JPH06323686A - Heat pump type concentration difference heat accumulator and operation thereof - Google Patents

Heat pump type concentration difference heat accumulator and operation thereof

Info

Publication number
JPH06323686A
JPH06323686A JP11049393A JP11049393A JPH06323686A JP H06323686 A JPH06323686 A JP H06323686A JP 11049393 A JP11049393 A JP 11049393A JP 11049393 A JP11049393 A JP 11049393A JP H06323686 A JPH06323686 A JP H06323686A
Authority
JP
Japan
Prior art keywords
heat
heat storage
liquid
heat pump
concentration difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11049393A
Other languages
Japanese (ja)
Inventor
Akira Yamada
章 山田
Toshisuke Onoda
利介 小野田
Katsuya Ebara
勝也 江原
Shuzo Sano
周造 佐野
Hisataka Enomoto
久孝 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Hitachi Ltd
Original Assignee
Kansai Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Hitachi Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP11049393A priority Critical patent/JPH06323686A/en
Publication of JPH06323686A publication Critical patent/JPH06323686A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To contribute to the energy saving at the time of heat accumulation type air conditioning and at the time of heat accumulation by a hot water supplying device, improve the rising property and power saving at the time of heat radiation and unify the power load between daytime and nighttime by an increase of transfer rate of power use from the day time to the nighttime. CONSTITUTION:A heat pump type concentration difference heat accumulator is constituted of a combination of a compression type heat pump device including a compressor 1, a condenser 2, an expansion valve 3, an evaporator 4 and a preheater 16, and a concentration difference heat accumulator including a condensing container 5, a diluting container 6, a heat accumulating liquid storing tank 7 and a condensed liquid storing tank 8. A heat exchanger 16 is provided between a high temperature refrigerant gas system and a system to supply heat accumulating liquid from the heat accumulating liquid storing tank 7 to the condensing container 5 of the compression type heat pump device. Further, a cooler 11 is provided in a system to supply condensed heat accumulating liquid from the condensing container 5 to the condensed liquid storing tank 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、昼夜間の電力負荷の平
準化を目的として、夜間電力により蓄熱し、昼間に冷房
を行う装置に関し、特に省電力化に好適な蓄熱型冷房シ
ステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for storing heat by night-time electric power and cooling during the daytime for the purpose of leveling an electric power load during the day and night, and more particularly to a heat storage type cooling system suitable for power saving.

【0002】[0002]

【従来の技術】発電設備の昼夜間稼働率を安定させる方
策として、昼夜間の電力負荷を平準化させることが望ま
れている。特に、夏季冷房期に電力の昼夜間負荷変動が
大きく、昼間の電力供給側の能力が限界に近くなってい
る現状では、発電設備の負担が小さい夜間に冷房装置を
運転して蓄熱しておき、発電設備に大きな負担がかかる
昼間に冷熱を取り出す蓄熱型冷房装置が望まれている。
2. Description of the Related Art As a measure for stabilizing the operating rate of day and night of power generation equipment, it is desired to level the electric load during the day and night. Especially in the current situation where the load fluctuation of electric power during the summer cooling period is large and the capacity of the power supply side in the daytime is close to the limit, the cooling device is operated to store heat at night when the load on the power generation facility is small. There is a demand for a heat storage type cooling device that takes out cold heat during the daytime when a heavy load is placed on the power generation equipment.

【0003】そのような蓄熱型冷房装置の一例として、
本出願人らは、先に圧縮式ヒートポンプ装置と濃度差蓄
熱装置とを組合せ、前者の凝縮器を後者の加熱器として
用い、前者の蒸発器を後者の凝縮器として用いるヒート
ポンプ式濃度差蓄熱装置を提案した(特開平4ー260
759号公報)。図5は、その系統図である。
As an example of such a heat storage type cooling device,
The present applicants previously combined a compression heat pump device and a concentration difference heat storage device, used the former condenser as the latter heater, and used the former evaporator as the latter condenser heat pump concentration difference heat storage device. (Japanese Patent Laid-Open No. 4-260)
759). FIG. 5 is a system diagram thereof.

【0004】圧縮式ヒートポンプ装置は、冷媒を圧縮す
る圧縮機1、空気熱交換型の凝縮器(暖房運転時には蒸
発器となる)2、冷媒を断熱膨張させる膨張弁3、室内
空調器10の媒体と冷媒とを熱交換させる水熱交換型の
蒸発器(暖房運転時には凝縮器となる)4、四方切り替
え弁1000、及びそれらを接続する系統(以下、系と
記す)100,110,140,…,190を有して構
成されている。
The compression heat pump device includes a compressor 1 for compressing a refrigerant, an air heat exchange type condenser (which serves as an evaporator during heating operation) 2, an expansion valve 3 for adiabatically expanding the refrigerant, and a medium of an indoor air conditioner 10. A water-heat exchange type evaporator (which serves as a condenser during heating operation) 4 for exchanging heat between the refrigerant and the refrigerant, a four-way switching valve 1000, and a system (hereinafter, referred to as a system) 100, 110, 140, which connects them. , 190.

【0005】一方、濃度差蓄熱装置は、蓄熱液を濃縮す
る濃縮容器5、蓄熱液を希釈する希釈容器6、蓄熱液貯
槽7、凝縮液貯槽8、熱回収器11、蓄熱液貯槽7内の
蓄熱液を熱回収器11に送り込むポンプ15、凝縮液貯
槽8内の凝縮液を希釈容器6に送り込むポンプ14、及
びそれらを接続する系360,370,…,510を有
して構成されている。
On the other hand, the concentration difference heat storage device includes a concentrating container 5 for concentrating the heat storage liquid, a diluting container 6 for diluting the heat storage liquid, a heat storage liquid storage tank 7, a condensate storage tank 8, a heat recovery unit 11, and a heat storage liquid storage tank 7. A pump 15 that sends the heat storage liquid to the heat recovery device 11, a pump 14 that sends the condensate in the condensate storage tank 8 to the dilution container 6, and a system 360, 370, ... .

【0006】濃縮容器5及び希釈容器6は、それぞれ一
時的に蓄熱液を貯蔵する蓄熱液室55,65と凝縮液を
貯蔵する凝縮液室56,66とを有しており、これらの
室は相互に蒸気が移動できるように連通している。な
お、連通個所には、移動する蒸気に随伴されるミスト
(微細液滴)を除去するためのエリミネータ等の装置
(図示せず)が設けられる。さらに、濃縮容器5の濃縮
蓄熱液室55内には、加熱器51及び該加熱器に蓄熱液
を散布するための液散布器53が収納され、凝縮液室5
6内には、蒸気を凝縮させる凝縮器52が収納されてい
る。また、希釈容器6の蓄熱液室65内には、吸収器6
1及び該吸収器に蓄熱液を散布するための液散布器63
が収納され、凝縮液室66内には、蒸発器62及び該蒸
発器に凝縮液を散布するための液散布器64が収納され
ている。
The concentrating container 5 and the diluting container 6 respectively have heat storage liquid chambers 55 and 65 for temporarily storing a heat storage liquid and condensate liquid chambers 56 and 66 for storing a condensate liquid. They are connected so that steam can move between them. In addition, a device (not shown) such as an eliminator for removing mist (fine droplets) accompanying the moving vapor is provided at the communicating point. Further, in the concentrated heat storage liquid chamber 55 of the concentration container 5, a heater 51 and a liquid sprayer 53 for spraying the heat storage liquid to the heater are housed, and the condensed liquid chamber 5
A condenser 52 for condensing the vapor is housed in the inside of the container 6. Further, in the heat storage liquid chamber 65 of the dilution container 6, the absorber 6
1 and a liquid sprayer 63 for spraying a heat storage liquid to the absorber
In the condensate chamber 66, an evaporator 62 and a liquid sprayer 64 for spraying the condensate to the evaporator are housed.

【0007】蓄熱液貯槽7の上部ノズルと下部ノズルの
先には、それぞれ3方弁(以下、弁と記す)1120,
1100が接続されている。さらに、これらの弁112
0,1100には、それぞれ蓄熱液戻りライン430,
460と蓄熱液排出ライン360,370が接続されて
いる。その他の構成機器として、冷水塔9、室内空調器
10及び給湯熱交換器12が設けられている。
At the tip of the upper nozzle and the lower nozzle of the heat storage liquid storage tank 7, a three-way valve (hereinafter referred to as a valve) 1120,
1100 is connected. In addition, these valves 112
The heat storage liquid return lines 430, 0, 1100,
The heat storage liquid discharge lines 360 and 370 are connected to each other. As other components, a cold water tower 9, an indoor air conditioner 10, and a hot water supply heat exchanger 12 are provided.

【0008】[0008]

【発明が解決しようとする課題】濃度差蓄熱装置におい
て、蓄熱液の濃縮時に濃縮された濃縮蓄熱液が高温のま
ま貯留されると、冷房時即ち希釈操作時にこの高温の蓄
熱液を冷却する必要があり、蓄熱液の冷却が完了するま
では冷房に供することが可能な温度の冷水が発生しない
ので、冷房起動時間が長くなる。そのため、第5図に示
す従来例では、濃縮後の高温の蓄熱液と低温の蓄熱液と
を熱回収器11で熱交換して、できるだけ温度を下げて
貯留する方法を採用している。
In the concentration difference heat storage device, if the concentrated heat storage liquid concentrated at the time of concentrating the heat storage liquid is stored at a high temperature, it is necessary to cool this high temperature heat storage liquid at the time of cooling, that is, at the time of dilution operation. Therefore, until the cooling of the heat storage liquid is completed, chilled water having a temperature that can be used for cooling is not generated, so that the cooling activation time becomes long. Therefore, in the conventional example shown in FIG. 5, a method is adopted in which heat is exchanged between the concentrated high-temperature heat storage liquid and the low-temperature heat storage liquid in the heat recovery device 11, and the temperature is reduced as much as possible and stored.

【0009】しかし、蓄熱運転時間の経過と共に貯留液
の温度が次第に上昇し、濃縮後の高温の蓄熱液の冷却効
果が低下する欠点があった。また、起動時間短縮を目的
として、高温の蓄熱液を冷却しながら冷水を発生する方
法も考えられるが、この方法には冷房熱量が減少する欠
点がある。また、従来の濃度差蓄熱装置においては、濃
縮時にヒートポンプ冷媒の凝縮熱量と蒸発熱量との差か
ら、必然的に前記凝縮熱の一部を系外に放出しており、
結果としてヒートポンプの駆動に必要な電気エネルギー
の一部を無駄に消費している。
However, there is a drawback that the temperature of the stored liquid gradually rises with the lapse of the heat storage operation time, and the cooling effect of the high temperature stored heat liquid after concentration is lowered. A method of generating cold water while cooling the high temperature heat storage liquid may be considered for the purpose of shortening the start-up time, but this method has a drawback in that the cooling heat amount decreases. Further, in the conventional concentration difference heat storage device, due to the difference between the heat of condensation of the heat pump refrigerant and the heat of vaporization during the concentration, a part of the heat of condensation is inevitably released to the outside of the system,
As a result, part of the electric energy required to drive the heat pump is wasted.

【0010】本発明は、このような従来技術の欠点に鑑
みてなされたものであり、第一に蓄熱型冷房装置の蓄熱
時の省電力化を図ること、第二に冷房出熱時における起
動時間の短縮を図ること、第三に夜間電力利用率を高め
昼夜間の電力負荷平準化に寄与することを目的とする。
The present invention has been made in view of the above-mentioned drawbacks of the prior art. Firstly, it is intended to save electric power during heat storage of the heat storage type cooling device, and secondly, start at the time of heat output from cooling. The purpose is to shorten the time, and thirdly to increase the nighttime power utilization rate and contribute to the leveling of the power load during the day and night.

【0011】[0011]

【課題を解決するための手段】本発明では、圧縮式ヒー
トポンプ装置と濃度差蓄熱装置とを組み合わせたヒート
ポンプ式濃度差蓄熱装置において、濃度差蓄熱装置にお
ける蓄熱液の濃縮時に圧縮式ヒートポンプ装置の冷媒凝
縮熱によって蓄熱液を予熱する運用をすることによっ
て、また濃縮蓄熱液を冷却して貯留する運用をすること
によって前記目的を達成する。
According to the present invention, in a heat pump type concentration difference heat storage device in which a compression heat pump device and a concentration difference heat storage device are combined, a refrigerant of the compression heat pump device at the time of concentrating the heat storage liquid in the concentration difference heat storage device. The object is achieved by preheating the heat storage liquid with heat of condensation and by cooling and storing the concentrated heat storage liquid.

【0012】また、本発明では、圧縮式ヒートポンプ装
置と濃度差蓄熱装置とを組み合わせたヒートポンプ式濃
度差蓄熱装置において、圧縮式ヒートポンプ装置の高温
冷媒ガス系統と濃縮容器に蓄熱液貯槽から蓄熱液を供給
する系統との間に熱交換器を設けることによって、また
濃縮容器から濃縮蓄熱液を濃縮液貯槽に供給する系統に
該濃縮蓄熱液を冷却する手段を設けることによって前記
した運用を可能にする。
Further, according to the present invention, in the heat pump type concentration difference heat storage device in which the compression type heat pump device and the concentration difference heat storage device are combined, the heat storage liquid is stored from the heat storage liquid storage tank to the high temperature refrigerant gas system and the concentration container of the compression heat pump device. The above-described operation is enabled by providing a heat exchanger between the system for supplying the concentrated heat storage liquid and the system for supplying the concentrated heat storage liquid from the concentration container to the concentrate storage tank by means for cooling the concentrated heat storage liquid. .

【0013】[0013]

【作用】濃度差蓄熱装置における蓄熱操作は、ヒートポ
ンプ冷媒の凝縮熱で蓄熱液を加熱して蒸発せしめ、発生
した蒸気を冷媒の蒸発熱で凝縮せしめるものである。こ
こで、原理的にヒートポンプ冷媒の凝縮熱量は蒸発熱量
より大きいので、凝縮熱の一部を蓄熱液の予熱に利用す
ることで、上述した熱量差が解消され、合わせて熱効率
が向上する。
The heat storage operation in the concentration difference heat storage device is to heat and evaporate the heat storage liquid with the heat of condensation of the heat pump refrigerant, and to condense the generated vapor with the heat of evaporation of the refrigerant. Here, in principle, the amount of heat of condensation of the heat pump refrigerant is larger than the amount of heat of evaporation, so by utilizing a part of the heat of condensation for preheating the heat storage liquid, the above-mentioned difference in the amount of heat is eliminated and the heat efficiency is also improved.

【0014】また、蓄熱時に濃縮蓄熱液を冷却して貯蔵
することにより、冷房出熱操作における起動特性を改善
し、合わせて省電力化を図ることが可能となる。すなわ
ち、冷房出熱時は、濃縮蓄熱液を環境温度(通常は冷水
塔で得られる冷却水)で冷却することにより蒸気圧が低
下し、蒸気を吸収する現象を利用して低温を得るもので
ある。従って、濃縮蓄熱液の温度が低ければ低いほどそ
の吸収能力が強まり低温を得る環境が整っていることに
なる。本発明では蓄熱時に蓄熱液を濃縮した後冷却しな
がら蓄熱液貯槽に貯留しているので、冷房出熱が速やか
に実行でき、その結果冷房起動時間が短縮される。
Further, by cooling and storing the concentrated heat storage liquid at the time of heat storage, it is possible to improve the starting characteristics in the cooling heat output operation and also to save power. That is, at the time of heat output from cooling, the vapor pressure is lowered by cooling the concentrated heat storage liquid at the ambient temperature (usually the cooling water obtained in the cold water tower), and a low temperature is obtained by utilizing the phenomenon of absorbing vapor. is there. Therefore, the lower the temperature of the concentrated heat storage liquid is, the stronger its absorption capacity is, and the environment for obtaining a low temperature is prepared. According to the present invention, the heat storage liquid is concentrated and then stored in the heat storage liquid storage tank while being cooled, so that the cooling heat output can be promptly executed, and as a result, the cooling start time can be shortened.

【0015】[0015]

【実施例】以下、本発明の一実施例を第1図〜第4図を
用いて説明する。図1は、本発明の一実施例であるヒー
トポンプ式濃度差蓄熱装置の系統を示す。図1におい
て、図5に示した従来例と同一の機能を有する部分には
同一の符号を付し、説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows a system of a heat pump type concentration difference heat storage device which is an embodiment of the present invention. In FIG. 1, portions having the same functions as those of the conventional example shown in FIG.

【0016】本実施例においては、図5における熱回収
器11に代えて、系380に予熱器16を設け、また系
410に冷却塔9に接続された冷却器11を設けてい
る。以下の説明では、ヒートポンプ装置内を循環する冷
媒としてR−22を、冷水塔9、室内空調器10、給湯
熱交換器12等を通る媒体として水を使用するものとす
るが、これに限られるものではない。凝縮器2、蒸発器
4も図示した空気熱交換型、水熱交換型に限定されるも
のではない。また、蓄熱液としては一般にLiBr水溶
液等の塩類水溶液が用いられており、したがって凝縮液
は水となる。
In this embodiment, a preheater 16 is provided in the system 380, and a cooler 11 connected to the cooling tower 9 is provided in the system 410 instead of the heat recovery device 11 in FIG. In the following description, R-22 is used as the refrigerant circulating in the heat pump device, and water is used as the medium passing through the cold water tower 9, the indoor air conditioner 10, the hot water supply heat exchanger 12, etc., but is not limited to this. Not a thing. The condenser 2 and the evaporator 4 are not limited to the illustrated air heat exchange type or water heat exchange type. Further, as the heat storage liquid, an aqueous salt solution such as an LiBr aqueous solution is generally used, and therefore the condensate becomes water.

【0017】以上の機器構成と系統により実施する冷房
操作、暖房・給湯操作について図2を用いて説明する。
図2には、図1に示した系統のうち蓄熱操作に係る系統
のみに番号を付して示す。圧縮機1で圧縮され、温度と
圧力が上昇したR−22のガスは、系100、四方切り
替え弁1000、系110を流れ、弁1010により、
系120へと流れる。濃度差蓄熱装置の濃縮容器5内の
空気等の非凝縮性ガスは抽気により排除されており、該
濃縮容器5に収納されている加熱器51の熱交換器の伝
熱管内に、前記した系120からのR−22ガスが流入
する。この時、蓄熱液は貯槽からポンプ15により系3
80を経て予熱器16へ流れ、R−22ガスの凝縮熱に
より予熱された後、系400を経て該濃縮容器の液散布
器53へ導入され、前記加熱器の熱交換器伝熱管外に散
布される。この操作により蓄熱液は加熱されて水蒸気が
発生する。一方、R−22ガスは湿りガスとなって、系
130、弁1020、系140、141を経て余熱器1
6へ導入される。
A cooling operation, a heating operation, and a hot water supply operation carried out by the above device configuration and system will be described with reference to FIG.
In FIG. 2, only the systems related to the heat storage operation among the systems shown in FIG. 1 are numbered and shown. The gas of R-22, which has been compressed by the compressor 1 and whose temperature and pressure have risen, flows through the system 100, the four-way switching valve 1000, and the system 110, and by the valve 1010,
Flows to system 120. The non-condensable gas such as air in the concentration container 5 of the concentration difference heat storage device is removed by bleeding, and the above system is provided in the heat transfer tube of the heat exchanger of the heater 51 housed in the concentration container 5. R-22 gas from 120 flows in. At this time, the heat storage liquid is transferred from the storage tank to the system 3 by the pump 15.
After passing through 80 to the preheater 16 and being preheated by the heat of condensation of the R-22 gas, it is introduced into the liquid distributor 53 of the concentrating container via the system 400 and sprayed outside the heat exchanger heat transfer tube of the heater. To be done. By this operation, the heat storage liquid is heated and steam is generated. On the other hand, the R-22 gas becomes a wet gas, and passes through the system 130, the valve 1020, the systems 140, 141, and the preheater 1
6 is introduced.

【0018】予熱器16では前述した如く系380によ
り蓄熱液が濃縮容器へ補給されており、該蓄熱液とR−
22湿りガスが熱交換して、蓄熱液は昇温しR−22湿
りガスは液化し、さらには過冷却される。その後系14
2、150により膨張弁3へと流れ、断熱膨張して低温
低圧の湿りガスとなって、系160、弁1030、系2
10を経て凝縮器52の熱交換伝熱管内へ導入される。
In the preheater 16, the heat storage liquid is supplied to the concentration container by the system 380 as described above, and the heat storage liquid and R-
The 22 moist gas exchanges heat, the temperature of the heat storage liquid rises, the R-22 moist gas is liquefied, and further supercooled. Then system 14
2 and 150 flow to the expansion valve 3 and adiabatically expand to a low-temperature low-pressure wet gas, and the system 160, the valve 1030, the system 2
It is introduced into the heat exchange heat transfer tube of the condenser 52 via 10.

【0019】該凝縮器52の伝熱管外には、前述した水
蒸気が接触しているため、R−22は飽和ガスになると
共に、水蒸気は冷却されて凝縮水となる。前記R−22
ガスは、系220、弁1040、系190、四方切り替
え弁1000、系200を経て再び圧縮機1へ導入され
る。一方、凝縮水は系510、弁1150、系500を
経て貯槽8へ導入される。
Since the above-mentioned water vapor is in contact with the outside of the heat transfer tube of the condenser 52, R-22 becomes saturated gas and the water vapor is cooled to be condensed water. R-22
The gas is introduced into the compressor 1 again through the system 220, the valve 1040, the system 190, the four-way switching valve 1000, and the system 200. On the other hand, the condensed water is introduced into the storage tank 8 through the system 510, the valve 1150, and the system 500.

【0020】蒸発濃縮された蓄熱液は系410を経て、
冷却器11において冷水塔9からの冷却水系241によ
り冷却され、弁1130、系430、460、弁110
0を経由して、蓄熱液貯槽7の底部へ導入される。以上
により、蓄熱液は濃縮後冷却されて貯蔵される。後述す
るように、この濃縮蓄熱液は水蒸気を吸収する性質を強
めており、結果的に蓄熱したことになる。
The evaporatively concentrated heat storage liquid passes through a system 410,
In the cooler 11, the cooling water system 241 from the cold water tower 9 cools the valve 1130, the systems 430 and 460, and the valve 110.
It is introduced into the bottom of the heat storage liquid storage tank 7 via 0. As described above, the heat storage liquid is concentrated and then cooled and stored. As will be described later, this concentrated heat storage liquid has an enhanced property of absorbing water vapor, and as a result, it stores heat.

【0021】次に、図3を用いて冷房用の出熱について
説明する。図3には、第1図に示した系統のうち冷房操
作に係る系統のみ番号を付して示してある。圧縮機1で
圧縮され、温度と圧力が上昇したR−22ガスは、前記
蓄熱操作と同様の流れで弁1010まで到達し、さらに
弁1020、系140を経て凝縮器2へ導入される。凝
縮器2の伝熱管21は空気等で冷却されており、R−2
2ガスは液化された後、系150を経て、膨張弁3を通
過する際に断熱膨張して低温低圧の湿りガスとなる。そ
の後、弁1030、系170を経て、蒸発器4へ導入さ
れる。
Next, the heat output for cooling will be described with reference to FIG. In FIG. 3, only the systems related to the cooling operation among the systems shown in FIG. 1 are numbered and shown. The R-22 gas, which has been compressed by the compressor 1 and whose temperature and pressure have increased, reaches the valve 1010 in the same flow as in the heat storage operation, and is further introduced into the condenser 2 via the valve 1020 and the system 140. The heat transfer tube 21 of the condenser 2 is cooled by air or the like, and R-2
The two gases are liquefied and then pass through the system 150 and undergo adiabatic expansion when passing through the expansion valve 3 to become low-temperature low-pressure wet gas. Then, it is introduced into the evaporator 4 via the valve 1030 and the system 170.

【0022】蒸発器4の熱交換器41の伝熱管内には、
後述するように濃度差蓄熱装置の蒸発器62で(例えば
約10℃まで)冷却された冷水が系280から導入され
ており、この冷水は蒸発器4でさらに(例えば約7℃ま
で)冷却されて、系310、330、弁1090、系3
50を経て、室内空調機10の伝熱管101ヘと導入さ
れる。
In the heat transfer tube of the heat exchanger 41 of the evaporator 4,
As will be described later, cold water cooled in the evaporator 62 of the concentration difference heat storage device (for example, to about 10 ° C.) is introduced from the system 280, and this cold water is further cooled (for example, to about 7 ° C.) in the evaporator 4. System 310, 330, valve 1090, system 3
After 50, it is introduced into the heat transfer tube 101 of the indoor air conditioner 10.

【0023】この作用により、R−22は蒸発して飽和
ガス付近の状態となり、系180、弁1040、系19
0、四方切り替え弁1000及び系200を経て、再び
圧縮機1へ導入される。一方濃度差蓄熱装置の希釈容器
6(図示していないが、非凝縮性ガスは抽気系により排
除されている)の吸収器61には、ポンプ12により管
内を冷却塔9からの冷却水が循環しており、管外は蓄熱
液貯槽7の底部からポンプ15、液散布器63等により
濃縮蓄熱液が散布されているために、希釈容器6内は低
圧に保持される。
By this action, R-22 evaporates to a state near saturated gas, and the system 180, valve 1040, system 19
0, the four-way switching valve 1000, and the system 200, and is again introduced into the compressor 1. On the other hand, the cooling water from the cooling tower 9 is circulated in the pipe by the pump 12 in the absorber 61 of the dilution container 6 (not shown, the non-condensable gas is removed by the extraction system) of the concentration difference heat storage device. Since the concentrated heat storage liquid is sprayed outside the pipe from the bottom of the heat storage liquid storage tank 7 by the pump 15, the liquid sprayer 63, etc., the inside of the dilution container 6 is kept at a low pressure.

【0024】さらに、蒸発器62には、管内を前記した
室内空調機10の出熱交換器101で(例えば約12℃
まで)昇温された冷水が、系340、弁1080、系3
20、弁1070、系300、ポンプ13、系290に
より導入されており、管外は凝縮水貯槽8からポンプ1
4、液散布器64等により凝縮水が散布されている。こ
のような作用により前記凝縮水は低温で蒸発し、該蒸発
潜熱は系290から導入される冷水を降温せしめ、降温
した冷水は系280より前記した蒸発器4へと流れる。
Further, the evaporator 62 is provided with the heat output exchanger 101 of the indoor air conditioner 10 (for example, about 12 ° C.).
Up to the cold water that has been heated up to the system 340, valve 1080, system 3
20, the valve 1070, the system 300, the pump 13, and the system 290 are introduced, and the outside of the pipe is from the condensed water storage tank 8 to the pump 1
4. Condensed water is sprayed by the liquid sprayer 64 and the like. With such an action, the condensed water evaporates at a low temperature, the latent heat of vaporization lowers the temperature of the cold water introduced from the system 290, and the cooled cold water flows from the system 280 to the evaporator 4 described above.

【0025】以上のように冷房出熱操作は、室内から熱
を奪って昇温(例えば約12℃)した冷水を、はじめに
濃度差蓄熱装置の希釈容器6で(例えば約10℃に)降
温し、次に圧縮式サイクルの蒸発器4でさらに降温して
所定温度(例えば約7℃)の冷水を得る。ここで、予熱
器16の作用について図2及び図4を用いて説明する。
As described above, in the cooling heat output operation, the cold water that has taken heat from the room to raise its temperature (for example, about 12 ° C.) is first cooled in the dilution container 6 of the concentration difference heat storage device (for example, to about 10 ° C.). Then, the temperature is further lowered in the evaporator 4 of the compression cycle to obtain cold water having a predetermined temperature (for example, about 7 ° C.). Here, the operation of the preheater 16 will be described with reference to FIGS. 2 and 4.

【0026】図4は典型的なヒートポンプサイクルにお
ける冷媒の状態を表したもので、横軸にエンタルピー、
縦軸に圧力をとり、温度をパラメータとして飽和液線、
飽和蒸気線及び湿り度線を示してある。図2に示したよ
うに、圧縮機1で圧縮されたR−22は、高温高圧の過
熱蒸気(図4中にaで示す、以後aと記す)となり、濃
縮容器5の熱交換器51に導入されて凝縮し、湿り蒸気
となる。図4のbの位置であり、該位置は(d−c’)
=(a−b)から決定される。この湿り蒸気は予熱器1
6へ導入されて飽和液b’又は過冷却液b”となった
後、膨張弁3へと流れる。膨張弁3により断熱膨張して
降温し、低温低圧の湿り蒸気c”又はc’となったR−
22は濃縮器5の熱交換器52へ導入されて蒸発し、飽
和蒸気dとなって系220、弁1040、系190等を
経て再び圧縮器1へ導入される。このサイクルにおい
て、濃度差蓄熱の原理から、上述したように(d−
c’)の熱量はほぼ(a−b)の熱量に等しいことか
ら、このサイクルを成立させるにはbからb’まで何ら
かの手段で冷却する必要がある。この冷却は図5の従来
例に見られるように、系外の冷却源(図5では空気)で
冷却していた。したがって、bからb’までの熱は系外
に排出することになり、結果的にR−22の圧縮に要し
た電力を系外に廃棄することとなっていた。
FIG. 4 shows the state of the refrigerant in a typical heat pump cycle. The horizontal axis shows the enthalpy,
The pressure is plotted on the vertical axis, and the saturated liquid line with temperature as a parameter,
The saturated vapor line and the wetness line are shown. As shown in FIG. 2, the R-22 compressed by the compressor 1 becomes high-temperature and high-pressure superheated steam (indicated by “a” in FIG. 4, hereinafter referred to as “a”), and is stored in the heat exchanger 51 of the concentration container 5. It is introduced and condenses into moist steam. It is the position of b of FIG. 4, and this position is (dc ')
= (Ab). This moist steam is preheater 1
6 is introduced into the saturated liquid b ′ or the supercooled liquid b ″ and then flows to the expansion valve 3. The expansion valve 3 adiabatically expands and lowers the temperature to obtain low-temperature low-pressure wet steam c ″ or c ′. R-
22 is introduced into the heat exchanger 52 of the concentrator 5 and evaporated to become saturated vapor d, which is again introduced into the compressor 1 via the system 220, the valve 1040, the system 190 and the like. In this cycle, as described above, (d-
Since the heat quantity of c ′) is almost equal to the heat quantity of (ab), it is necessary to cool b to b ′ by some means in order to establish this cycle. This cooling is performed by a cooling source (air in FIG. 5) outside the system as seen in the conventional example of FIG. Therefore, the heat from b to b'is discharged to the outside of the system, and as a result, the electric power required for the compression of R-22 is to be discarded to the outside of the system.

【0027】これに対し、本発明では予熱器16及び系
141,142を具備することにより、前述したbから
b’までの熱を蓄熱液の昇温に利用することが可能とな
り、結果として電力の浪費を排除できる。さらに、蓄熱
液がより低温である場合にはR−22をb”の位置まで
過冷却することも可能となる。この場合は図4から明ら
かなように凝縮熱量は(d−c”)となって、従来の
(d−c’)よりも凝縮熱量が増大し、その結果ヒート
ポンプの成績係数(一般にCOPと称し、COPは凝縮
熱量(d−c”)を圧縮に要した熱量(a−b)で除し
た値で表す)が向上し、結果として省電力化が図れる。
On the other hand, in the present invention, by providing the preheater 16 and the systems 141 and 142, it becomes possible to utilize the heat from b to b ′ described above for raising the temperature of the heat storage liquid, and as a result, the electric power. Waste of money can be eliminated. Furthermore, when the heat storage liquid is at a lower temperature, it is possible to supercool R-22 to the position of b ″. In this case, the condensation heat quantity is (dc) as shown in FIG. As a result, the heat of condensation increases more than the conventional (dc '), and as a result, the coefficient of performance of the heat pump (generally referred to as COP, COP is the heat of condensation required for compression (a-c-)). (represented by the value divided by b)) is improved, resulting in power saving.

【0028】また、本発明においては、蓄熱時に濃縮蓄
熱液を冷却する方法の一例として図2に示したように冷
水塔9を使用している。冷水塔の運転には当然のことな
がら電力が必要であるが、一般に蓄熱(濃縮)は夜間に
実行されるものであり、安価な夜間電力で冷却を行うこ
とができる。また、夜間は昼間よりも外気温が低下して
いるため、冷却水循環流量低減によるポンプ動力及び冷
水塔ファン動力の削減等の省電力化も図れる。
Further, in the present invention, the cold water tower 9 as shown in FIG. 2 is used as an example of the method for cooling the concentrated heat storage liquid during heat storage. Electric power is, of course, required to operate the cold water tower, but heat storage (concentration) is generally performed at night, and cooling can be performed with inexpensive nighttime power. Further, since the outside air temperature is lower at night than in the daytime, it is possible to reduce power consumption such as reduction of pump power and cooling water tower fan power by reducing cooling water circulation flow rate.

【0029】なお、この実施例では濃度差蓄熱装置で発
生される低温と圧縮式ヒートポンプ装置で発生される低
温をカスケードに接続する場合について説明したが、い
ずれか一方の低温を単独で利用することができるのはも
ちろんである。さらに、系280と系330を接続し、
圧縮式ヒートポンプ装置で発生される低温と濃度差蓄熱
装置で発生される低温を同レベルに設定すると、両者の
低温を並列的に接続して利用することができる。
In this embodiment, the case where the low temperature generated by the concentration difference heat storage device and the low temperature generated by the compression type heat pump device are connected to the cascade has been described, but either one of the low temperatures is used independently. Of course, you can Furthermore, by connecting the system 280 and the system 330,
When the low temperature generated by the compression heat pump device and the low temperature generated by the concentration difference heat storage device are set to the same level, both low temperatures can be connected in parallel and used.

【0030】[0030]

【発明の効果】以上、本発明によれば、圧縮式ヒートポ
ンプ装置と濃度差蓄熱装置とを結合したヒートポンプ式
濃度差蓄熱装置において、蓄熱液の加熱源とした冷媒凝
縮熱の余剰熱で濃縮容器に導入される蓄熱液を予熱する
系統を設け、蓄熱時に冷媒凝縮熱の一部を蓄熱液の余熱
に使うことにより、蓄熱時のヒートポンプ運転のCOP
を改善して省電力化を図ることができる。また、蒸発濃
縮された濃縮蓄熱液を冷却する系統を設け、蓄熱時に濃
縮蓄熱液を冷却して貯蔵することにより、冷房出熱時の
起動特性を改善し、合わせて省電力化を図ることができ
る。さらに、電力負荷を夜間へ移行する率を高め昼夜間
電力負荷平準化に寄与できる効果をも有している。
As described above, according to the present invention, in the heat pump type concentration difference heat storage device in which the compression type heat pump device and the concentration difference heat storage device are combined, the concentrating container is formed by the excess heat of the refrigerant condensation heat used as the heat source of the heat storage liquid. A system that preheats the heat storage liquid that is introduced into the heat storage liquid is provided, and a part of the refrigerant condensation heat is used for the residual heat of the heat storage liquid when the heat is stored.
Can be improved to save power. In addition, by providing a system for cooling the concentrated heat storage liquid that has been evaporated and concentrated, and cooling and storing the concentrated heat storage liquid during heat storage, it is possible to improve the start-up characteristics during cooling heat output and also to conserve power. it can. In addition, it has the effect of increasing the rate of shifting the power load to the nighttime and contributing to the leveling of the power load during the day and night.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成要素と配管系統を示す
図。
FIG. 1 is a diagram showing components and a piping system of an embodiment of the present invention.

【図2】図1のうち蓄熱操作に係る機器及び系統のみに
番号を付した図。
FIG. 2 is a diagram in which only devices and systems related to heat storage operation in FIG. 1 are numbered.

【図3】図1のうち冷房出熱操作に係る機器及び系統に
のみ番号を付した図。
FIG. 3 is a diagram in which only the devices and systems related to the cooling heat output operation in FIG. 1 are numbered.

【図4】典型的なヒートポンプサイクルの冷媒状態図。FIG. 4 is a refrigerant state diagram of a typical heat pump cycle.

【図5】従来例の構成要素と配管系統を示す図。FIG. 5 is a diagram showing components and a piping system of a conventional example.

【符号の説明】[Explanation of symbols]

1・・圧縮機、2・・凝縮器(暖房・給湯操作では蒸発
器となる)、3・・膨張弁、4・・蒸発器(暖房・給湯
操作では凝縮器となる)、5・・濃縮容器、6・・希釈
容器、7・・蓄熱液貯槽、8・・凝縮水貯槽、9・・冷
水塔、10・・室内熱交換器、11・・冷却器、12・
・給湯用熱交換器、16・・予熱器、100〜510・
・配管系統、1000・・四方切り替え弁、1010〜
1170・・切り替え弁
1 ・ ・ Compressor, 2 ・ ・ Condenser (evaporator in heating / hot water supply operation), 3 ・ ・ Expansion valve, 4 ・ ・ Evaporator (condenser in heating / hot water supply operation), 5 ・ ・ Concentration Container, 6 ... Diluting container, 7 ... Heat storage liquid storage tank, 8 ... Condensed water storage tank, 9 ... Cold water tower, 10 ... Indoor heat exchanger, 11 ... Cooler, 12 ...
・ Hot water heat exchanger, 16 ・ ・ Preheater, 100-510 ・
・ Piping system, 1000 ・ ・ 4-way switching valve, 1010
1170 ... Switching valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江原 勝也 東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所内 (72)発明者 佐野 周造 兵庫県尼崎市若王寺三丁目11番20号 関西 電力株式会社総合技術研究所内 (72)発明者 榎本 久孝 兵庫県尼崎市若王寺三丁目11番20号 関西 電力株式会社総合技術研究所内 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Katsuya Ehara 4-6 Kanda Surugadai, Chiyoda-ku, Tokyo Inside Hitachi, Ltd. (72) Inventor Shuzo Sano 3-11-20 Wakaoji, Amagasaki City, Hyogo Prefecture Kansai Electric Power Company (72) Inventor Hisataka Enomoto 3-11-20 Wakaoji, Amagasaki City, Hyogo Prefecture Kansai Electric Power Co., Inc.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、膨張弁、凝縮部及び蒸発部を接
続して冷媒を封入した閉回路を形成してなる圧縮式ヒー
トポンプ装置と、前記圧縮式ヒートポンプ装置の高温部
で蓄熱液を加熱蒸発させて濃縮し低温部で該蒸発蒸気を
冷却凝縮させる濃縮容器、濃縮蓄熱液に凝縮液の蒸気を
吸収させるプロセスを含むプロセスによって低温を発生
する希釈容器、前記濃縮容器及び希釈容器にそれぞれ接
続された蓄熱液貯槽及び凝縮液貯槽を含む濃度差蓄熱装
置とを組み合わせたヒートポンプ式濃度差蓄熱装置にお
いて、 前記圧縮式ヒートポンプ装置の高温冷媒ガス系統と前記
濃縮容器に蓄熱液貯槽から蓄熱液を供給する系統との間
に熱交換器を設けたことを特徴とするヒートポンプ式濃
度差蓄熱装置。
1. A compression type heat pump device comprising a compressor, an expansion valve, a condenser part and an evaporation part which are connected to form a closed circuit in which a refrigerant is sealed, and a heat storage liquid is heated by a high temperature part of the compression heat pump device. Concentration container for evaporating and concentrating and cooling and condensing the vaporized vapor at a low temperature part, dilution container for generating a low temperature by a process including a process of absorbing condensed liquid vapor in a concentrated heat storage liquid, respectively connected to the concentration container and the dilution container In a heat pump type concentration difference heat storage device in which a concentration difference heat storage device including a stored heat storage liquid storage tank and a condensed liquid storage tank is combined, a heat storage liquid is supplied from the heat storage liquid storage tank to the high temperature refrigerant gas system of the compression heat pump device and the concentration container. A heat pump type concentration difference heat storage device, characterized in that a heat exchanger is provided between the heat pump type and the system.
【請求項2】 前記濃縮容器からの濃縮蓄熱液を濃縮液
貯槽に供給する系統に該濃縮蓄熱液を冷却する手段を設
けたことを特徴とする請求項1記載のヒートポンプ式濃
度差蓄熱装置。
2. The heat pump type concentration difference heat storage device according to claim 1, wherein a means for cooling the concentrated heat storage liquid is provided in a system for supplying the concentrated heat storage liquid from the concentration container to a concentrated liquid storage tank.
【請求項3】 冷媒の断熱圧縮によって高温を発生し冷
媒の断熱膨張によって低温を発生する圧縮式ヒートポン
プ装置と、前記圧縮式ヒートポンプ装置で発生された高
温で蓄熱液を加熱蒸発させ前記圧縮式ヒートポンプ装置
で発生された低温で該蒸発蒸気を冷却凝縮させることに
よって前記蓄熱液を濃縮蓄熱液及び凝縮液として貯留し
ておき、前記濃縮蓄熱液に前記凝縮液の蒸気を吸収させ
るプロセスを含むプロセスによって低温を発生する濃度
差蓄熱装置とを組み合わせ、前記圧縮式ヒートポンプ装
置で発生される低温と前記濃度差蓄熱装置で発生される
低温を単独で、あるいは並列又はカスケードに接続して
冷熱源として利用するヒートポンプ式濃度差蓄熱装置の
運用方法において、 前記濃度差蓄熱装置における蓄熱液の濃縮時に前記圧縮
式ヒートポンプ装置の冷媒凝縮熱によって蓄熱液を予熱
することを特徴とするヒートポンプ式濃度差蓄熱装置の
運用方法。
3. A compression heat pump device that generates a high temperature by adiabatic compression of the refrigerant and a low temperature by adiabatic expansion of the refrigerant, and the compression heat pump that heats and evaporates the heat storage liquid at the high temperature generated by the compression heat pump device. By a process including a process of storing the heat storage liquid as a concentrated heat storage liquid and a condensed liquid by cooling and condensing the evaporative vapor at a low temperature generated in an apparatus, and allowing the concentrated heat storage liquid to absorb the vapor of the condensed liquid. In combination with a concentration difference heat storage device that generates a low temperature, the low temperature generated by the compression type heat pump device and the low temperature generated by the concentration difference heat storage device are used alone or connected in parallel or in cascade to be used as a cold heat source. In a method of operating a heat pump type concentration difference heat storage device, the pressure is applied when the heat storage liquid is concentrated in the concentration difference heat storage device. Operation method of a heat pump type density difference thermal storage apparatus characterized by preheating the thermal storage fluid by refrigerant condensing heat equation heat pump apparatus.
【請求項4】 前記濃縮蓄熱液を冷却して貯留すること
を特徴とする請求項3記載のヒートポンプ式濃度差蓄熱
装置の運用方法。
4. The method of operating a heat pump type concentration difference heat storage device according to claim 3, wherein the concentrated heat storage liquid is cooled and stored.
JP11049393A 1993-05-12 1993-05-12 Heat pump type concentration difference heat accumulator and operation thereof Pending JPH06323686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11049393A JPH06323686A (en) 1993-05-12 1993-05-12 Heat pump type concentration difference heat accumulator and operation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11049393A JPH06323686A (en) 1993-05-12 1993-05-12 Heat pump type concentration difference heat accumulator and operation thereof

Publications (1)

Publication Number Publication Date
JPH06323686A true JPH06323686A (en) 1994-11-25

Family

ID=14537153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11049393A Pending JPH06323686A (en) 1993-05-12 1993-05-12 Heat pump type concentration difference heat accumulator and operation thereof

Country Status (1)

Country Link
JP (1) JPH06323686A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155220A (en) * 2005-12-06 2007-06-21 Rinnai Corp Hybrid heat pump system
CN103017400A (en) * 2013-01-14 2013-04-03 西安交通大学 Compression/absorption type combined heat pump suitable for intelligent comprehensive urban energy resource regulation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155220A (en) * 2005-12-06 2007-06-21 Rinnai Corp Hybrid heat pump system
CN103017400A (en) * 2013-01-14 2013-04-03 西安交通大学 Compression/absorption type combined heat pump suitable for intelligent comprehensive urban energy resource regulation

Similar Documents

Publication Publication Date Title
JP3662557B2 (en) Heat pump system
US7150160B2 (en) Building exhaust and air conditioner condensate (and/or other water source) evaporative refrigerant subcool/precool system and method therefor
EP1121565B1 (en) heat exchange refrigerant subcool and/or precool system and method
US6857285B2 (en) Building exhaust and air conditioner condensate (and/or other water source) evaporative refrigerant subcool/precool system and method therefor
CN2913969Y (en) Compression type and absorption type associated refrigerating plant
US5018367A (en) Cooling energy generator with cooling energy accumulator
JPH06323686A (en) Heat pump type concentration difference heat accumulator and operation thereof
JPS5829397Y2 (en) Air conditioning equipment
KR101949679B1 (en) Refrigeration system of recycling wasted heat type
US5285645A (en) Regenerative type air conditioning equipment
JP5490841B2 (en) Water refrigerant heater and water refrigerant water heater using the same
JP2678211B2 (en) Heat storage type cold / heat generator
JP2009115387A (en) Water refrigerant heater and water refrigerant water heater using the same
JP4156842B2 (en) Operation method of cold heat generation system and cold heat generation system
JPH06331231A (en) Absorption type ice-making/cold-storing device
JPS6222059B2 (en)
JPH03144263A (en) Heat accumulation type compression refrigerating cycle
JP3909458B2 (en) Cooling cycle
JPS6022253B2 (en) absorption refrigerator
JPS6138787B2 (en)
JPS6025714B2 (en) Combined heat pump
KR100402261B1 (en) Absorption refrigeration system utilizing multiple refrigeration cycle with multiple evaporator means.
JP5168102B2 (en) Absorption refrigeration system
JPH05231741A (en) Absorption type refrigerator
JPH09210503A (en) Concentration difference heat accumulator and heat cycle constitution method