifying circuit, and the zero-point adjusting A gain adjustment circuit that adjusts the gain of the output signal of the third full-wave rectifier circuit in a subsequent stage of the circuit, and a second compensation that differentially amplifies the first compensation differential amplifier output and the gain adjustment circuit output. Difference A signal processing circuit for a magnetostrictive strain sensor, characterized in that the differential amplification output of the second compensation differential amplifier is used as an input of the low-pass filter.
【請求項2】 前記磁歪式歪センサに適用される信号処
理回路において、 前記検出用差動アンプから高周波分を通過させて変動分
のみを取り出すACカップリング装置と、前記検出用差
動アンプの出力信号と前記ACカップリング装置の出力
信号を差動増幅する第1の補償用差動アンプと、前記A
Cカップリング装置の出力を全波整流する第3の全波整
流回路と、前記第3の全波整流回路の出力の零点を調整
する零点調整回路と、前記零点調整回路の後段に前記第
3の全波整流回路の出力信号のゲインを調整するゲイン
調整回路と、前記第1の補償用差動アンプ出力と前記ゲ
イン調整回路出力を差動増幅する第2の補償用差動アン
プとを備え、前記第2の補償用差動アンプの差動増幅出
力を前記ローパスフィルタの入力とすることを特徴とす
る磁歪式歪センサの信号処理回路。
2. A signal processing circuit applied to the magnetostrictive strain sensor, comprising: an AC coupling device for passing a high frequency component from the detection differential amplifier and extracting only a variation component; and a detection differential amplifier. A first compensating differential amplifier for differentially amplifying an output signal and an output signal of the AC coupling device;
A third full-wave rectifying circuit for full-wave rectifying the output of the C coupling device, a zero-point adjusting circuit for adjusting the zero point of the output of the third full-wave rectifying circuit, and the third stage after the zero-point adjusting circuit. A gain adjustment circuit that adjusts the gain of the output signal of the full-wave rectification circuit, and a second compensation differential amplifier that differentially amplifies the first compensation differential amplifier output and the gain adjustment circuit output. A signal processing circuit for a magnetostrictive strain sensor, wherein a differential amplification output of the second compensation differential amplifier is used as an input of the low pass filter.
【請求項3】 前記磁歪式歪センサに適用される信号処
理回路において、 前記検出用差動アンプから変動分のみを取り出すバンド
パスフィルタと、前記バンドパスフィルタの出力を全波
整流する第3の全波整流回路と、前記第3の全波整流回
路の出力の零点を調整する零点調整回路と、前記零点調
整回路の後段に前記第3の全波整流回路の出力信号のゲ
インを調整するゲイン調整回路と、前記検出用差動アン
プの出力を受けその変動周波数を阻止域中心とするノッ
チフィルタと、前記ノッチフィルタの出力信号と前記ゲ
イン調整回路の出力を差動増幅する補償用差動アンプと
を備え、前記補償用差動アンプの差動増幅出力を前記ロ
ーパスフィルタの入力とすることを特徴とする磁歪式歪
センサの信号処理回路。
3. A signal processing circuit applied to the magnetostrictive strain sensor, comprising: a bandpass filter for extracting only a fluctuation component from the detection differential amplifier; and a third-wave rectifying the output of the bandpass filter. A full-wave rectification circuit, a zero-point adjustment circuit that adjusts the zero point of the output of the third full-wave rectification circuit, and a gain that adjusts the gain of the output signal of the third full-wave rectification circuit after the zero-point adjustment circuit. An adjustment circuit, a notch filter that receives the output of the detection differential amplifier and has its fluctuation frequency in the center of the stop band, and a compensation differential amplifier that differentially amplifies the output signal of the notch filter and the output of the gain adjustment circuit. And a differential amplification output of the compensation differential amplifier as an input of the low-pass filter.
【請求項4】 前記磁歪式歪センサに適用される信号処
理回路において、 前記検出用差動アンプから高周波分を通過させて変動分
のみを取り出すACカップリング装置と、前記ACカッ
プリング装置の出力を全波整流する第3の全波整流回路
と、前記第3の全波整流回路の出力の零点を調整する零
点調整回路と、前記零点調整回路の後段に前記第3の全
波整流回路の出力信号のゲインを調整するゲイン調整回
路と、前記検出用差動アンプの出力を受けその変動周波
数を阻止域中心とするノッチフィルタと、前記ノッチフ
ィルタの出力信号と前記ゲイン調整回路の出力を差動増
幅する補償用差動アンプとを備え、補償用差動アンプの
差動増幅出力を前記ローパスフィルタの入力とすること
を特徴とする磁歪式歪センサの信号処理回路。
4. A signal processing circuit applied to the magnetostrictive strain sensor, wherein an AC coupling device for extracting a fluctuation component by passing a high frequency component from the detection differential amplifier, and an output of the AC coupling device. A full-wave rectifying circuit for full-wave rectifying, a zero-point adjusting circuit for adjusting the zero point of the output of the third full-wave rectifying circuit, and a third full-wave rectifying circuit at a stage subsequent to the zero-point adjusting circuit. A gain adjustment circuit that adjusts the gain of the output signal, a notch filter that receives the output of the detection differential amplifier and has its fluctuation frequency at the center of the stop band, and a difference between the output signal of the notch filter and the output of the gain adjustment circuit. A signal processing circuit for a magnetostrictive strain sensor, comprising: a compensation differential amplifier that dynamically amplifies, wherein a differential amplification output of the compensation differential amplifier is used as an input of the low-pass filter.
【請求項5】 前記磁歪式歪センサに適用される信号処
理回路において、 前記検出用差動アンプの両入力端から変動分のみを取り
出す1対のバンドパスフィルタと、前記バンドパスフィ
ルタの出力信号を差動増幅する第1の補償用差動アンプ
と、前記検出用差動アンプの出力と前記第1の補償用差
動アンプの出力を差動増幅し前記検出用差動アンプとゲ
インを同じくする第2の補償用差動アンプとを備え、前
記第2の補償用差動アンプの差動増幅出力を前記ローパ
スフィルタの入力とすることを特徴とする磁歪式歪セン
サの信号処理回路。
5. A signal processing circuit applied to the magnetostrictive strain sensor, wherein a pair of bandpass filters for extracting only fluctuations from both input terminals of the detection differential amplifier, and an output signal of the bandpass filter. A first differential amplifier for compensation, which differentially amplifies the output of the differential amplifier for detection and the output of the first differential amplifier for compensation to have the same gain as the differential amplifier for detection. A signal processing circuit for a magnetostrictive strain sensor, characterized in that a differential amplification output of the second compensation differential amplifier is used as an input of the low-pass filter.
【請求項6】 前記磁歪式歪センサに適用される信号処
理回路において、 前記検出用差動アンプの出力から変動分のみを取り出す
バンドパスフィルタと、前記検出用差動アンプの出力と
前記バンドパスフィルタの出力を差動増幅する補償用差
動アンプとを備え、前記補償用差動アンプの差動増幅出
力を前記ローパスフィルタの入力とすることを特徴とす
る磁歪式歪センサの信号処理回路。
6. A signal processing circuit applied to the magnetostrictive strain sensor, wherein a bandpass filter for extracting only a variation from the output of the detection differential amplifier, an output of the detection differential amplifier and the bandpass filter. A signal processing circuit for a magnetostrictive strain sensor, comprising: a compensation differential amplifier that differentially amplifies an output of the filter, wherein a differential amplification output of the compensation differential amplifier is used as an input of the low-pass filter.
JP4480194A 1994-02-19 1994-02-19 Signal processing circuit for magnetostrictive strain gauge Pending JPH07229801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4480194A JPH07229801A (en) 1994-02-19 1994-02-19 Signal processing circuit for magnetostrictive strain gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4480194A JPH07229801A (en) 1994-02-19 1994-02-19 Signal processing circuit for magnetostrictive strain gauge

Publications (1)

Publication Number Publication Date
JPH07229801A true JPH07229801A (en) 1995-08-29

Family

ID=12701535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4480194A Pending JPH07229801A (en) 1994-02-19 1994-02-19 Signal processing circuit for magnetostrictive strain gauge

Country Status (1)

Country Link
JP (1) JPH07229801A (en)

Similar Documents

Publication Publication Date Title
JP3916821B2 (en) Magnetic levitation controller
US5522269A (en) Apparatus and method for transducing torque applied to a magnetostrictive shaft while minimizing temperature induced variations
WO2017077870A1 (en) Magnetic field detection device and magnetic field detection method
JPS6329244A (en) Eddy-current surface defect detector
JPH07229801A (en) Signal processing circuit for magnetostrictive strain gauge
JP3971895B2 (en) Differential magnetic sensor device
JPH02500775A (en) Stationary magnetic field or time-varying magnetic field measuring device
JPH06323930A (en) Disurbing magnetic-field noise compensation device of magnetostrictive torque sensor
CN114487932A (en) High-precision parallel measurement method for asymmetric coupling factors of differential transformer
JP3220281B2 (en) Magnetic bearing device
JP3161867B2 (en) Magnetostrictive torque sensor
EP1548658A1 (en) Magnetic material amount detecting apparatus
JPH072943U (en) Magnetostrictive torque sensor
JP2816528B2 (en) Torque detector
JPH08271359A (en) Magnetostrictive strain sensor
JP2759303B2 (en) Stress detector
JP3213041B2 (en) Sensor circuit of electromagnetic induction type sensor
JPH0545537U (en) Magnetostrictive torque sensor
JPS6039552A (en) Eddy current flaw detector
JPH10267688A (en) Signal processing method, method for detecting defect of steel board, and their device
JPH04357428A (en) Compensating apparatus for temperature characteristic of torque sensor
JP2001330405A (en) Electromagnetic induction type displacement detecting device
JPH05113301A (en) Sensor circuit of electromagnetic induction type sensor
JPH0854475A (en) Metal detector
CN114428220A (en) High-precision series measurement method for asymmetric factors of differential transformer