JPH06321648A - Method for joining ceramic to nickel - Google Patents

Method for joining ceramic to nickel

Info

Publication number
JPH06321648A
JPH06321648A JP5132777A JP13277793A JPH06321648A JP H06321648 A JPH06321648 A JP H06321648A JP 5132777 A JP5132777 A JP 5132777A JP 13277793 A JP13277793 A JP 13277793A JP H06321648 A JPH06321648 A JP H06321648A
Authority
JP
Japan
Prior art keywords
nickel
ceramics
joining
ceramic
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5132777A
Other languages
Japanese (ja)
Other versions
JP3298235B2 (en
Inventor
Futoshi Kuroda
太 黒田
Nobuaki Shinya
伸昭 新矢
Tsuyoshi Yamamoto
強 山本
Toshiyuki Takashima
敏行 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP13277793A priority Critical patent/JP3298235B2/en
Publication of JPH06321648A publication Critical patent/JPH06321648A/en
Application granted granted Critical
Publication of JP3298235B2 publication Critical patent/JP3298235B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To join ceramic to nickel with high joining strength. CONSTITUTION:When silicon nitride ceramic 1 is joined to nickel 5, a carbon layer 4 is formed on the surface of the nickel 5 to be joined and joining is carried out with an Ag-Cu-Ti brazing filler metal 2 by heating in vacuum. Since the carbon layer prevents the diffusion of Ni into the brazing filler metal and the amt. of Ti reacting with Ni is reduced, the amt. of Ti reacting with the ceramic is relatively increased and a reacted layer consisting of TiN and Ti5Si3 is sufficiently formed at the interface between the silicon nitride ceramic and the brazing filler metal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミックスとニッケ
ル又はニッケルを多量に含む合金とを接合する方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for joining ceramics and nickel or an alloy containing a large amount of nickel.

【0002】[0002]

【従来の技術】従来、セラミックス等の粉末成形体と金
属とを接合するには、先ず、セラミックスの表面をMo
−Mn法(テレフケン法)で金属化し、その後にニッケ
ル(Ni)鍍金を施し、必要に応じて応力緩衝のための
中間材を用い、銀(Ag)ろう等で金属にろう接するよ
うにしている。上記のメタライズ法では、接合が2工程
となるので、メタライズなしに接合するため、Ag−C
u−Ti系、Cu−Al−Si−Ti系、Ag−Cu−
Ti−In系等の活性金属を含ませたろう材を使用し
て、セラミックスと直接反応させて接合するようにして
いる。Ag−Cu−Ti系ろう材では、活性金属である
Tiの含有量は、通常1〜2wt%としている。
2. Description of the Related Art Conventionally, in order to bond a powder compact such as ceramics to a metal, first, the surface of the ceramic is Mo.
-Mn method (telefken method) is used for metallization, then nickel (Ni) plating is applied, and if necessary, an intermediate material for buffering stress is used, and silver (Ag) brazing or the like is used to braze the metal. . In the above-mentioned metallization method, since the joining is performed in two steps, the joining is performed without metallization, so Ag-C
u-Ti system, Cu-Al-Si-Ti system, Ag-Cu-
A brazing material containing an active metal such as Ti-In is used to directly react with the ceramics for bonding. In the Ag-Cu-Ti-based brazing material, the content of Ti, which is an active metal, is usually 1 to 2 wt%.

【0003】特開昭59−232692号公報には、セ
ラミックスと金属とを接合するろう材として、Ti含有
量を3〜80wt%としたTi−Ag−Cu系ろう材が
記載されている。
Japanese Unexamined Patent Publication No. 59-232692 describes a Ti-Ag-Cu based brazing material having a Ti content of 3 to 80 wt% as a brazing material for joining ceramics and metal.

【0004】セラミックスと金属を加熱接合する場合、
両者の熱膨張差により、冷却過程で接合部付近に残留応
力が働き、接合体の接合強度の低下やセラミックスに割
れが発生する。この残留応力を低減するため、両者の間
にMo,W,コバール合金等の低熱膨張金属を挿入して
接合したり、ニッケル、銅、アルミニウム等の軟質金属
板をセラミックスと金属間に介在させて接合するように
している。これらの軟質金属の中で、Cuは耐力が低い
ため、応力が掛かる接合体に使用するとCuの部分が変
形してしまう。Alも同様であり、また融点が低いため
高温中で使用する接合体には使用できない。Niは耐力
があり、耐酸化性、耐熱性の面で優れた特性を持ってい
るので、セラミックスと金属の接合用の緩衝材として適
している。
When ceramics and metal are joined by heating,
Due to the difference in thermal expansion between the two, residual stress acts in the vicinity of the joint during the cooling process, causing a decrease in the joint strength of the joint and cracks in the ceramics. In order to reduce this residual stress, a low thermal expansion metal such as Mo, W, Kovar alloy, etc. is inserted between the two for joining, or a soft metal plate such as nickel, copper, aluminum or the like is interposed between the ceramic and the metal. I try to join. Among these soft metals, since Cu has a low yield strength, the Cu portion will be deformed if it is used in a bonded body to which stress is applied. Al is also the same and has a low melting point, so it cannot be used for a bonded body used at high temperature. Ni is suitable as a cushioning material for joining ceramics and metals, since Ni has a proof stress and has excellent properties in terms of oxidation resistance and heat resistance.

【0005】セラミックスと金属又はセラミックス同士
の接合には、通常Ag−Cu−Ti系ろう材(Ti含有
量:1〜2wt%)が用いられる。このろう材を用い、
Ni板の緩衝材を使用してセラミックスと金属とを接合
した場合、充分な接合が行われない。その理由は、次の
ように推定される。Ag−Cu−Ti系ろう材2を用い
たセラミックスとNiとの接合は、図2に示すように、
窒化珪素セラミックスの界面Xに、TiN及びTi5S
i3の反応層が生成され、この層の形成により接合が行
われるものと考えられる。一方、Niとの界面Yからは
Niがろう材2中に溶解し、優先的にTiと反応し、N
i−Ti系合金を形成する。このため、窒化珪素セラミ
ックスの界面XではTiが不足し、TiN及びTi5S
i3が一部の界面にしか形成されなくなり、充分な接合
が得られなくなる。この接合体の接合部の断面組織の観
察を走査型電子顕微鏡(SEM)で行い、元素分布測定
を電子線マイクロアナライザー(EPMA)で行った。
An Ag-Cu-Ti based brazing filler metal (Ti content: 1 to 2 wt%) is usually used for joining the ceramics and the metal or the ceramics together. With this brazing material,
When the ceramics and the metal are joined using the buffer material of the Ni plate, the joining is not sufficiently performed. The reason is estimated as follows. As shown in FIG. 2, the joining of the ceramic and the Ni using the Ag—Cu—Ti based brazing filler metal 2 is performed.
At the interface X of silicon nitride ceramics, TiN and Ti5S
It is considered that the reaction layer of i3 is generated and the bonding is performed by the formation of this layer. On the other hand, from the interface Y with Ni, Ni is dissolved in the brazing filler metal 2 and reacts preferentially with Ti, so that N
An i-Ti based alloy is formed. Therefore, Ti is insufficient at the interface X of the silicon nitride ceramics, and TiN and Ti5S
i3 is formed only on a part of the interface, and sufficient bonding cannot be obtained. The cross-sectional structure of the bonded portion of this bonded body was observed with a scanning electron microscope (SEM), and the element distribution was measured with an electron beam microanalyzer (EPMA).

【0006】上記の接合体の接合部を、マイクロアナラ
イザー(EPMA)で行ったTi元素の分布状態を示す
模式図である図5に示すように、Ti元素はろう材中に
まばらに分布している。また、Ni元素の分布状態を示
す模式図である図6に示すように、Ni元素はTi元素
と同様な分布でろう材中に拡散している。このことか
ら、ろう在中のTiがろう材中に溶融してきたNiと優
先的に結合してNi−Ti系合金を形成してしまい、窒
化珪素セラミックスの界面XではTiが不足し、TiN
及びTi5Si3の反応層が一部の界面にしか形成されな
くなったことがわかる。
As shown in FIG. 5, which is a schematic view showing the distribution state of the Ti element performed by the microanalyzer (EPMA) at the joint portion of the above-mentioned joined body, the Ti element is sparsely distributed in the brazing material. There is. Further, as shown in FIG. 6 which is a schematic diagram showing the distribution state of the Ni element, the Ni element is diffused in the brazing material in the same distribution as the Ti element. From this, Ti in the brazing material is preferentially combined with Ni melted in the brazing material to form a Ni—Ti based alloy, and Ti is insufficient at the interface X of the silicon nitride ceramics.
It can be seen that the reaction layers of Ti5Si3 and Ti5Si3 were formed only at some interfaces.

【0007】[0007]

【発明が解決しようとする課題】上記のように、ニッケ
ルはセラミックスと金属の接合に使用する緩衝材として
優れた特性を有するが、通常のAg−Cu−Ti系ろう
材を用いて接合した場合、その接合強度が低くバラツキ
も大きなものとなる。本発明は、セラミックスとニッケ
ルとを高接合強度で接合できるセラミックスとニッケル
との接合方法を提供することを目的とするものである。
As described above, nickel has excellent characteristics as a cushioning material used for joining ceramics and metal, but when joined using a normal Ag-Cu-Ti based brazing material. However, the bonding strength is low and the variation is large. An object of the present invention is to provide a method of joining ceramics and nickel, which is capable of joining ceramics and nickel with high joining strength.

【0008】[0008]

【課題を解決するための手段】本発明は、セミックスと
ニッケル又はニッケルを多量に含む合金との接合におい
て、ニッケル側の接合面にカーボン層を形成し、Ag−
Cu−Ti系ろう材を用いて真空雰囲気中で加熱して接
合することを特徴とするセラミックスとニッケルとの接
合方法である。
According to the present invention, a carbon layer is formed on the joint surface on the nickel side in the joining of semix and nickel or an alloy containing a large amount of nickel.
It is a method of joining ceramics and nickel, characterized by heating and joining in a vacuum atmosphere using a Cu-Ti based brazing material.

【0009】[0009]

【作用】ニッケル側の接合面に形成したカーボン層が、
Niのろう材中への拡散を防止する。そのためろう材中
のTiがNiと反応する量が減るので、セラミックスと
反応するTiの量が相対的に多くなり、セラミックスの
界面に接合に必要な反応層が充分形成される。
[Function] The carbon layer formed on the nickel-side bonding surface
Prevents Ni from diffusing into the brazing material. Therefore, the amount of Ti in the brazing material that reacts with Ni decreases, and the amount of Ti that reacts with the ceramics relatively increases, so that the reaction layer necessary for bonding is sufficiently formed at the interface of the ceramics.

【0010】[0010]

【実施例】本発明の実施例を図面を参照して説明する。
図1に示すように、円筒状の窒化珪素セラミックス(S
i3N4)1をニッケル(Ni)5とコバール合金6との
接合体のニッケル5面に接合する場合である。セラミッ
クス1(φ10mm,L20mm)側に、Ti箔3(φ
10mm,厚さ2μm)を挟み、Ag−Cu−Ti系ろ
う材2(Ag:63wt%,Cu:35.25wt%,
Ti:1.75wt%)を厚さ50μmで介在させ、ニ
ッケル5の表面には、蒸着により厚さ約5μmのカーボ
ン(C)層4を形成し、これらを真空雰囲気中で830
℃に加熱して10分間保持した。
Embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, a cylindrical silicon nitride ceramic (S
This is the case where i3N4) 1 is bonded to the nickel 5 surface of the bonded body of nickel (Ni) 5 and Kovar alloy 6. On the side of ceramics 1 (φ10 mm, L20 mm), Ti foil 3 (φ
10 mm, thickness 2 μm), Ag-Cu-Ti based brazing filler metal 2 (Ag: 63 wt%, Cu: 35.25 wt%,
Ti: 1.75 wt%) with a thickness of 50 μm interposed, and a carbon (C) layer 4 with a thickness of about 5 μm is formed on the surface of nickel 5 by vapor deposition.
Heated to 0 ° C and held for 10 minutes.

【0011】この接合体の接合部の破断強度は、四点曲
げ試験強度で420MPaと非常に高い強度が得られ
(表1の実施例1)、破断はセラミックスに起きた。比
較のためカーボン層4を設けないで接合した場合(表1
の比較例1)、その接合体の破断強度は、四点曲げ試験
強度で275MPaであり、破断は一部界面を含むセラ
ミックスに起きた。
The breaking strength of the joint portion of this joined body was as high as 420 MPa in the four-point bending test strength (Example 1 in Table 1), and the breaking occurred in the ceramics. For comparison, a case where the carbon layer 4 was joined without being provided (Table 1
Comparative Example 1), the breaking strength of the joined body was 275 MPa in the four-point bending test strength, and the breaking occurred in the ceramic including a part of the interface.

【0012】前記実施例の接合体の接合部の断面をマイ
クロアナライザー(EPMA)で成分元素の面分析を行
った。そのTi元素分析の結果を図3に、Ni元素分析
の結果を図4に模式図で示す。図3に示すように、窒化
珪素セラミックスの界面にTiが濃厚に分布しており、
一方Niは、図4に示すように窒化珪素セラミックスの
界面側に存在しない。これは、図3に示すように、ニッ
ケル側の接合面に形成したカーボン層が、Niと反応し
てTi−C系化合物を作り、Niのろう材中への拡散を
防止しているものと推定される。したがって、窒化珪素
セラミックスの界面に純粋なTiN及びTi5Si3層が
充分形成され、接合強度が向上する。
The cross section of the joint portion of the joint body of the above-mentioned example was subjected to surface analysis of component elements by a microanalyzer (EPMA). The result of the Ti elemental analysis is shown in FIG. 3 and the result of the Ni elemental analysis is shown in a schematic diagram in FIG. As shown in FIG. 3, Ti is densely distributed at the interface of the silicon nitride ceramics,
On the other hand, Ni does not exist on the interface side of the silicon nitride ceramics as shown in FIG. As shown in FIG. 3, the carbon layer formed on the joint surface on the nickel side reacts with Ni to form a Ti—C compound, which prevents the diffusion of Ni into the brazing material. Presumed. Therefore, pure TiN and Ti5Si3 layers are sufficiently formed at the interface of the silicon nitride ceramics, and the bonding strength is improved.

【0013】Niの代りに、ニッケルを多量に含み低熱
膨張合金であるコバ−ル(Ni 29%,Co 17%,M
n,Si,Mg,Zr,C,Al,Ti全て1%以下、残部F
e)をセラミックスに接合しても、同様に強固に接合す
る。次の表1に、実施例及び比較例の接合条件と四点曲
げ試験強度を示す。
Cobalt (Ni 29%, Co 17%, M) which is a low thermal expansion alloy containing a large amount of nickel instead of Ni
n, Si, Mg, Zr, C, Al, Ti all less than 1%, balance F
Even if e) is bonded to ceramics, it is also strongly bonded. Table 1 below shows the joining conditions and the four-point bending test strength of the examples and comparative examples.

【0014】 注1:実施例1及び比較例1〜3の接合金属は、Ni−
コバールの接合体。 注2:実施例2及び比較例4〜5の接合金属は、Ni。 注3:Ti箔及びC層欄の○印はそれらを使用し、空欄
は不使用を示す。
[0014] Note 1: The bonding metal of Example 1 and Comparative Examples 1 to 3 is Ni-
A joint of Kovar. Note 2: The joining metal of Example 2 and Comparative Examples 4 to 5 is Ni. Note 3: The circles in the Ti foil and C layer columns indicate that they are used, and the blank columns indicate that they are not used.

【0015】[0015]

【発明の効果】本発明は、セラミックスとニッケル又は
ニッケルを多量に含む合金とを接合するのに、セラミッ
クスとニッケルを高接合強度で接合することができる。
According to the present invention, ceramics and nickel can be bonded with high bonding strength in bonding ceramics and nickel or an alloy containing a large amount of nickel.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の実施例の説明図。FIG. 1 is an explanatory view of an embodiment of the method of the present invention.

【図2】接合部における反応層の説明図。FIG. 2 is an explanatory view of a reaction layer in a joint part.

【図3】実施例の接合部の面分析のTi分布を示す模式
図。
FIG. 3 is a schematic diagram showing the Ti distribution of the surface analysis of the joint portion of the example.

【図4】実施例の接合部の面分析のNi分布を示す模式
図。
FIG. 4 is a schematic diagram showing the Ni distribution of the surface analysis of the joint portion of the example.

【図5】従来方法による接合部の面分析のTi分布を示
す模式図。
FIG. 5 is a schematic diagram showing a Ti distribution in a surface analysis of a bonded portion by a conventional method.

【図6】従来方法による接合部の面分析のNi分布を示
す模式図。
FIG. 6 is a schematic diagram showing a Ni distribution in a surface analysis of a bonded portion by a conventional method.

【符号の説明】[Explanation of symbols]

1 窒化珪素セラミックス 2 Ag−Cu−Ti系
ろう材 3 Ti箔 4 カーボン 5 ニッケル 6 コバール合金
1 Silicon Nitride Ceramics 2 Ag-Cu-Ti Based Brazing Material 3 Ti Foil 4 Carbon 5 Nickel 6 Kovar Alloy

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高島 敏行 北海道札幌市手稲区前田7条15丁目4番1 号 北海道工業大学内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiyuki Takashima 7-15-15 Maeda Maeda, Teine-ku, Sapporo, Hokkaido Hokkaido Institute of Technology

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 セミックスとニッケル又はニッケルを多
量に含む合金との接合において、ニッケル側の接合面に
カーボン層を形成し、Ag−Cu−Ti系ろう材を用い
て真空雰囲気中で加熱して接合することを特徴とするセ
ラミックスとニッケルとの接合方法。
1. When bonding semix and nickel or an alloy containing a large amount of nickel, a carbon layer is formed on the nickel-side bonding surface and heated in a vacuum atmosphere using an Ag—Cu—Ti based brazing material. A method of joining ceramics and nickel, which is characterized by joining.
JP13277793A 1993-05-10 1993-05-10 Joining method of ceramics and nickel Expired - Fee Related JP3298235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13277793A JP3298235B2 (en) 1993-05-10 1993-05-10 Joining method of ceramics and nickel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13277793A JP3298235B2 (en) 1993-05-10 1993-05-10 Joining method of ceramics and nickel

Publications (2)

Publication Number Publication Date
JPH06321648A true JPH06321648A (en) 1994-11-22
JP3298235B2 JP3298235B2 (en) 2002-07-02

Family

ID=15089312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13277793A Expired - Fee Related JP3298235B2 (en) 1993-05-10 1993-05-10 Joining method of ceramics and nickel

Country Status (1)

Country Link
JP (1) JP3298235B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109317810A (en) * 2018-09-11 2019-02-12 南京航空航天大学 A kind of raising Si3N4The surface treatment method of ceramics and titanium alloy welding performance
CN114211076A (en) * 2022-01-06 2022-03-22 哈尔滨工业大学 Connection method of silicon nitride ceramic/nickel-based high-temperature alloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109317810A (en) * 2018-09-11 2019-02-12 南京航空航天大学 A kind of raising Si3N4The surface treatment method of ceramics and titanium alloy welding performance
CN109317810B (en) * 2018-09-11 2019-11-12 南京航空航天大学 A kind of raising Si3N4The surface treatment method of ceramics and titanium alloy welding performance
CN114211076A (en) * 2022-01-06 2022-03-22 哈尔滨工业大学 Connection method of silicon nitride ceramic/nickel-based high-temperature alloy
CN114211076B (en) * 2022-01-06 2022-09-13 哈尔滨工业大学 Connection method of silicon nitride ceramic/nickel-based high-temperature alloy

Also Published As

Publication number Publication date
JP3298235B2 (en) 2002-07-02

Similar Documents

Publication Publication Date Title
EP0135937A2 (en) Method of bonding alumina to metal
US4448605A (en) Ductile brazing alloys containing reactive metals
JPH0367985B2 (en)
CN1292474C (en) Package for electronic parts, lid thereof, material for the lid and method for producing the lid material
JPWO2006016479A1 (en) Heat sink member and manufacturing method thereof
JP2720762B2 (en) How to join graphite and metal
JP3095490B2 (en) Ceramic-metal joint
US20080014460A1 (en) Method for the Multi-Stage Production of Diffusion Soldered Connections for Power Components Comprising Semiconductor Chips
JP3398203B2 (en) Aluminum alloy and copper brazing filler metal and composites joined by this brazing filler metal
JP3298235B2 (en) Joining method of ceramics and nickel
JPH07126079A (en) Soldering material for bonding ceramic material
JPS62289396A (en) Joining method for ceramics
WO2021117327A1 (en) Copper/ceramic assembly and insulated circuit board
JP2021165227A (en) Copper/ceramic conjugate, and insulated circuit board
JP3302714B2 (en) Ceramic-metal joint
JPH06321647A (en) Method for joining ceramic to nickel
JPH0725677A (en) Method for joining ceramics to nickel or nickel-based alloy
JP3365575B2 (en) Joint of ceramic and metal
JP3977875B2 (en) Brazing alloy and joined body for joining of alumina-based ceramics-aluminum alloy
JP2729751B2 (en) Joining method of alumina ceramics and aluminum
JPH06263553A (en) Joined body of carbonaceous material to metal
JP3153872B2 (en) Metal-nitride ceramic bonding structure
JP3289860B2 (en) Joining method of ceramics and silicon
JP2001048670A (en) Ceramics-metal joined body
JP3292767B2 (en) Joining method of silicon carbide ceramics and silicon

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees