JPH06320200A - Device and method for concentration and dewatering of sludge - Google Patents

Device and method for concentration and dewatering of sludge

Info

Publication number
JPH06320200A
JPH06320200A JP5135166A JP13516693A JPH06320200A JP H06320200 A JPH06320200 A JP H06320200A JP 5135166 A JP5135166 A JP 5135166A JP 13516693 A JP13516693 A JP 13516693A JP H06320200 A JPH06320200 A JP H06320200A
Authority
JP
Japan
Prior art keywords
sludge
primary
concentrating
concentration
granulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5135166A
Other languages
Japanese (ja)
Other versions
JP3405762B2 (en
Inventor
Tsutomu Yasuda
勉 安田
Kosaburo Akamatsu
幸三郎 赤松
Katsunori Nishida
克範 西田
Yasuhiko Watanabe
康彦 渡辺
Saihei Yano
宰平 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO MET GOV GESUIDOU SERVICE KK
Kurita Water Industries Ltd
Tomoe Engineering Co Ltd
Tokyo Metropolitan Government
Tsukishima Kikai Co Ltd
Original Assignee
TOKYO MET GOV GESUIDOU SERVICE KK
Kurita Water Industries Ltd
Tomoe Engineering Co Ltd
Tokyo Metropolitan Government
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO MET GOV GESUIDOU SERVICE KK, Kurita Water Industries Ltd, Tomoe Engineering Co Ltd, Tokyo Metropolitan Government, Tsukishima Kikai Co Ltd filed Critical TOKYO MET GOV GESUIDOU SERVICE KK
Priority to JP13516693A priority Critical patent/JP3405762B2/en
Publication of JPH06320200A publication Critical patent/JPH06320200A/en
Application granted granted Critical
Publication of JP3405762B2 publication Critical patent/JP3405762B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To enhance dewatering efficiency and economically obtain the dewatered cake of low water content by a method wherein, in concentrating and dewatering sewage sludge by a combination of a pelletizing and concentrating method and a centrifugal dewaterer, the pelletized and conc. sludge is sent through a filter type concentrator into the centrifugal dewaterer. CONSTITUTION:The sludge in a raw sludge storage tank 5 is sent by a pump into a refining tank 1 where it is mixed with inorg. flocculant to form a primary coagulated sludge contg. a primary flocculated product formed by a primary flocculation of ion components and solids in the sludge. This primary flocculated sludge is sent into a pelletization and concn. tank 2 where it is stirred and mixed with amphoteric high- molecular flocculant to flocculate and pelletize the primary flocculated product and unflocculated solids in the sludge to form pelletized sludge while it is undergoing concn. by separating free water from it. The pelletized sludge obtained in the pelletization and concn. tank 2 is sent into a filter type concentrator 3 to undergo concn. and after concn. is supplied into a centrifugal dewaterer 4 for further dewatering. By using the filter type concentrator 3 in this way, the breakdown of the pelletized sludge is avoided and the dewatered cake of low water content is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、下水処理施設において
発生した汚泥を濃縮脱水する装置および方法に関し、さ
らに詳細には、下水処理施設において発生した汚泥を、
所謂、造粒濃縮法を利用して濃縮脱水する装置および方
法に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and method for concentrating and dewatering sludge generated in a sewage treatment facility.
The present invention relates to an apparatus and a method for concentrating and dehydrating by utilizing a so-called granulation concentrating method.

【0002】[0002]

【従来の技術、発明が解決しよううとする課題】下水処
理施設において発生した汚泥(以下 下水汚泥または原
汚泥 と記す)は、従来は一般に濃縮、(消化)、脱水
および焼却の一連した工程を経由して処理されている
。下水汚泥には、余剰汚泥と初沈汚泥とがあるが、濃
縮工程で両者を混合して濃縮する方法と、両者を別途に
濃縮した後、後の焼却などの工程に送られる分離濃縮方
法の2つの方法がある。これらの何れの方法において
も、その濃縮工程は複数の機器で構成されているのが一
般であり、建設費用、これらの機器の維持、整備および
運転維持管理などに多額の費用を要するとの欠点があ
る。
2. Description of the Related Art Conventionally, sludge generated in a sewage treatment facility (hereinafter referred to as sewage sludge or raw sludge) has conventionally been subjected to a series of steps of concentration, (digestion), dehydration and incineration. Has been processed. Sewage sludge includes surplus sludge and first settling sludge, but there is a method of mixing and concentrating both in the concentration step, and a method of separating and concentrating that both are separately concentrated and then sent to a step such as incineration later. There are two ways. In any of these methods, the concentration step is generally composed of a plurality of equipments, and it is disadvantageous that construction costs, maintenance, maintenance and operation and maintenance of these equipments require a large amount of money. There is.

【0003】このような欠点を解決するために、固形物
を凝集させ、この凝集物をさらに造粒させて汚泥を濃縮
し、その脱水性を向上させる、所謂、造粒濃縮法が採用
されている。この造粒濃縮法は、他の濃縮法とは異なっ
て、濃縮と、脱水を容易にするために汚泥の性状を変換
させる作用とを併せ持っているため、従来の重力濃縮方
式に比して建設費および脱水ケーキの処理費などの運転
経費を削減し得、かつ、リンの除去が可能であるなどの
利点がある(平成3年、日本下水道事業団技術開発部お
よび下水事業団業務普及協会発行「効率的な汚泥濃縮法
の評価に関する第1次報告書−造粒濃縮法について−」
−以下単に「第1次報告書」と記す)。しかしながら、
この脱水ケーキの処理費をさらに削減するためには、こ
の脱水ケーキの含水率をさらに低下させることが好まし
いことは言うまでもない。
In order to solve such a drawback, a so-called granulation concentration method has been adopted in which a solid substance is aggregated, and the aggregate is further granulated to concentrate sludge to improve its dehydration property. There is. Unlike other concentrating methods, this granulating and concentrating method has both the function of concentrating and the function of converting the properties of sludge to facilitate dewatering, so it is more difficult to construct than conventional gravity concentrating methods. Costs and operating costs such as dehydrated cake processing costs can be reduced, and phosphorus can be removed, etc. (issued by the Japan Sewage Works Agency Technical Development Department and the Sewage Works Agency Business Extension Association in 1991) "First Report on Evaluation of Efficient Sludge Concentration Method-Granulation Concentration Method-"
-Hereinafter, simply referred to as "First Report"). However,
It goes without saying that it is preferable to further reduce the water content of the dehydrated cake in order to further reduce the processing cost of the dehydrated cake.

【0004】他方、遠心脱水機は維持管理が容易で、一
台当りの処理能力が大きく、強いて洗浄水を使用する必
要がない利点があることから、広く採用されつつある。
前記の造粒濃縮法で得られた造粒汚泥の含水率をさらに
低下させるために、この造粒汚泥の濃縮脱水に際して、
このような遠心脱水機を使用することは、設備の単純
化、各種費用の節減および処理の安定性の見地から好ま
しいことである。しかしながら、造粒濃縮法で得られた
造粒汚泥の濃縮脱水のために遠心脱水機を使用した場合
には、造粒濃縮法で一旦造粒され、脱水性を向上せしめ
られ、かつ、濃縮された造粒汚泥は、次の遠心脱水機へ
供給する過程および遠心脱水機での脱水操作の間に破壊
されて微細化され、折角向上せしめられた脱水性を元の
ように低下させ(たとえば、前記の「第1次報告
書」)、この傾向は造粒された脱水ケーキの固形物濃度
が高い程著しく、また、脱水機が遠心脱水機の場合に
は、この傾向が特に顕著である。また、造粒濃縮工程
で、原汚泥中の固形物の回収率を良好に保つためには造
粒濃縮工程での濃縮濃度に制限があるとの欠点があっ
た。すなわち、遠心脱水機は固形物濃度が高い程、その
固形物処理量が大きくなるが、造粒濃縮工程での運転は
造粒汚泥の濃度を約2%程度に低くならざるを得ず、そ
の結果、遠心脱水機の能力を十分に発揮できないなどの
障害がある。この場合において、さらに、性状および固
形物濃度のそれぞれの変動が激しい原汚泥の濃縮脱水を
安定して行うためには、造粒濃縮工程で、原汚泥供給量
(1次凝集汚泥)を実質的に一定にしておいて、造粒濃
縮工程から排出される造粒汚泥中の固形物濃度を実質的
に一定にするか、または、濃縮倍率を実質的に一定にし
て運転するのが通例とされているが、何れの場合も遠心
脱水機に供給される汚泥の量および/または固形物濃度
を実質的に一定にすることができず、すなわち、固形物
濃度の変動に応じて量または濃度が変動し、遠心脱水機
の安定した運転が実質的に不可能であり、汚泥の量変動
の最大量に合致するような、処理能力が過大な遠心脱水
機を選定使用しなければならず、これは動力費の浪費が
伴うなどの欠点がある 。このように、造粒濃縮槽と遠
心脱水機とを組合わせた場合に、造粒濃縮槽で折角、濃
縮、造粒されて脱水性が向上せしめられたにもかかわ
ず、その優れた性能を充分に活用できず、また、安定し
た運転制御が困難なことから、造粒汚泥の遠心脱水は実
際には成り立たないとされていた。
On the other hand, the centrifugal dehydrator is being widely adopted because it is easy to maintain and manage, has a large processing capacity per unit, and has the advantage that it is not necessary to use washing water.
In order to further reduce the water content of the granulated sludge obtained by the granulation concentration method, in concentrating and dehydrating the granulation sludge,
The use of such a centrifugal dehydrator is preferable from the viewpoints of facility simplification, cost saving, and process stability. However, when a centrifugal dehydrator is used for concentrating and dewatering the granulated sludge obtained by the granulating and concentrating method, it is once granulated by the granulating and concentrating method to improve the dewatering property and to be concentrated. The granulated sludge is destroyed and miniaturized during the process of supplying it to the next centrifugal dehydrator and during the dehydration operation in the centrifugal dehydrator, and reduces the improved dehydration property to the original level (for example, In the above-mentioned “First Report”), this tendency is more remarkable as the solid concentration of the granulated dehydrated cake is higher, and this tendency is particularly remarkable when the dehydrator is a centrifugal dehydrator. Further, in the granulation concentration step, there is a drawback that the concentration concentration in the granulation concentration step is limited in order to keep a good recovery rate of the solid matter in the raw sludge. That is, the higher the solids concentration of the centrifugal dehydrator, the larger the amount of solids treated, but the operation in the granulation concentration step cannot help lowering the concentration of the granulated sludge to about 2%. As a result, there are obstacles such as the ability of the centrifugal dehydrator cannot be fully exerted. In this case, in order to further stably perform the concentration and dehydration of the raw sludge in which the property and the solid content concentration are greatly varied, the raw sludge supply amount (primary coagulated sludge) is substantially reduced in the granulation concentration step. It is customary to keep the solids concentration in the granulated sludge discharged from the granulation concentration step substantially constant, or to operate with the concentration ratio substantially constant. However, in any case, the amount of sludge supplied to the centrifugal dehydrator and / or the solids concentration cannot be made substantially constant, that is, the amount or concentration varies depending on the fluctuation of the solids concentration. It is fluctuating, stable operation of the centrifugal dehydrator is practically impossible, and a centrifugal dehydrator with an excessive processing capacity that matches the maximum amount of sludge volume fluctuation must be selected and used. Has the disadvantage of wasting power costs. In this way, when the granulation concentrating tank and the centrifugal dehydrator are combined, the excellent performance of the granulating concentrating tank is improved regardless of the fact that the granulating concentrating tank has improved the dehydration property by being concentrated, granulated and granulated. It has been said that centrifugal dehydration of granulated sludge is not actually feasible because it cannot be fully utilized and stable operation control is difficult.

【0005】本発明者らは、所謂、造粒濃縮法と遠心脱
水機とを組合わせて下水汚泥の濃縮脱水処理をするに際
して、造粒濃縮法と遠心脱水機とを組合わせることによ
る前記のような欠点を克服し、造粒濃縮法と遠心脱水機
との長所を十分に発揮せしめ、以て、下水汚泥を効率よ
く、しかも安い費用で、安定して濃縮脱水し、含水率の
低い脱水ケーキを得ることを目的として、鋭意、研鑚を
重ねた結果、造粒濃縮槽と遠心脱水機の間に、フィルタ
ー式濃縮機を介在せしめることにより、かつ、下水汚泥
を連続して処理することにより、前記の目的を達成し得
ることを発見し、この発見に基づいて、本発明の汚泥濃
縮脱水装置および汚泥濃縮脱水方法に到達した。
The inventors of the present invention, when performing the concentration and dewatering treatment of sewage sludge by combining the so-called granulation concentrating method and the centrifugal dehydrator, use the above-mentioned method by combining the granulation concentrating method and the centrifugal dehydrator. By overcoming such disadvantages and fully utilizing the advantages of the granulation concentrating method and the centrifugal dehydrator, the sewage sludge can be concentrated and dehydrated efficiently at a low cost and with a low water content. For the purpose of obtaining a cake, as a result of diligent and repeated grinding, a filter-type concentrator is interposed between the granulation concentration tank and the centrifugal dehydrator, and the sewage sludge is continuously treated. As a result, the inventors have found that the above-mentioned object can be achieved, and based on this finding, they have arrived at the sludge concentrating and dewatering device and the sludge concentrating and dewatering method of the present invention.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明の1つ
は、下水処理施設からの原汚泥と無機凝集剤とを混合し
て原汚泥中のイオン成分および固形物を1次的に凝集さ
せた1次凝集物を含有する1次凝集汚泥とする調質槽、
該調質槽から導かれた1次凝集汚泥と両性高分子凝集剤
とを攪拌しつつ混合して前記1次凝集汚泥中の1次凝集
物および未凝集の固形物を凝集、造粒せしめて造粒汚泥
にするとともに、該造粒汚泥と遊離水とに分離して濃縮
する造粒濃縮槽、該造粒汚泥を濃縮するフィルター式濃
縮機および該フィルター式濃縮機で濃縮された造粒汚泥
をさらに脱水する遠心脱水機を順次連設させて成ること
を特徴とする汚泥濃縮脱水装置である。
[Means for Solving the Problems] That is, one of the present invention is to mix raw sludge from a sewage treatment facility with an inorganic coagulant to primarily aggregate ionic components and solids in the raw sludge. A primary coagulation sludge containing a primary coagulation product,
The primary agglomerated sludge introduced from the conditioning tank and the amphoteric polymer aggregating agent are mixed with stirring to agglomerate and granulate the primary agglomerates and unaggregated solids in the primary agglomerated sludge. Granulating sludge, which is made into granulated sludge and is separated into the granulated sludge and free water and concentrated, a filter type concentrator for concentrating the granulated sludge, and a granulated sludge concentrated by the filter type concentrator A sludge concentrating and dewatering device, characterized in that centrifugal dehydrators for further dewatering are sequentially connected.

【0007】また、もう1つの発明は、下水処理施設か
ら発生した原汚泥と無機凝集剤とを混合して原汚泥中の
イオン成分および固形物を1次的に凝縮させて1次凝集
物を含有する1次凝集汚泥を得る調質工程、該1次凝集
汚泥と両性高分子凝集剤とを攪拌しつつ混合して前記1
次凝集汚泥中の1次凝集物および未凝集の固形物を凝
集、造粒させて造粒汚泥とし、該造粒汚泥と遊離水とに
分離せしめる造粒濃縮工程、該造粒濃縮工程で得られた
造粒汚泥をフィルター式濃縮機で濃縮して濃縮汚泥とす
る濃縮工程および該濃縮汚泥を遠心脱水機で脱水して脱
水ケーキとする脱水工程を順次経由させて、該造粒汚泥
の破壊を極力抑制して濃縮脱水することを特徴とする汚
泥濃縮脱水方法である。
Another aspect of the present invention is to mix primary sludge generated from a sewage treatment facility with an inorganic flocculant to primarily condense ionic components and solids in the raw sludge to form primary flocculates. The refining step for obtaining the contained primary coagulation sludge, the primary coagulation sludge and the amphoteric polymer coagulant are mixed with stirring to obtain the above-mentioned 1
Granulation concentration step of aggregating and aggregating the primary agglomerates and unaggregated solids in the secondary agglomeration sludge into granulation sludge, and separating into the agglomeration sludge and free water, obtained in the agglomeration concentration step Destruction of the granulated sludge by sequentially passing through a concentration step of concentrating the obtained granulated sludge with a filter type concentrator into a concentrated sludge and a dehydration step of dehydrating the concentrated sludge with a centrifugal dehydrator to form a dehydrated cake It is a sludge concentration / dehydration method, characterized in that the sludge is concentrated and dewatered by suppressing as much as possible.

【0008】本発明における造粒濃縮槽は、槽本体、攪
拌機およびスクリーンを有し、該槽本体の底部には汚泥
供給孔および両性高分子凝集剤供給孔が設けられてお
り、該スクリーンは該槽本体の上部に設けられ、該攪拌
機は水平方向の旋回流を発生させる上部攪拌翼および鉛
直方向の循環流を発生させる下部攪拌翼とを少なくとも
有し、槽本体の内周面で汚泥を造粒させるものである。
この造粒濃縮槽の代表例として、前記の「第1次報告
書」に記載されており、図2に示されたような造粒濃縮
槽を挙げることができる。
The granulating and concentrating tank in the present invention has a tank main body, an agitator and a screen, and a sludge supply hole and an amphoteric polymer coagulant supply hole are provided at the bottom of the tank main body, and the screen is The stirrer provided at the top of the tank main body has at least an upper stirring blade for generating a horizontal swirling flow and a lower stirring blade for generating a vertical circulating flow, and sludge is produced on the inner peripheral surface of the tank main body. It's a grain.
As a typical example of this granulation concentrating tank, the granulation concentrating tank described in the above-mentioned “First Report” and shown in FIG. 2 can be mentioned.

【0009】本発明でのフィルター式濃縮機は、通常の
汚泥の濃縮に使用されているものを使用することができ
るが、フィルターとしてワイヤスクリーン、スリットが
穿設された濾材または粗目の濾布を有し、かつ、目の大
きさが通常の汚泥の濃縮に使用されているものよりも粗
目であるものが好ましい。また、フィルターが造粒濃縮
工程で分離、排出された遊離水、もしくは、フィルター
式濃縮機および遠心脱水機のそれぞれから排出された分
離水で、または、スクレーパーで洗浄できる構造とされ
ているものが好ましい。また、フィルター式濃縮機は造
粒汚泥の造粒状態を破壊しないように、連続供給、連続
排出型として、排出にポンプを使用しない形式のもが好
ましい。最も単純なフィルター式濃縮機として、たとえ
ば、ワイヤスクリーンを内蔵せしめた濾過筒を挙げるこ
とができ、しかも好ましい。また、フィルター式濃縮機
は、排出される濃縮汚泥の固形物濃度を調節する機構を
有していることが好ましい。
The filter-type concentrator used in the present invention may be any of those commonly used for concentrating sludge, and a wire screen, a filter material having slits or a coarse filter cloth may be used as a filter. It is preferable that the grain size is large and the grain size is coarser than that used for usual sludge concentration. In addition, the filter has a structure that can be washed with free water separated and discharged in the granulation concentration step, or with separated water discharged from each of the filter type concentrator and the centrifugal dehydrator, or with a scraper. preferable. Further, it is preferable that the filter type concentrator is of a continuous supply type and a continuous discharge type so as not to destroy the granulated state of the granulated sludge and of a type that does not use a pump for discharging. As the simplest filter type concentrator, for example, a filter cylinder having a built-in wire screen can be mentioned, and it is preferable. Further, it is preferable that the filter type concentrator has a mechanism for adjusting the solid matter concentration of the discharged concentrated sludge.

【0010】本発明の遠心脱水機としては、造粒汚泥の
破壊を極力防止するために、通常の汚泥の濃縮に使用さ
れているものよりも、回転筒内の液面の深さが深いこと
が必要である。たとえば、円錐部を有する横型回転筒の
中心に、スクリューが配設されたデカンター型遠心沈降
機が好適である。
In the centrifugal dehydrator of the present invention, in order to prevent the destruction of the granulated sludge as much as possible, the liquid level in the rotary cylinder is deeper than that used in the ordinary concentration of sludge. is necessary. For example, a decanter type centrifugal sedimentation machine in which a screw is arranged at the center of a horizontal rotary cylinder having a conical portion is suitable.

【0011】また、デカンター型遠心分離機の代表例と
して、図3で示されるような遠心脱水機があり、本発明
に使用するに好適である。この遠心分離機は、ケーシン
グ中に、円筒部とその一端に連設された円錐状の筒部か
ら成るボウルが設けられ、該ボウルの内側に円筒部とそ
の一端に連設されたインナーコーンとから成る内筒が収
納され、該円筒部および該インナーコーンの外周面にそ
れぞれスクリューが設けられ、該円筒部の外周面のスク
リューは該インナーコーンに向ってそのピッチが漸減せ
しめられており、該ボウルおよび該スクリューは互いに
同心的に独立して回転せしめられる。また、この遠心分
離機は、ボウル内の液面半径が小さい−すなわち、濃縮
汚泥供給直後のボウル内周速が小さくなるような深い液
面を有する−ものが好ましい。これは、造粒濃縮された
汚泥が遠心脱水機に供給された直後、この造粒汚泥の造
粒状態の破壊を抑制するために有効である。さらにボウ
ルおよびスクリューのそれぞれの回転数を、供給される
濃縮汚泥中の固形物濃度に対応して異ならせることがで
きるものが好ましい(以下でこれらの回転数の差を 差
速 と記すこともある)。さらにまた、この差速および
これらの回転時のトルクがそれぞれ検出可能とされてい
ることが好ましい。
Further, as a typical example of the decanter type centrifugal separator, there is a centrifugal dehydrator as shown in FIG. 3, which is suitable for use in the present invention. In this centrifuge, a bowl having a cylindrical portion and a conical tubular portion continuously provided at one end thereof is provided in a casing, and a cylindrical portion and an inner cone continuously provided at one end thereof are provided inside the bowl. An inner cylinder consisting of is housed, and a screw is provided on each of the outer peripheral surface of the cylindrical portion and the inner cone, and the pitch of the screw on the outer peripheral surface of the cylindrical portion is gradually reduced toward the inner cone. The bowl and the screw are rotated concentrically and independently of each other. Further, this centrifuge preferably has a small liquid surface radius in the bowl-that is, has a deep liquid surface such that the inner peripheral velocity of the bowl becomes small immediately after the supply of the concentrated sludge. This is effective for suppressing the destruction of the granulated sludge in the granulated state immediately after the granulated concentrated sludge is supplied to the centrifugal dehydrator. Further, it is preferable that the number of rotations of each of the bowl and the screw can be made different depending on the solid concentration in the concentrated sludge to be supplied (hereinafter, the difference between these numbers of rotations may be referred to as differential speed). ). Furthermore, it is preferable that the differential speed and the torque during rotation thereof can be detected.

【0012】これらの調質槽、造粒濃縮槽、フィルター
式濃縮機および遠心脱水機は、直接に、または、所望に
よりポンプを介して互いに順次、連設される。また、調
質槽はその上流の下水処理施設と直接に、または、所望
により、原汚泥貯槽を介して、接続される。また、この
接続に際して、接続経路に、所望によりポンプを介在さ
せることもできる。造粒濃縮槽とフィルター式濃縮機と
の間に介在せしめられるポンプは、造粒濃縮槽から排出
された造粒汚泥の造粒状態を極力破壊しないような形
式、機種が選択されなければならないが、通常は、たと
えば、一軸ネジ式ポンプが好適に使用される。また、こ
のポンプに代えて、または、このポンプとともに、たと
えば、ダイヤフラム式流量調整バルブのような流量調整
バルブを使用することもできる。その他の箇所に使用さ
れるポンプは、汚泥の輸送に通常使用されるポンプを使
用することができる。
The refining tank, the granulation concentrating tank, the filter concentrator, and the centrifugal dehydrator are directly connected to each other or, if desired, sequentially connected to each other via a pump. Further, the conditioning tank is connected to the upstream sewage treatment facility directly or, if desired, via a raw sludge storage tank. Further, at the time of this connection, a pump may be interposed in the connection path if desired. For the pump that is interposed between the granulation thickener and the filter-type thickener, a type and model must be selected that does not destroy the granulated sludge discharged from the granulation thickener as much as possible. Usually, for example, a single screw pump is preferably used. Also, instead of this pump or together with this pump, a flow rate adjusting valve such as a diaphragm type flow rate adjusting valve can be used. As the pump used in other places, a pump normally used for transporting sludge can be used.

【0013】本発明が適用される原汚泥は、たとえば、
一般の公共下水道施設などの下水処理施設から発生した
汚泥であって、たとえば、標準活性汚泥法の生汚泥、余
剰汚泥、前記の生汚泥と余剰汚泥との混合汚泥、嫌気好
気活性汚泥法およびオキシデーションディッチ法の余剰
汚泥であり、少なくとも固形物およびイオンが含有され
ておればよい。その固形物濃度およびイオン当量には、
特に制限はないが、本発明において効率よく濃縮脱水を
行うためには、実用上、それぞれ、通常は、約0.4〜
2重量%および全固形物1g当り約0.2〜0.5mg当量
であり、好ましくは、0.5〜1.5重量%および全固形
物1g当り約0.3〜0.4mg当量とされる。通常、下水
処理施設からの汚泥はその固形物濃度およびイオン当量
が前記の範囲内であるのでそのまま処理することができ
る。
The raw sludge to which the present invention is applied is, for example,
Sludge generated from sewage treatment facilities such as general public sewer facilities, for example, raw sludge of standard activated sludge method, excess sludge, mixed sludge of the above-mentioned raw sludge and excess sludge, anaerobic aerobic activated sludge method and It is an excess sludge of the oxidation ditch method, and may contain at least solid matter and ions. Its solids concentration and ion equivalent are:
There is no particular limitation, but in order to efficiently perform the concentration and dehydration in the present invention, in practice, each is usually about 0.4 to
2% by weight and about 0.2 to 0.5 mg equivalents per gram of total solids, preferably 0.5 to 1.5% by weight and about 0.3 to 0.4 mg equivalents per gram of total solids. It Usually, the sludge from the sewage treatment facility can be treated as it is because its solid content concentration and ion equivalent are within the above ranges.

【0014】調質工程では、供給された原汚泥と無機凝
集剤とを混合して、原汚泥中のイオン成分の電荷を中和
して凝結させ、このときに固形物をも捲き込ませて1次
的に凝集させて、次の造粒濃縮工程での凝集、造粒が好
適に行われるように調質された1次凝集汚泥を得る。こ
こで使用される無機凝集剤の代表例としては、硫酸第2
鉄および塩化第2鉄などの鉄塩、ならびに硫酸アルミニ
ウムおよびポリ塩化アルミニウム(PAC)などであ
り、実用上、就中、ポリ塩化アルミニウムおよび/また
は塩化第2鉄が好ましい。無機凝集剤の使用量は、実用
上、原汚泥中の固形物の重量に対して、実用上、通常
は、約3〜15%、好ましくは、約5〜10%とされ
る。また、無機凝集剤が添加される汚泥のpHは、無機凝
集剤を効率よく作用させるために微酸性とされるが、無
機凝集剤が鉄塩の場合には4〜5程度、アルミニウム塩
の場合には4.5〜5.5程度とすることが実用上、好ま
しい。
In the refining step, the supplied raw sludge and the inorganic coagulant are mixed to neutralize the electric charge of the ionic components in the raw sludge to cause condensation, and at this time, the solid matter is also involved. Primary coagulation is performed to obtain a primary coagulated sludge that has been conditioned so that coagulation and granulation in the subsequent granulation and concentration step are suitably performed. A typical example of the inorganic coagulant used here is sulfuric acid second
Iron salts such as iron and ferric chloride, and aluminum sulfate and polyaluminum chloride (PAC), etc., among which polyaluminum chloride and / or ferric chloride are preferable in practical use. Practically, the amount of the inorganic flocculant used is usually about 3 to 15%, preferably about 5 to 10%, based on the weight of the solid matter in the raw sludge. The pH of the sludge to which the inorganic coagulant is added is slightly acidic in order to make the inorganic coagulant act efficiently, but when the inorganic coagulant is an iron salt, it is about 4 to 5, and when it is an aluminum salt. In practice, it is preferable to set it to about 4.5 to 5.5.

【0015】造粒濃縮工程では、前段の調質槽から送ら
れた1次凝集汚泥と両性高分子凝集剤とを混合して1次
凝集汚泥中の1次凝集物および未凝集の固形物をさらに
凝集、造粒させ濃縮して、造粒汚泥を得る。本発明にお
いて、両性高分子凝集剤とは、カチオン基の量に対する
アニオン基の量(電気当量として)の比が1以上である
高分子を含有する凝集剤として定義される。具体的に
は、カチオン樹脂、アニオン樹脂およびノニオン樹脂の
混合物ならびにカチオン成分、アニオン成分およびノニ
オン成分の共重合体などがある。このような共重合体の
代表例として、カチオン成分をジメチルアミノメタクリ
レートおよびジメチルアミノアクリレートとし、アニオ
ン成分をアクリル酸とし、ノニオン成分をアクリルアミ
ドとし、常法によって共重合させた4元共重合ポリマー
を挙げることができる。
In the granulating and concentrating step, the primary coagulation sludge sent from the pre-conditioning tank and the amphoteric polymer coagulant are mixed to remove the primary coagulation and unaggregated solid matter in the primary coagulation sludge. Further, it is aggregated, granulated and concentrated to obtain granulated sludge. In the present invention, an amphoteric polymer flocculant is defined as a flocculant containing a polymer in which the ratio of the amount of anionic groups (as electric equivalent) to the amount of cationic groups is 1 or more. Specific examples include a mixture of a cation resin, an anion resin and a nonion resin, and a copolymer of a cation component, an anion component and a nonion component. As a typical example of such a copolymer, a quaternary copolymer obtained by copolymerizing a cation component with dimethylaminomethacrylate and dimethylaminoacrylate, an anion component with acrylic acid, a nonion component with acrylamide, and a conventional method is given. be able to.

【0016】両性高分子凝集剤の使用量は、実用上、通
常は、原汚泥中の固形物の重量に対して0.5〜1%程
度とされる。また、高分子凝集剤を溶液にして使用する
場合には、アニオン基の解離を抑制するために溶液は酸
性でなければならない。さらにまた、高分子凝集剤が添
加されるときの1次凝集汚泥のpHは、通常は、たとえ
ば、4〜5程度の微酸性であるが、この高分子凝集剤を
効率よく作用させるために、1次凝集汚泥のpHに対応し
て高分子凝集剤が適宜、選択される。このようにして形
成せしめられた造粒汚泥は、造粒濃縮槽の上部のスクリ
ーンによって遊離水と分離されて次の濃縮工程へ送られ
る。遊離水が分離された造粒汚泥は、造粒濃縮工程に供
給された1次凝集汚泥に対して、2〜4倍に濃縮されて
おり、その固形物濃度は、通常は、約2%程度とされて
いる。
In practice, the amount of the amphoteric polymer flocculant used is usually about 0.5 to 1% with respect to the weight of the solid matter in the raw sludge. When the polymer flocculant is used as a solution, the solution must be acidic in order to suppress the dissociation of anionic groups. Furthermore, the pH of the primary flocculating sludge when the polymer flocculant is added is usually slightly acidic, for example, about 4 to 5, but in order to make this polymer flocculant act efficiently, A polymer flocculant is appropriately selected according to the pH of the primary flocculation sludge. The granulated sludge thus formed is separated from the free water by the screen above the granulation thickening tank and sent to the next concentration step. The granulated sludge from which the free water has been separated is concentrated 2 to 4 times as much as the primary coagulated sludge supplied to the granulation concentration step, and the solid matter concentration is usually about 2%. It is said that.

【0017】濃縮工程では、フィルター式濃縮機を使用
して、造粒汚泥を、その造粒状態が極力破壊されないよ
うに十分に注意して、濃縮して、濃縮汚泥が得られる。
この濃縮汚泥はその固形物濃度が約3〜5%程度に向上
せしめられている。
In the concentration step, the filter sludge is used to concentrate the granulated sludge with great care so that the granulated state is not destroyed as much as possible to obtain a concentrated sludge.
The concentration of solids in this concentrated sludge is improved to about 3 to 5%.

【0018】このようにして得られた濃縮汚泥を、たと
えば、デカンタ型遠心分離機のような遠心脱水機に送っ
て、ここで、濃縮汚泥の造粒状態が極力破壊されないよ
うに十分に注意しつつ脱水して、最終的に脱水ケーキが
得られる。この脱水ケーキは、所望により、たとえば、
焼却などの後処理に付される。また、造粒濃縮工程から
の遊離水は、所望により、濃縮工程で使用されるフィル
ター式濃縮機のフィルターの洗浄に使用され、および/
または、下水処理施設に送られて処理される。同様に濃
縮工程および脱水工程のそれぞれからの分離水も、所望
により、フィルター式濃縮機のフィルターの洗浄に使用
され、および/または、下水処理施設に送られて処理さ
れる。
The concentrated sludge thus obtained is sent to a centrifugal dehydrator such as a decanter centrifuge, and care should be taken here so that the granulated state of the concentrated sludge is not destroyed as much as possible. While dehydrating, a dehydrated cake is finally obtained. This dehydrated cake is, for example, if desired,
It is subjected to post-treatment such as incineration. Also, the free water from the granulation concentration step is optionally used for washing the filter of the filter type concentrator used in the concentration step, and / or
Alternatively, it is sent to a sewage treatment facility for treatment. Similarly, the separated water from each of the concentration step and the dehydration step is optionally used for cleaning the filter of the filter type concentrator and / or sent to a sewage treatment facility for treatment.

【0019】本発明の汚泥濃縮脱水方法において、次の
ような操作法があり得る。すなわち、 (a)1次凝集汚泥中の1次凝集物と未凝集の固形物との
合計量が実質的に一定に制御された1次凝集汚泥を造粒
濃縮工程へ供給し、かつ、固形物濃度が実質的に一定に
保たれた造粒汚泥を造粒濃縮工程から濃縮工程へ供給す
る方法。 (b)1次凝集汚泥中の1次凝集物と未凝集の固形物との
合計量が所定範囲内に制御された1次凝集汚泥を造粒濃
縮工程へ供給し、固形物濃度が実質的に一定に保たれた
造粒汚泥を造粒濃縮工程から濃縮工程へ供給し、該濃縮
工程において前記の造粒汚泥を濃縮してその固形物濃度
または濃縮流量が実質的に一定とされた濃縮汚泥を、脱
水工程へ供給する方法。 (c) 1次凝集汚泥中の1次凝集物と未凝集の固形物との
合計量が所定範囲内に制御された1次凝集汚泥を造粒濃
縮工程へ供給し、固形物濃度が実質的に一定に保たれた
造粒汚泥を造粒濃縮工程から濃縮工程へ供給し、該濃縮
工程において前記の造粒汚泥を濃縮してその固形物濃度
または、濃縮流量が実質的に一定とされた濃縮汚泥を脱
水工程へ供給し、該脱水工程で該濃縮汚泥を濃縮脱水し
てケーキ含水率が実質的に一定な脱水ケーキとする方法
および (d) 1次凝集汚泥中の1次凝集物と未凝集の固形物との
合計量が所定範囲内に制御された1次凝集汚泥を造粒濃
縮工程へ供給し、固形物濃度が実質的に一定に保たれた
造粒汚泥を造粒濃縮工程から濃縮工程へ供給し、該濃縮
工程において前記の造粒汚泥を濃縮してその固形物濃度
または濃縮流量が実質的に一定とされた濃縮汚泥を脱水
工程へ供給し、該脱水工程で該濃縮汚泥を脱水してケー
キ含水率が実質的に一定な脱水ケーキとし、該脱水工程
における遠心脱水機の差速またはトルクの変動に対応し
て前記の造粒濃縮工程における両性高分子凝集剤の使用
量を調節する方法 などがある。
In the sludge concentrating and dewatering method of the present invention, the following operating methods can be used. That is, (a) the primary agglomerated sludge in which the total amount of the primary agglomerates and unaggregated solids in the primary agglomerated sludge is controlled to be substantially constant is supplied to the granulation concentration step, and A method of supplying granulated sludge having a substantially constant substance concentration from the granulating and concentrating step to the concentrating step. (b) The primary agglomerated sludge in which the total amount of the primary agglomerates in the primary agglomerated sludge and the unaggregated solids is controlled within a predetermined range is supplied to the granulation concentration step, and the solids concentration is substantially reduced. The granulation sludge, which was kept constant at 1, was supplied from the granulation concentration step to the concentration step, and in the concentration step, the above-mentioned granulation sludge was concentrated to a concentration in which the solids concentration or concentration flow rate was substantially constant. A method of supplying sludge to the dehydration process. (c) The primary agglomerated sludge in which the total amount of the primary agglomerates in the primary agglomerated sludge and the non-agglomerated solids is controlled within a predetermined range is supplied to the granulation concentration step, and the solids concentration is substantially The granulated sludge, which was kept constant at 1, was supplied from the granulating and concentrating step to the concentrating step, and in the concentrating step, the granulated sludge was concentrated so that the solids concentration or the concentrating flow rate was substantially constant. A method of supplying the concentrated sludge to a dehydration step, concentrating and dehydrating the concentrated sludge in the dehydration step to form a dehydrated cake having a substantially constant cake water content, and (d) primary aggregate in the primary aggregate sludge The primary flocculation sludge whose total amount with unaggregated solid matter is controlled within a predetermined range is supplied to the granulation concentration step, and the granulation sludge whose solids concentration is kept substantially constant is granulated concentration step To the concentration step, and in the concentration step, the granulated sludge is concentrated to obtain a solid content or a concentrated stream. The concentrated sludge of which the amount is substantially constant is supplied to the dehydration step, and the concentrated sludge is dehydrated in the dehydration step to form a dehydrated cake whose cake water content is substantially constant, and the centrifugal dehydrator in the dehydration step There is a method of adjusting the amount of the amphoteric polymer coagulant used in the above-mentioned granulating and concentrating step according to the change in the differential speed or the torque.

【0020】[0020]

【実施例】本発明の汚泥濃縮脱水装置を、図面によって
さらに具体的に説明し、また、本発明の汚泥濃縮脱水方
法を実施例によってさらに具体的に説明するが、本発明
は、これらの図面で示された装置およびこれらの実施例
に記載された方法に限定されるものではない。本発明の
汚泥濃縮脱水装置の原理を示すためのフローシートを図
1に示す。本発明で使用される代表的な造粒濃縮槽の一
部切欠斜視図を図2に示す。本発明で使用される代表的
な遠心脱水機の縦断面を図3に示す。すなわち、本発明
の汚泥濃縮脱水装置は、無機凝集剤とを混合して原汚泥
中のイオン成分および固形物を1次的に凝集させた1次
凝集物を含有する1次凝集汚泥とする調質槽 1、該調質
槽 1から導かれた1次凝集汚泥と両性高分子凝集剤とを
攪拌しつつ混合して前記1次凝集汚泥中の1次凝集物お
よび未凝集の固形物を凝集、造粒せしめて造粒汚泥にす
るとともに、該造粒汚泥と遊離水とに分離して濃縮する
造粒濃縮槽 2、該造粒汚泥を濃縮するフィルター式濃縮
機 3および該フィルター式濃縮機 3で濃縮された濃縮汚
泥をさらに脱水する遠心脱水機 4を順次連設させて成っ
ている。また、調質槽 1はその上流側の下水処理施設と
原汚泥貯槽 5を介して接続されており、その一方で、原
汚泥貯槽 5を介することなく、下水処理施設と直接、接
続されてもいる。原汚泥貯槽 5と調質槽 1との間、調質
槽 1と造粒濃縮槽 2との間、および、造粒濃縮槽 2とフ
ィルター式濃縮機 3との間には、それぞれ、ポンプが介
在せしめられている。なお、造粒濃縮槽 2とフィルター
式濃縮機 3との間に介在せしめられているポンプは1軸
ネジ式ポンプである。
EXAMPLES The sludge concentrating and dewatering apparatus of the present invention will be described more specifically with reference to the drawings, and the sludge concentrating and dewatering method of the present invention will be described more specifically with reference to Examples. It is not limited to the apparatus shown in and the methods described in these examples. FIG. 1 shows a flow sheet for showing the principle of the sludge concentrating and dewatering device of the present invention. A partially cutaway perspective view of a typical granulation thickener used in the present invention is shown in FIG. A vertical section of a typical centrifugal dehydrator used in the present invention is shown in FIG. That is, the sludge concentrating and dewatering device of the present invention prepares a primary coagulation sludge containing a primary coagulant obtained by mixing an inorganic coagulant and primary coagulation of ionic components and solids in the raw sludge. Pour tank 1, primary agglomerated sludge derived from the conditioning tank 1 and an amphoteric polymer flocculant are mixed with stirring to agglomerate the primary agglomerates and unaggregated solids in the primary agglomerated sludge. A granulating thickener tank 2 which concentrates the granulated sludge by separating the granulated sludge into free granulated water while concentrating the granulated sludge into a granulated sludge, and a filter type concentrator 3 and the filter type concentrator A centrifugal dehydrator 4 for further dehydrating the concentrated sludge concentrated in 3 is connected in sequence. Further, the tempering tank 1 is connected to the upstream sewage treatment facility via the raw sludge storage tank 5, while on the other hand, even if it is directly connected to the sewage treatment facility without passing through the raw sludge storage tank 5. There is. Pumps are installed between the raw sludge storage tank 5 and the conditioning tank 1, between the conditioning tank 1 and the granulation thickening tank 2, and between the granulation thickening tank 2 and the filter concentrator 3. It has been intervened. The pump interposed between the granulation concentrating tank 2 and the filter concentrator 3 is a single screw type pump.

【0021】調質槽 1は、円筒状の槽11内に攪拌機12が
内蔵せしめられている。また、底部には原汚泥供給孔13
および無機凝集剤供給孔14がそれぞれ開口せしめられて
おり、上部には1次凝集汚泥排出孔15が開口せしめられ
ている。
In the tempering tank 1, a stirrer 12 is incorporated in a cylindrical tank 11. In addition, there is a raw sludge supply hole 13 at the bottom.
Further, the inorganic coagulant supply hole 14 is opened, and the primary coagulated sludge discharge hole 15 is opened in the upper part.

【0022】造粒濃縮槽 2は、1次凝集汚泥と高分子凝
集剤とを攪拌しつつ混合して、槽本体の内周面で1次凝
集汚泥中の1次凝集物および未凝集の固形物をさらに凝
集、造粒させ濃縮するものである。槽本体21、攪拌機22
およびスクリーン25を有している。該スクリーン25は該
槽本体内の上部に設けられている。該攪拌機22は水平方
向の旋回流を発生させる上部攪拌翼23および鉛直方向の
循環流を発生させる下部攪拌翼24とを有している。該ス
クリーン25によって、造粒汚泥と遊離水とに分離され
る。該槽本体21の底部には汚泥供給孔26および両性高分
子凝集剤供給孔27がそれぞれ穿設されており、また、槽
本体21の上部およびスクリーン25の下方には、それぞ
れ、遊離水排出孔28および造粒汚泥排出孔29が穿設され
ている。
In the granulation thickening tank 2, the primary coagulation sludge and the polymer coagulant are mixed with stirring, and the primary agglomerates and unaggregated solids in the primary coagulation sludge are mixed on the inner peripheral surface of the tank main body. The product is further aggregated, granulated and concentrated. Tank body 21, agitator 22
And has a screen 25. The screen 25 is provided in the upper part inside the tank body. The stirrer 22 has an upper stirring blade 23 for generating a horizontal swirling flow and a lower stirring blade 24 for generating a vertical circulating flow. The screen 25 separates the granulated sludge into free water. A sludge supply hole 26 and an amphoteric polymer coagulant supply hole 27 are provided at the bottom of the tank body 21, and free water discharge holes are provided at the top of the tank body 21 and below the screen 25, respectively. 28 and a granulation sludge discharge hole 29 are provided.

【0023】フィルター式濃縮機 3は、槽体31の内部に
ワイヤスクリーン32が内蔵せしめられており、また、こ
の槽体31に濃縮汚泥排出孔33および分離水排出孔34がそ
れぞれ設置されている。この、槽体31には、その濾過面
を、前記の遊離水で連続的にまたは間欠的に洗浄するた
めの洗浄ノズルが配設されている(図面には示されてい
ない)。
The filter-type concentrator 3 has a wire screen 32 built in a tank body 31, and a concentrated sludge discharge hole 33 and a separated water discharge hole 34 are installed in the tank body 31, respectively. . The tank 31 is provided with a cleaning nozzle (not shown in the drawing) for cleaning the filtration surface thereof continuously or intermittently with the free water.

【0024】遠心脱水機 4は、円筒状のケーシング41中
に、円筒部とその一端に連設された円錐状の筒部から成
るボウル42が設けられ、該ボウル42の内側に、円筒部43
1とその一端に連設されたインナーコーン432とから成る
内筒43が収納されており、該内筒43の周壁には孔433が
穿設されている。該円筒部431および該インナーコーン4
32の外周面にそれぞれスクリュー44が設けられ、該円筒
部431の外周面のスクリュー44は該インナーコーン432に
向って(図面の向って右方に行くに従って)そのピッチ
が漸減せしめられており、該ボウル42および該スクリュ
ー44は互いに同心的に独立して回転せしめられる。ボウ
ル42およびスクリュー44はここに供給される濃縮汚泥の
性状などに対応して差速が生ぜしめられる。この差速お
よびこれらのトルクを検出するための検出器が設けられ
ている(この検出器は図示されていない)。濃縮汚泥
は、該内筒43の内部に供給され、次いで孔433からボウ
ル42の内周面と内筒43の外周面との間の間隙へ送られ
て、濃縮汚泥はここでさらにスクリュー44によって脱水
されて、分離水は分離水排出孔45から排出せしめられ、
他方、脱水ケーキは脱水ケーキ排出孔46から排出せしめ
られる。造粒濃縮槽 2からの遊離水の一部ならびにフィ
ルター式濃縮機 3および遠心脱水機 4のそれぞれからの
分離水は、下水処理施設へ送られて処理される。
The centrifugal dehydrator 4 is provided with a bowl 42 consisting of a cylindrical portion and a conical tubular portion connected to one end in a cylindrical casing 41, and the cylindrical portion 43 is provided inside the bowl 42.
An inner cylinder 43 composed of 1 and an inner cone 432 connected to one end of the inner cylinder 43 is housed, and a hole 433 is formed in a peripheral wall of the inner cylinder 43. The cylindrical portion 431 and the inner cone 4
Screws 44 are respectively provided on the outer peripheral surface of 32, and the pitch of the screw 44 on the outer peripheral surface of the cylindrical portion 431 is gradually reduced toward the inner cone 432 (as it goes to the right in the drawing), The bowl 42 and the screw 44 are rotated concentrically and independently of each other. The bowl 42 and the screw 44 generate a differential speed according to the properties of the concentrated sludge supplied here. A detector is provided for detecting this differential speed and these torques (this detector is not shown). The concentrated sludge is supplied to the inside of the inner cylinder 43, and then sent from the hole 433 to the gap between the inner peripheral surface of the bowl 42 and the outer peripheral surface of the inner cylinder 43. After being dehydrated, the separated water is discharged from the separated water discharge hole 45,
On the other hand, the dehydrated cake is discharged from the dehydrated cake discharge hole 46. Part of the free water from the granulation concentrating tank 2 and the separated water from each of the filter concentrator 3 and the centrifugal dehydrator 4 are sent to the sewage treatment facility for treatment.

【0025】比較例 従来は造粒濃縮槽への汚泥供給は固形物濃度の変動に関
係なく、供給量を一定にして行われ、供給汚泥の固形物
濃度の変動があった場合に、造粒汚泥の固形物濃度を一
定にすると、造粒汚泥生成量の変動が大きく、しかもフ
ィルター式濃縮機が使用されていないために、この変動
に伴って遠心脱水機への造粒汚泥の供給量も大きく変動
し、遠心脱水機での運転が不安定となり、安定した運転
管理が実質的に不可能であった。すなわち、固形物濃度
が0.6〜1.5重量%の範囲に変動する原汚泥を100m3/hrで
一定に供給すると、前記の従来の操作では造粒汚泥量は
30〜75m3/hrの範囲で大きく変動し、遠心脱水機の安定
した運転ができなかった。
Comparative Example Conventionally, sludge was supplied to a granulation thickening tank with a constant supply amount regardless of fluctuations in the solid concentration, and when the solid concentration of the supplied sludge fluctuated, granulation was performed. When the solids concentration of sludge is kept constant, the amount of granulated sludge produced fluctuates greatly, and since the filter type concentrator is not used, the amount of granulated sludge supplied to the centrifugal dehydrator also changes with this fluctuation. It fluctuated greatly and the operation in the centrifugal dehydrator became unstable, making stable operation management virtually impossible. That is, when the original sludge having a solid concentration varying from 0.6 to 1.5% by weight is constantly supplied at 100 m 3 / hr, the amount of granulated sludge in the above conventional operation is
It fluctuated greatly within the range of 30 to 75 m 3 / hr, and the stable operation of the centrifugal dehydrator could not be performed.

【0026】実施例1 造粒濃縮槽への1次凝集汚泥を、その固形物濃度が一定
となるように供給し、造粒濃縮槽からの造粒汚泥の固形
物濃度を、供給される1次凝集汚泥の固形物濃度に追随
して一定範囲内に納るように制御した。すなわち、比較
例と同様にして、100m3/hrの原汚泥を供給した。ただ
し、この原汚泥の固形物濃度は 1重量%であり、従っ
て、供給された固形物量は、1000kg/hrとなる。造粒濃
縮槽に供給される1次凝集汚泥の固形物濃度が0.6〜1.5
重量%(原汚泥供給量は67〜167m3/hrに相当する)の範
囲に変動した場合に、排出される造粒汚泥の固形物濃度
を 2〜 3重量%に制御した。排出された造粒汚泥の量は
33〜50m3/hrであり、固形物量は1000kg/hrとほぼ一定で
あった。フィルター式濃縮機でさらに濃縮制御すること
により、濃縮汚泥の固形物濃度を 3重量%に制御して、
固形物濃度 3重量%の濃縮汚泥が33m3/hrでほぼ一定に
得られた。このようにして、固形物濃度が一定にされた
濃縮汚泥がほぼ一定の速度で遠心脱水機に供給されるの
で、遠心脱水機の制御は、既存の、トルク一定制御およ
び分離水SS(汚泥固形物)監視による遠心脱水機の差速
制御のような水分一定制御によって、遠心脱水機の安定
な運転が可能となる。また、これらの一連の制御により
本発明の汚泥濃縮脱水装置は、常に最適な運転状態が常
に安定して維持される。
Example 1 The primary coagulation sludge was fed to the granulation thickener so that the solids concentration was constant, and the solids concentration of the granulated sludge was fed from the granulation thickener. It was controlled so that it would fall within a certain range following the solids concentration of the next coagulated sludge. That is, 100 m 3 / hr of raw sludge was supplied in the same manner as in Comparative Example. However, the solid concentration of this raw sludge is 1% by weight, so the supplied solid amount is 1000 kg / hr. The solids concentration of the primary coagulation sludge supplied to the granulation thickener is 0.6 to 1.5.
The concentration of solids in the discharged sludge was controlled to 2 to 3% by weight when it fluctuated within the range of% by weight (raw sludge supply amount was equivalent to 67 to 167 m 3 / hr). The amount of granulated sludge discharged is
It was 33 to 50 m 3 / hr, and the solid content was almost constant at 1000 kg / hr. By further controlling the concentration with a filter type concentrator, the solid concentration of the concentrated sludge is controlled to 3% by weight,
Concentrated sludge with a solid content of 3% by weight was obtained at a constant rate of 33 m 3 / hr. In this way, the concentrated sludge with a fixed solids concentration is supplied to the centrifugal dehydrator at an almost constant speed, so the centrifugal dehydrator is controlled by the existing constant torque control and separated water SS (sludge solids). The stable operation of the centrifugal dehydrator becomes possible by the constant water content control such as the differential speed control of the centrifugal dehydrator by monitoring the object). Moreover, the sludge condensing / dehydrating apparatus of the present invention is always stably maintained in the optimum operating state by the series of these controls.

【0027】実施例2 実施例1において、1次凝集汚泥の供給量などが過大に
変動して造粒濃縮槽の制御が困難となった場合に、1次
凝集汚泥の供給量などの変動幅を縮小させる必要が生ず
る。このような場合には、1次凝集汚泥の固形物の一定
制御範囲を800〜1000kg/hrに設定して、供給される1次
凝集汚泥の固形物濃度が低くなったときに固形物量を少
なくするように制御することにより、1次凝集汚泥の供
給量の範囲は67〜133m3/hr、造粒汚泥の生成量は33〜40
m3/hrとなり、また、フィルター式濃縮機で濃縮汚泥の
生成量を30m3/hrに制御するとその固形物濃度は2.7〜3.
3重量%の範囲となって、遠心脱水機の安定した運転制
御に支障を与えない程度の小さい変動幅に抑えることが
でき、これにより実施例1と同様に、遠心脱水機の安定
した良好な運転制御が可能となった。実施例1および実
施例2のそれぞれにおいて、原汚泥の供給量および/ま
たは固形物濃度に変動が大きくても、このような汚泥を
安定して濃縮脱水を可能ならしめたのは、造粒濃縮槽と
遠心脱水機との間にフィルター式濃縮機を設けたことに
よるものである
Example 2 In Example 1, when the primary flocculation sludge supply amount fluctuates excessively and it becomes difficult to control the granulation thickener, the fluctuation range of the primary flocculation sludge supply amount, etc. Will need to be reduced. In such a case, set the constant control range of the solids of the primary coagulation sludge to 800 to 1000kg / hr, and reduce the amount of solids when the solids concentration of the supplied primary coagulation sludge becomes low. By controlling so that the supply amount of primary coagulation sludge is 67 to 133 m 3 / hr and the amount of granulated sludge produced is 33 to 40
m 3 / hr, and when the amount of concentrated sludge produced is controlled to 30 m 3 / hr with a filter type concentrator, the solid concentration is 2.7 to 3.
In the range of 3% by weight, the fluctuation range can be suppressed to such a small extent that the stable operation control of the centrifugal dehydrator is not hindered, and as a result, similar to Example 1, the centrifugal dehydrator is stable and good. Operation control has become possible. In each of Examples 1 and 2, even if the amount of raw sludge supplied and / or the concentration of solids greatly fluctuated, it was possible to stably concentrate and dehydrate such sludge by granulation and concentration. This is because a filter type concentrator was installed between the tank and the centrifugal dehydrator.

【0028】実施例3 実施例1および実施例2のそれぞれにおける操作方法を
さらに発展させた操作方法がある。すなわち、実施例1
および実施例2のそれぞれにおいて、遠心脱水機へ供給
される濃縮汚泥の供給量およびその固形物量をほぼ一定
とすることができるので、遠心脱水機の処理能力の変化
は、原汚泥の性状からだけ影響を受けることになる。原
汚泥の固形物濃度だけが変動してその質的変化が実質的
にない場合には、遠心脱水機の差速およびスクリューや
ボウルのトルクなどの運転条件は実質的に同一となる。
従って、制御運転においてこの差速および/またはトル
クの大きな変動は、原汚泥に質的な変化があることの兆
候となる。すなわち、この差速が異常に大きい値で安定
する場合や、トルクが異常に小さい値で安定する場合に
は、原汚泥が質的に変化し凝集不良となったことの兆候
であるので、造粒濃縮槽での両性高分子凝集剤の使用量
を増加する必要が有る。また前記の運転条件が逆になっ
た場合には両性高分子凝集剤の使用量を減らしても、遠
心脱水機の運転は依然として順調であるので、両性高分
子凝集剤の使用量を節減することが可能となる。ただ
し、この場合には、造粒濃縮槽の安定運転に必要な最低
限の両性高分子凝集剤の使用量を予め定めておく必要が
ある。
Example 3 There is an operating method which is a further development of the operating method in each of Example 1 and Example 2. That is, Example 1
In each of Example 2 and Example 2, since the supply amount of the concentrated sludge supplied to the centrifugal dehydrator and the solid amount thereof can be made substantially constant, the change in the processing capacity of the centrifugal dehydrator is caused only by the properties of the original sludge. Will be affected. When only the solid concentration of the raw sludge fluctuates and there is substantially no qualitative change, the operating conditions such as the differential speed of the centrifugal dehydrator and the torque of the screw and the bowl are substantially the same.
Therefore, in the control operation, the large fluctuation of the differential speed and / or the torque is an indication that there is a qualitative change in the raw sludge. That is, when the differential speed stabilizes at an abnormally large value or when the torque stabilizes at an abnormally small value, it is a sign that the raw sludge qualitatively changed and became defective in coagulation. It is necessary to increase the amount of amphoteric polymer flocculant used in the grain concentrator. If the above operating conditions are reversed, the centrifugal dehydrator operation will still be successful even if the amount of amphoteric polymer flocculant used is reduced, so reduce the amount of amphoteric polymer flocculant used. Is possible. However, in this case, it is necessary to determine in advance the minimum amount of the amphoteric polymer flocculant used for stable operation of the granulation concentrating tank.

【0029】前記の各実施例によって、いずれの操作方
法も、造粒濃縮槽と遠心脱水機との間にフィルター式濃
縮機を配設して、これらを順次、連設したとの特徴を生
かした操作方法で汚泥の処理時間が短く、制御応答も良
好であり、装置の機能は向上せしめられ、かつ、最適運
転を安定して維持することが可能であることが示されて
いる。
In each of the above-mentioned embodiments, in any operation method, a feature is that a filter type concentrator is arranged between the granulation concentration tank and the centrifugal dehydrator, and these are sequentially connected in sequence. It has been shown that the sludge treatment time is short, the control response is good, the function of the device is improved, and the optimum operation can be stably maintained by the above operation method.

【0030】[0030]

【発明の効果】本発明によって、各機器を、ポンプを使
用し、もしくは、ポンプを使用しないで直列に互いに接
続し、この装置に下水汚泥を連続して供給してこの装置
を連続的に運転することにより、殊更、他の機器を使用
しないでも、下水汚泥を効率よく、しかも、安い費用で
安定して濃縮脱水し、含水率の低い脱水ケーキを得るこ
とが可能となり、産業上および、環境保全上の価値は極
めて高い。
According to the present invention, each device is connected to each other in series with or without a pump, and the sewage sludge is continuously supplied to the device to continuously operate the device. By doing so, it is possible to efficiently concentrate sewage sludge at a low cost and obtain a dehydrated cake with a low water content even if no other equipment is used. The conservation value is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の汚泥濃縮脱水装置の原理を示すための
フローシートである。
FIG. 1 is a flow sheet showing the principle of the sludge concentrating and dehydrating apparatus of the present invention.

【図2】本発明で使用される代表的な造粒濃縮槽の一部
切欠斜視図である。
FIG. 2 is a partially cutaway perspective view of a typical granulation concentration tank used in the present invention.

【図3】本発明で使用される代表的な遠心脱水機の縦断
面である。
FIG. 3 is a vertical cross section of a typical centrifugal dehydrator used in the present invention.

【符号の説明】[Explanation of symbols]

1 調質槽 11 槽本体 12 攪拌機 13 原汚泥供給孔 14 無機凝集剤供給孔 2 造粒濃縮槽 21 槽本体 22 攪拌機 23 上部攪拌翼 24 下部攪拌翼 25 スクリーン 26 汚泥供給孔 27 高分子凝集剤供給孔 28 遊離水排出孔 29 造粒汚泥排出孔 3 フィルター式濃縮機 31 槽体 32 ワイヤスクリーン 33 濃縮汚泥排出孔 34 分離水排出孔 4 遠心脱水機 41 ケーシング 42 ボウル 43 内筒 431 円筒部 432 インナーコーン 433 孔 44 スクリュー 45 分離水排出孔 46 脱水ケーキ排出孔 5 原汚泥貯槽 1 Conditioning tank 11 Tank body 12 Stirrer 13 Raw sludge supply hole 14 Inorganic flocculant supply hole 2 Granulation thickener 21 Tank body 22 Stirrer 23 Upper stirring blade 24 Lower stirring blade 25 Screen 26 Sludge feeding hole 27 Polymer flocculant supply Hole 28 Free water discharge hole 29 Granulation sludge discharge hole 3 Filter type concentrator 31 Tank 32 Wire screen 33 Concentrated sludge discharge hole 34 Separation water discharge hole 4 Centrifugal dehydrator 41 Casing 42 Bowl 43 Inner cylinder 431 Cylindrical part 432 Inner cone 433 hole 44 Screw 45 Separation water discharge hole 46 Dewatered cake discharge hole 5 Raw sludge storage tank

───────────────────────────────────────────────────── フロントページの続き (71)出願人 000001063 栗田工業株式会社 東京都新宿区西新宿3丁目4番7号 (71)出願人 591162022 巴工業株式会社 東京都中央区日本橋3丁目9番2号 (72)発明者 安田 勉 茨城県北相馬郡守谷町みずき野6−29−7 (72)発明者 赤松 幸三郎 東京都千代田区大手町2丁目6番2号 東 京都下水道サービス株式会社内 (72)発明者 西田 克範 東京都中央区佃2丁目17番15号 月島機械 株式会社内 (72)発明者 渡辺 康彦 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内 (72)発明者 矢野 宰平 東京都中央区日本橋3丁目9番2号(第二 丸善ビルヂング) 巴工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (71) Applicant 000001063 Kurita Kogyo Co., Ltd. 3-4-7 Nishishinjuku, Shinjuku-ku, Tokyo (71) Applicant 591162022 Tomoe Kogyo Co., Ltd. 3-9-2 Nihonbashi, Chuo-ku, Tokyo (72) Inventor Tsutomu Yasuda 6-29-7 Mizukino, Moriya-cho, Kitasoma-gun, Ibaraki (72) Inventor Kosaburo Akamatsu 2-6-2 Otemachi, Chiyoda-ku, Tokyo Tokyo Sewer Service Co., Ltd. (72) Invention Katsunori Nishida 2-17-15 Tsukushima, Chuo-ku, Tokyo Tsukishima Machinery Co., Ltd. (72) Inventor Yasuhiko Watanabe 3-4-7 Nishi-Shinjuku, Shinjuku-ku, Tokyo Kurita Industry Co., Ltd. (72) Inventor, Yano Taira Industrial Co., Ltd. 3-9-2 Nihonbashi, Chuo-ku, Tokyo (Daini Maruzen Building)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 下水処理施設からの原汚泥と無機凝集剤
とを混合して原汚泥中のイオン成分および固形物を1次
的に凝集させた1次凝集物を含有する1次凝集汚泥とす
る調質槽、該調質槽から導かれた1次凝集汚泥と両性高
分子凝集剤とを攪拌しつつ混合して前記1次凝集汚泥中
の1次凝集物および未凝集の固形物を凝集、造粒せしめ
て造粒汚泥にするとともに、該造粒汚泥と遊離水とに分
離して濃縮する造粒濃縮槽、該造粒汚泥を濃縮するフィ
ルター式濃縮機および該フィルター式濃縮機で濃縮され
た濃縮汚泥をさらに脱水する遠心脱水機を順次連設させ
て成ることを特徴とする汚泥濃縮脱水装置。
1. A primary flocculation sludge containing primary flocculates obtained by mixing raw sludge from a sewage treatment facility with an inorganic flocculant to primarily flocculate ionic components and solids in the raw sludge. A mixing tank, the primary coagulation sludge introduced from the conditioning tank, and the amphoteric polymer coagulant are mixed with stirring to coagulate the primary coagulation and uncoagulated solid matter in the primary coagulation sludge. , A granulation thickening tank for granulating sludge into granulated sludge, and separating and concentrating the granulated sludge into free water, a filter type concentrator for concentrating the granulated sludge, and concentration with the filter type concentrator A sludge concentrating and dewatering device, characterized in that a centrifugal dehydrator for further dewatering the concentrated sludge thus formed is successively connected.
【請求項2】 下水処理施設から発生した原汚泥と無機
凝集剤とを混合して原汚泥中のイオン成分および固形物
を1次的に凝縮させて1次凝集物を含有する1次凝集汚
泥を得る調質工程、該1次凝集汚泥と両性高分子凝集剤
とを攪拌しつつ混合して前記1次凝集汚泥中の1次凝集
物および未凝集の固形物を凝集、造粒させて造粒汚泥と
し、該造粒汚泥と遊離水とに分離せしめる造粒濃縮工
程、該造粒濃縮工程で得られた造粒汚泥をフィルター式
濃縮機で濃縮して濃縮汚泥とする濃縮工程および該濃縮
汚泥を遠心脱水機で脱水して脱水ケーキとする脱水工程
を順次経由させて、該造粒汚泥の破壊を極力抑制して濃
縮脱水することを特徴とする汚泥濃縮脱水方法。
2. A primary coagulation sludge containing primary coagulation by mixing raw sludge generated from a sewage treatment facility with an inorganic coagulant to primarily condense ionic components and solids in the raw sludge. The primary coagulation sludge and the amphoteric polymer flocculant are mixed with stirring to agglomerate and granulate the primary agglomerates and unaggregated solid matter in the primary agglomerate sludge Granulating sludge, a granulating and concentrating step of separating the granulating sludge and free water, a concentrating step of concentrating the granulating sludge obtained in the granulating and concentrating step with a filter type concentrator into a concentrated sludge, and the concentrating step. A method for concentrating and dewatering sludge, which comprises sequentially dewatering sludge with a centrifugal dewatering machine to form a dehydrated cake and suppressing destruction of the granulated sludge as much as possible.
【請求項3】 1次凝集汚泥中の1次凝集物と未凝集の
固形物との合計量が実質的に一定に制御された1次凝集
汚泥を造粒濃縮工程へ供給し、かつ、固形物濃度が実質
的に一定に保たれた造粒汚泥を造粒濃縮工程から濃縮工
程へ供給する請求項2記載の汚泥濃縮脱水方法。
3. A primary flocculation sludge in which the total amount of primary flocculates and non-flocculated solids in the primary flocculation sludge is controlled to be substantially constant is supplied to a granulation concentration step, and The sludge concentration / dehydration method according to claim 2, wherein the granulated sludge having a substantially constant substance concentration is supplied from the granulation concentration step to the concentration step.
【請求項4】 1次凝集汚泥中の1次凝集物と未凝集の
固形物との合計量が所定範囲内に制御された1次凝集汚
泥を造粒濃縮工程へ供給し、固形物濃度が実質的に一定
に保たれた造粒汚泥を造粒濃縮工程から濃縮工程へ供給
し、該濃縮工程において前記の造粒汚泥を濃縮してその
固形物濃度または濃縮流量が実質的に一定とされた濃縮
汚泥を、脱水工程へ供給する請求項2記載の汚泥濃縮脱
水方法。
4. The primary agglomerated sludge in which the total amount of the primary agglomerates and the non-agglomerated solids in the primary agglomerated sludge is controlled within a predetermined range is supplied to the granulation concentration step, and the solid concentration is increased. The granulated sludge kept substantially constant is supplied from the granulation concentrating step to the concentrating step, and in the concentrating step, the granulated sludge is concentrated so that the solids concentration or the concentrating flow rate is substantially constant. The concentrated sludge dewatering method according to claim 2, wherein the concentrated sludge is supplied to the dehydration step.
【請求項5】 1次凝集汚泥中の1次凝集物と未凝集の
固形物との合計量が所定範囲内に制御された1次凝集汚
泥を造粒濃縮工程へ供給し、固形物濃度が実質的に一定
に保たれた造粒汚泥を造粒濃縮工程から濃縮工程へ供給
し、該濃縮工程において前記の造粒汚泥を濃縮してその
固形物濃度または濃縮流量が実質的に一定とされた濃縮
汚泥を脱水工程へ供給し、該脱水工程で該濃縮汚泥を脱
水してケーキ含水率が実質的に一定な脱水ケーキとする
請求項2記載の汚泥濃縮脱水方法。
5. The primary agglomerated sludge in which the total amount of the primary agglomerates in the primary agglomerated sludge and the unaggregated solids is controlled within a predetermined range is supplied to the granulation concentration step, and the solids concentration is increased. The granulated sludge kept substantially constant is supplied from the granulation concentrating step to the concentrating step, and in the concentrating step, the granulated sludge is concentrated so that the solids concentration or the concentrating flow rate is substantially constant. The sludge concentration / dehydration method according to claim 2, wherein the concentrated sludge is supplied to the dehydration step, and the concentrated sludge is dehydrated in the dehydration step to obtain a dehydrated cake having a substantially constant cake water content.
【請求項6】 1次凝集汚泥中の1次凝集物と未凝集の
固形物との合計量が所定範囲内に制御された1次凝集汚
泥を造粒濃縮工程へ供給し、固形物濃度が実質的に一定
に保たれた造粒汚泥を造粒濃縮工程から濃縮工程へ供給
し、該濃縮工程において前記の造粒汚泥を濃縮してその
固形物濃度または濃縮流量が実質的に一定とされた濃縮
汚泥を脱水工程へ供給し、該脱水工程で該濃縮汚泥を脱
水してケーキ含水率が実質的に一定な脱水ケーキとし、
該脱水工程における遠心脱水機の差速またはトルクの変
動に対応して前記の造粒濃縮工程における両性高分子凝
集剤の使用量を調節する請求項2記載の汚泥濃縮脱水方
法。
6. The primary agglomerated sludge in which the total amount of the primary agglomerates and the unaggregated solids in the primary agglomerated sludge is controlled within a predetermined range is supplied to the granulation concentration step, and the solid concentration is increased. The granulated sludge kept substantially constant is supplied from the granulation concentrating step to the concentrating step, and in the concentrating step, the granulated sludge is concentrated so that the solids concentration or the concentrating flow rate is substantially constant. The concentrated sludge is supplied to the dehydration step, and the concentrated sludge is dehydrated in the dehydration step to form a dehydrated cake having a substantially constant cake water content,
The sludge concentrating and dewatering method according to claim 2, wherein the amount of the amphoteric polymer flocculant used in the granulating and concentrating step is adjusted in response to a change in the differential speed or torque of the centrifugal dehydrator in the dewatering step.
JP13516693A 1993-05-14 1993-05-14 Sludge thickening and dewatering apparatus and sludge thickening and dewatering method Expired - Lifetime JP3405762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13516693A JP3405762B2 (en) 1993-05-14 1993-05-14 Sludge thickening and dewatering apparatus and sludge thickening and dewatering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13516693A JP3405762B2 (en) 1993-05-14 1993-05-14 Sludge thickening and dewatering apparatus and sludge thickening and dewatering method

Publications (2)

Publication Number Publication Date
JPH06320200A true JPH06320200A (en) 1994-11-22
JP3405762B2 JP3405762B2 (en) 2003-05-12

Family

ID=15145377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13516693A Expired - Lifetime JP3405762B2 (en) 1993-05-14 1993-05-14 Sludge thickening and dewatering apparatus and sludge thickening and dewatering method

Country Status (1)

Country Link
JP (1) JP3405762B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007152344A (en) * 2005-11-08 2007-06-21 Zenitaka Corp Powder muddy water treatment agent, muddy water dehydrating method, and muddy water volume-reduction device
JP5118262B1 (en) * 2012-07-03 2013-01-16 巴工業株式会社 Sludge treatment system, sludge treatment system operation control program
JP5192609B1 (en) * 2012-12-21 2013-05-08 巴工業株式会社 Sludge treatment system, sludge treatment system operation control program
JP5220949B1 (en) * 2012-10-24 2013-06-26 巴工業株式会社 Sludge treatment system, sludge treatment system operation control program
KR20140004594A (en) 2012-07-03 2014-01-13 토모에코교 카부시키카이샤 Sludge processing system and storage medium storing a program for controlling an operation of a sludge processing system thereon
CN108455749A (en) * 2017-02-22 2018-08-28 郑百祥 It is a kind of to the sewage disposal device containing solids
CN108658429A (en) * 2017-03-31 2018-10-16 广州新致晟环保科技有限公司 Sludge condensation and modifying device and the method that sludge is handled using it
CN112062330A (en) * 2020-08-30 2020-12-11 南京中电环保水务有限公司 High-load crystal nucleus solid-liquid separation device and method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102583943A (en) * 2012-03-06 2012-07-18 光大环保科技发展(北京)有限公司 Sewage plant sludge modifying and drying method and sludge processing system
CN103708698B (en) * 2013-12-24 2016-05-18 中国矿业大学 A kind of method of utilizing the dehydration of explosive charge shock wave pretreating sludge

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007152344A (en) * 2005-11-08 2007-06-21 Zenitaka Corp Powder muddy water treatment agent, muddy water dehydrating method, and muddy water volume-reduction device
US9206064B2 (en) 2012-07-03 2015-12-08 Tomoe Engineering Co., Ltd. Sludge processing system and storage medium storing a program for controlling operation of a sludge processing system based on correlation between moisture content of concentrated sludge, centrifugal force, and concentrated sludge convey torque
JP5118262B1 (en) * 2012-07-03 2013-01-16 巴工業株式会社 Sludge treatment system, sludge treatment system operation control program
US9212076B2 (en) 2012-07-03 2015-12-15 Tomoe Engineering Co., Ltd. Sludge processing system and storage medium storing a program for controlling operation of a sludge processing system based on moisture content of concentrated sludge
KR20140004594A (en) 2012-07-03 2014-01-13 토모에코교 카부시키카이샤 Sludge processing system and storage medium storing a program for controlling an operation of a sludge processing system thereon
JP2014008500A (en) * 2012-07-03 2014-01-20 Tomoe Engineering Co Ltd Sludge treatment system and control program for operating sludge treatment system
JP5220949B1 (en) * 2012-10-24 2013-06-26 巴工業株式会社 Sludge treatment system, sludge treatment system operation control program
JP2014012264A (en) * 2012-10-24 2014-01-23 Tomoe Engineering Co Ltd Sludge treatment system and control program for operating sludge treatment system
JP2014121683A (en) * 2012-12-21 2014-07-03 Tomoe Engineering Co Ltd Sludge treatment system and operation control program for a sludge treatment system
JP5192609B1 (en) * 2012-12-21 2013-05-08 巴工業株式会社 Sludge treatment system, sludge treatment system operation control program
CN108455749A (en) * 2017-02-22 2018-08-28 郑百祥 It is a kind of to the sewage disposal device containing solids
CN108455749B (en) * 2017-02-22 2024-04-26 郑百祥 Sewage treatment equipment for containing solids
CN108658429A (en) * 2017-03-31 2018-10-16 广州新致晟环保科技有限公司 Sludge condensation and modifying device and the method that sludge is handled using it
CN112062330A (en) * 2020-08-30 2020-12-11 南京中电环保水务有限公司 High-load crystal nucleus solid-liquid separation device and method

Also Published As

Publication number Publication date
JP3405762B2 (en) 2003-05-12

Similar Documents

Publication Publication Date Title
US20020088758A1 (en) Method and apparatus for treatment of water and wastewater
US4792406A (en) Method for dewatering a slurry using a twin belt press with cationic amine salts
JP2007136347A (en) Method for constant control of raw sludge supply amount of dehydrator and its control apparatus
JP3405762B2 (en) Sludge thickening and dewatering apparatus and sludge thickening and dewatering method
EP0979215A1 (en) Dewatering of sewage sludge
JP2010058039A (en) Sludge dewatering apparatus and sludge dewatering method
JP2010057997A (en) Sludge dewatering apparatus and method
JP2006192403A (en) Method for reducing water content in dewatered sludge
JP5041299B2 (en) Operation control method of screw press connected to rotary concentrator
JP5041298B2 (en) Operation control method of screw press connected to rotary concentrator
JP2003175400A (en) Method for treatment of sewage sludge
JPH06134213A (en) Flocculating method for organic drain
US20210261454A1 (en) Method and arrangement for separating solids and liquids in suspensions, in particular sewage sludge, by adding flocculants
JP2010247043A5 (en)
JP2010247044A5 (en)
JPS61257300A (en) Dehydrating method for sludge
JPH0731999A (en) Dehydrating method of sludge
KR101879208B1 (en) High-rate Water Treatment Method and Equipment using Mixed Mineral As Weighting Agent
JP2000350992A (en) Continuous flocculation of sludge
JP2018099658A (en) Sludge dehydration system and method
JP3705466B2 (en) Concentration dehydration method and concentration dehydration apparatus
JP2011230019A (en) Control system, control device and control method
JPH04371300A (en) Sludge treating device
JPH0924400A (en) Method for dehydrating digested sludge
JP3260257B2 (en) Sludge dewatering method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 11

EXPY Cancellation because of completion of term