JPH06318577A - Etching method for thin film - Google Patents

Etching method for thin film

Info

Publication number
JPH06318577A
JPH06318577A JP10692893A JP10692893A JPH06318577A JP H06318577 A JPH06318577 A JP H06318577A JP 10692893 A JP10692893 A JP 10692893A JP 10692893 A JP10692893 A JP 10692893A JP H06318577 A JPH06318577 A JP H06318577A
Authority
JP
Japan
Prior art keywords
film
thin film
ion beam
etching
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10692893A
Other languages
Japanese (ja)
Inventor
Kiyohiko Kanai
清彦 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP10692893A priority Critical patent/JPH06318577A/en
Publication of JPH06318577A publication Critical patent/JPH06318577A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a film from being left on the side wall part on a step- difference, and avoid short-circuiting the picture elements, by a method wherein, after a transparent conductive thin film is formed on a thin film of at least one layer, etching is performed by an ion beam milling method while the ion beam incident angle is changed by two steps. CONSTITUTION:A substrate holder 3 for retaining a substrate 2 is fixed to the depth of a vacuum vessel 1. A plasma chamber 5 is installed in the front side via a leading-out electrode 4. A permanent magnet 6 for generating magnetic field is fixed around the plasma chamber. A gas introducing port 7 connected with a gas cylinder 8, and a filament 9 are installed in the inlet of the plasma chamber. The vacuum vessel 1 is equipped with an exhaust opening 10 for evacuation. Thereby a film is prevented from being left on the side wall part of a step-difference in a substratum, and short circuit between picture elements can be prevented, so that display quality and yield can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、絶縁性透明基板のよう
な絶縁膜上に成膜され液晶表示装置等の透明電極として
機能する透明導電薄膜のドライエッチング方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for dry etching a transparent conductive thin film which is formed on an insulating film such as an insulating transparent substrate and functions as a transparent electrode of a liquid crystal display device or the like.

【0002】[0002]

【従来の技術】液晶表示装置では、画素電極に透明導電
薄膜としてITO(Indium Tin Oxid
e)膜を用いるのが一般的であり、そのエッチング方法
はウェット方式が主流である。その理由としてドライエ
ッチングと比較してエッチングレ−トが速く、大面積化
が容易で、管理も比較的簡便でありスル−プットが高い
点などが挙げられる。またこのITO膜の成膜方法は、
ITO金属酸化物をタ−ゲットとして極少量の酸素を含
んだアルゴン等の不活性ガス雰囲気中でスパッタリング
する方法が一般的である。この成膜の際に薄膜中に取り
込まれるスパッタガス中の酸素量と結晶状態とが膜質に
大きく影響する。これらは成膜時の温度、酸素/アルゴ
ン流量比、電極印加電力に左右される。例えば、温度は
高い方が酸化反応が進み易く膜の透明性は上がると共に
結晶粒も大きく成長するため比抵抗は低くなるというメ
リットがある反面、エッチングレ−トが低下しパタ−ニ
ング性が悪くなるというデメリットがある。加えて、同
一成膜条件でスパッタしてもタ−ゲット表面の組成が経
時変化するため、透明導電薄膜の膜質は非常に不安定で
ある。
2. Description of the Related Art In a liquid crystal display device, an ITO (Indium Tin Oxid) is used as a transparent conductive thin film on a pixel electrode.
e) A film is generally used, and the wet method is the mainstream as the etching method. The reason is that the etching rate is faster than dry etching, the area can be easily increased, the management is relatively simple, and the throughput is high. The method of forming this ITO film is
A general method is to perform sputtering using an ITO metal oxide as a target in an atmosphere of an inert gas such as argon containing a very small amount of oxygen. The amount of oxygen in the sputtering gas taken into the thin film during the film formation and the crystal state greatly affect the film quality. These depend on the temperature during film formation, the oxygen / argon flow rate ratio, and the electric power applied to the electrodes. For example, when the temperature is higher, the oxidation reaction is more likely to proceed, the transparency of the film is increased, and the crystal grains are also grown larger, which has the advantage of lowering the specific resistance, while the etching rate is lower and the patterning property is worse. There is a disadvantage that In addition, since the composition of the target surface changes with time even if sputtering is performed under the same film forming conditions, the film quality of the transparent conductive thin film is very unstable.

【0003】[0003]

【発明が解決しようとする課題】しかし、透明導電薄膜
の膜特性が不安定ながらも透明性や比抵抗が重視される
ため、エッチング性をある程度犠牲にした成膜条件が採
られていた。このため、ウェットエッチングでは終点が
時間管理されるため、エッチング残りやオ−バ−エッチ
の不良が頻発していた。
However, since the transparency and the specific resistance are important even though the film characteristics of the transparent conductive thin film are unstable, film forming conditions have been adopted in which the etching property is sacrificed to some extent. For this reason, in wet etching, the end point is time-controlled, so that etching residues and over-etch defects frequently occur.

【0004】この解決策として、ITOのパタ−ニング
に際してフォトリソグラフィ、ウェトエッチング工程を
繰り返し2回行う方法が採られていた。しかし、この方
法においては工数が2倍になるため、ウェットエッチン
グの最大のメリットである量産性が損なわれるという欠
点があった。また、別の問題としてITO薄膜のウェッ
トエッチング液は塩酸系エッチャントが用いられるた
め、下地膜が酸に冒されるアルミニウム等の金属薄膜の
場合にはITO薄膜との間に絶縁膜等を介在させる必要
があった。その際にもITO薄膜と金属薄膜との間に介
在させた膜のピンホ−ルからエッチング液が染み込むた
め、根本的な対策とはならなかった。この対策として、
ドライエッチング法の検討を行った。しかしRIE(反
応性イオンエッチング)方式によるドライエッチングを
行うと、異方性が強いために下地段差部での側壁で膜残
りが発生するという問題が起き、画素間が短絡し表示欠
陥の原因になる。また従来のようなイオンビ−ムの入射
角が一定の状態でのミリング法ではエッチングの際、平
坦部のITO膜が側壁に再付着してしまい、これも画素
間が短絡してしまうという問題が発生する。
As a solution to this problem, a method has been adopted in which the photolithography and wet etching steps are repeated twice in the patterning of ITO. However, in this method, the number of steps is doubled, so that there is a drawback in that the greatest merit of wet etching is impaired mass productivity. As another problem, since a wet etchant for the ITO thin film uses a hydrochloric acid-based etchant, if the base film is a metal thin film such as aluminum that is affected by acid, an insulating film or the like is interposed between the thin film and the ITO thin film. There was a need. Also in that case, the etching solution permeated from the pinhole of the film interposed between the ITO thin film and the metal thin film, so that it was not a fundamental countermeasure. As a measure against this,
The dry etching method was examined. However, when dry etching by the RIE (reactive ion etching) method is performed, there is a problem that a film residue is generated on the side wall at the underlying step due to strong anisotropy, which causes a short circuit between pixels and causes a display defect. Become. Further, in the conventional milling method in which the incident angle of the ion beam is constant, the ITO film in the flat portion is redeposited on the sidewall during etching, which also causes a short circuit between pixels. Occur.

【0005】[0005]

【課題を解決するための手段】本発明は、透明な絶縁基
板上に所定形成にパタ−ニングされた少なくとも一層の
薄膜上に直接あるいは絶縁膜を介して透明導電薄膜を成
膜後、所定形状にエッチングする際、イオンビ−ムミリ
ング法でイオンビ−ムの入射角を2段階に変えてエッチ
ングすることを特徴とする。
According to the present invention, a transparent conductive thin film is formed directly or through an insulating film on at least one thin film patterned in a predetermined manner on a transparent insulating substrate, and then a predetermined shape is formed. When the etching is performed, the ion beam milling method is used to change the incident angle of the ion beam in two steps.

【0006】[0006]

【作用】本発明の液晶表示装置の製造方法において、段
差上に成膜された透明導電薄膜をイオンビ−ムミリング
法によりドライエッチングする際、イオンビ−ムの入射
角を2段階に変化させることで段差側壁部での膜残りを
防ぎ、画素間の短絡を防止することができ表示欠陥がな
くなるため表示品質及び歩留まり向上に効果がある。
In the method of manufacturing a liquid crystal display device according to the present invention, when the transparent conductive thin film formed on the step is dry-etched by the ion beam milling method, the incident angle of the ion beam is changed in two steps. It is possible to prevent the film from remaining on the side wall portion, prevent short circuits between pixels, and eliminate display defects, which is effective in improving display quality and yield.

【0007】[0007]

【実施例】以下、本発明の実施例を図面を参照しつつ詳
細に説明する。図1に本発明において使用するイオンビ
−ムミリング装置の概略図を示す。真空容器1の奥側に
基板2を支持する基板ホルダ−3が所定の傾斜を有して
取り付けられている。そして真空容器1の手前側には、
引出電極4を介してプラズマ室5が設けられている。プ
ラズマ室の周囲には、磁場発生用永久磁石6が取り付け
られており、プラズマ室の入口にはガスボンベ8から接
続されているガス導入口7とフィラメント9が設置され
ている。そして、更に真空容器1には真空排気用の排気
口10が設けてある。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 shows a schematic view of an ion beam milling device used in the present invention. A substrate holder-3 that supports the substrate 2 is attached to the inner side of the vacuum container 1 with a predetermined inclination. And on the front side of the vacuum container 1,
A plasma chamber 5 is provided via the extraction electrode 4. A magnetic field generating permanent magnet 6 is attached around the plasma chamber, and a gas inlet 7 and a filament 9 connected from a gas cylinder 8 are installed at the inlet of the plasma chamber. Further, the vacuum container 1 is further provided with an exhaust port 10 for vacuum exhaust.

【0008】処理方法は、まず排気口10より真空容器
1内を真空排気する。真空容器1内が所定の圧力に達し
たら、ガス導入口7よりアルゴンガスを導入し、フィラ
メント9に電圧を印加しグロ−放電させる。更に永久磁
石6により発生した磁場によりアルゴン原子は励起さ
れ、プラズマ状態となりアルゴンイオンとなる。このア
ルゴンイオンは、負電荷が印加されている引出電極4に
引き寄せられ加速して所定の角度で基板表面に到達し、
基板表面の薄膜をエッチングする。なお基板ホルダ−は
所定の傾斜を有しており、イオンビ−ムの入射角は基板
ホルダ−の傾斜により決定され、基板ホルダ−自体も自
転している。
In the processing method, the inside of the vacuum container 1 is first evacuated from the exhaust port 10. When the inside of the vacuum container 1 reaches a predetermined pressure, argon gas is introduced from the gas introduction port 7 and voltage is applied to the filament 9 to cause glow discharge. Further, the magnetic field generated by the permanent magnet 6 excites the argon atoms, and becomes a plasma state to become argon ions. The argon ions are attracted to the extraction electrode 4 to which a negative charge is applied and accelerated to reach the substrate surface at a predetermined angle,
The thin film on the surface of the substrate is etched. The substrate holder has a predetermined inclination, the incident angle of the ion beam is determined by the inclination of the substrate holder, and the substrate holder itself is also rotating.

【0009】次に本実施例で用いた薄膜トランジスタ
(以下TFTと略す)を有する液晶表示装置の表示素子
の形成方法について説明する。
Next, a method of forming a display element of a liquid crystal display device having a thin film transistor (hereinafter abbreviated as TFT) used in this embodiment will be described.

【0010】まず図2おける透明絶縁基板21上に減圧
化学気相成長法(以下LPCVD法と略す)により多結
晶シリコン膜22を約1000Å程度堆積させ、フォト
リソグラフィにより所定の形状にパタ−ニングする。次
に、酸素雰囲気中あるいは酸素と窒素の混合雰囲気中で
多結晶シリコン膜22の一部を1000℃〜1200℃
の温度で熱酸化し、約1000Å程度の酸化膜を形成す
る。そしてその上層にゲ−ト電極となる多結晶シリコン
膜24をLPCVD法により3000Å〜4000Å堆
積し、燐を熱拡散によりド−プしフォトリソグラフィに
より所定の形状にパタ−ニングする。次に、多結晶シリ
コン膜22に多結晶シリコン膜24をマスクにして、イ
オン打ち込みにより燐をド−プし(P型の場合はボロ
ン)ソ−ス及びドレイン領域をセルフアラインで形成す
る。更にその上に、層間絶縁膜25としてSiO2膜を
常圧化学気相成長法(APCVD法)あるいはLPCV
D法により5000Å〜10000Å堆積させる。次
に、ソ−ス領域にフォトリソグラフィによりコンタクト
ホ−ル26を開口した後、スパッタリング法によりAl
膜を6000Å〜10000Å堆積させ、フォトリソグ
ラフィにより所定形状のソ−ス配線27を形成しコンタ
クトホ−ル26で接続する。再び、APCVD法あるい
はLPCVD法により層間絶縁膜28としてSiO2
を5000Å〜10000Å堆積させる。次に、ドレイ
ン領域にフォトリソグラフィによりコンタクトホ−ル2
9を開口した後、スパッタリング法によりITO膜を1
000Å〜2000Å堆積させ、フォトリソグラフィに
より所定形状を露光し、ドライエッチングにより透明電
極30を形成しコンタクトホ−ル29でスイッチング素
子と接続する。
First, a polycrystalline silicon film 22 is deposited on the transparent insulating substrate 21 shown in FIG. 2 by a low pressure chemical vapor deposition method (hereinafter abbreviated as LPCVD method) to a thickness of about 1000 Å and patterned into a predetermined shape by photolithography. . Next, part of the polycrystalline silicon film 22 is heated to 1000 ° C. to 1200 ° C. in an oxygen atmosphere or a mixed atmosphere of oxygen and nitrogen.
It is thermally oxidized at the temperature of about 1000 Å to form an oxide film. Then, a polycrystalline silicon film 24 to be a gate electrode is deposited on the upper layer by the LPCVD method at 3000Å to 4000Å, and phosphorus is doped by thermal diffusion and patterned by photolithography into a predetermined shape. Next, using the polycrystalline silicon film 24 as a mask, the polycrystalline silicon film 22 is doped with phosphorus by ion implantation (boron in the case of P type) to form the source and drain regions by self-alignment. Further thereon, a SiO 2 film is formed as an interlayer insulating film 25 by atmospheric pressure chemical vapor deposition (APCVD) or LPCV.
Deposit 5000 Å to 10,000 Å by method D. Next, after opening a contact hole 26 in the source region by photolithography, Al is formed by a sputtering method.
The film is deposited in the range of 6000 Å to 10000 Å, the source wiring 27 having a predetermined shape is formed by photolithography, and the source wiring 27 is connected by the contact hole 26. Again, an SiO 2 film is deposited as the interlayer insulating film 28 by the APCVD method or the LPCVD method at 5000Å to 10000Å. Next, contact holes 2 are formed in the drain region by photolithography.
After opening 9, open the ITO film 1 by sputtering.
000Å to 2000Å are deposited, a predetermined shape is exposed by photolithography, a transparent electrode 30 is formed by dry etching, and a contact hole 29 is connected to a switching element.

【0011】このようにして形成した表示素子における
透明電極のイオンビ−ムミリングによるドライエッチン
グ条件を以下に詳しく述べる。透明導電薄膜のエッチン
グは上記図1に示した装置により行った。処理条件とし
ては、エッチングガスはアルゴンを用い、ガス圧は0.
2mTorr、電極には40Wの電力を印加した。エッ
チングレ−トは400Å/min程度であり、透明導電
薄膜(CITO)のエッチング時間は、不要部のITO
を除去し終わるジャストエッチが3分50秒でそのジャ
ストエッチに対するオ−バ−エッチ量(30%)を含め
て5分とした。また基板ホルダ−の回転速度は20rp
mとした。平坦部をエッチングする際のイオンビ−ムの
入射角は基板に対して60゜〜90°の範囲でエッチン
グ可能であるが、今回はエッチングレ−トの最も速い6
0゜の角度でエッチングした。この角度では、段差の側
壁部にITOがわずかに残ることがあるので、第2ステ
ップのエッチングをする。側壁部は10゜〜40°の範
囲でエッチング可能であるが、今回はエッチングレ−ト
の最も速い10゜の角度でエッチングした。なお、最初
に10゜〜40°の角度で側壁部をエッチングしてから
次に60゜〜90°の角度で平坦部をエッチングしても
同様の効果が得られる。なお本実施例では、TFTを用
いた液晶表示装置を用いたが、本発明は透明導電薄膜を
用いたあらゆる液晶表示装置に応用することができる。
The dry etching conditions of the transparent electrode in the display element thus formed by ion beam milling will be described in detail below. The transparent conductive thin film was etched by the apparatus shown in FIG. Argon was used as the etching gas and the gas pressure was 0.
Electric power of 2 mTorr and 40 W was applied to the electrodes. The etching rate is about 400 Å / min, and the etching time of the transparent conductive thin film (CITO) is
The just etch for removing the film was 3 minutes and 50 seconds, and was set to 5 minutes including the over etch amount (30%) for the just etch. The rotation speed of the substrate holder is 20 rp.
m. The incident angle of the ion beam when etching the flat portion can be etched within the range of 60 ° to 90 ° with respect to the substrate, but this time, the etching rate is the fastest.
Etched at an angle of 0 °. At this angle, since the ITO may slightly remain on the side wall of the step, the second step etching is performed. The side wall can be etched in the range of 10 ° to 40 °, but this time, it was etched at an angle of 10 °, which is the fastest etching rate. The same effect can be obtained by first etching the side wall portion at an angle of 10 ° to 40 ° and then etching the flat portion at an angle of 60 ° to 90 °. Although the liquid crystal display device using the TFT is used in this embodiment, the present invention can be applied to any liquid crystal display device using the transparent conductive thin film.

【0012】[0012]

【発明の効果】本発明の薄膜のエッチング方法におい
て、段差上に成膜された透明導電薄膜をイオンビ−ムミ
リング法によりドライエッチングする際、イオンビ−ム
の入射角を2段階に変化させることで下地段差側壁部で
の膜残りを防ぎ、画素間の短絡を防止することができる
ため表示欠陥がなくなり、表示品質及び歩留まり向上に
効果がある。
In the thin film etching method of the present invention, when the transparent conductive thin film formed on the step is dry-etched by the ion beam milling method, the angle of incidence of the ion beam is changed in two steps to form the base. Since it is possible to prevent the film from remaining on the side wall of the step and to prevent a short circuit between pixels, display defects are eliminated, which is effective in improving display quality and yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のイオンビ−ムミリング装置を示した
図。
FIG. 1 is a view showing an ion beam milling device of the present invention.

【図2】本発明の表示素子の断面構造を示した図。FIG. 2 is a diagram showing a cross-sectional structure of a display element of the present invention.

【符号の説明】[Explanation of symbols]

1 真空容器 2 基板 3 基板ホルダ− 4 引出電極 5 プラズマ室 6 磁場発生用永久磁石 7 ガス導入口 8 ガスボンベ 9 フィラメント 10 排気口 21 透明絶縁基板 22 多結晶シリコン膜 23 ゲ−ト酸化膜 24 ゲ−ト電極 25 層間絶縁膜 26 コンタクトホ−ル 27 ソ−ス配線 28 層間絶縁膜 29 コンタクトホ−ル 30 画素電極 DESCRIPTION OF SYMBOLS 1 Vacuum container 2 Substrate 3 Substrate holder-4 Extraction electrode 5 Plasma chamber 6 Permanent magnet for generating magnetic field 7 Gas inlet 8 Gas cylinder 9 Filament 10 Exhaust port 21 Transparent insulating substrate 22 Polycrystalline silicon film 23 Gate oxide film 24 Gate Electrode 25 Interlayer insulating film 26 Contact hole 27 Source wiring 28 Interlayer insulating film 29 Contact hole 30 Pixel electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】透明な絶縁基板上に所定形成にパタ−ニン
グされた少なくとも一層の薄膜上に直接あるいは絶縁膜
を介して透明導電薄膜を成膜後、所定形状にエッチング
する際、イオンビ−ムミリング法でイオンビ−ムの入射
角を2段階に変えてエッチングすることを特徴とする薄
膜のエッチング方法。
1. Ion beam milling when a transparent conductive thin film is formed directly or through an insulating film on at least one thin film patterned in a predetermined manner on a transparent insulating substrate and then etched into a predetermined shape. Etching method by changing the incident angle of the ion beam in two steps by the method.
【請求項2】第1回目のイオンビ−ムの入射角を基板に
対して60゜〜90゜としまず平坦部をエッチングし、
次に第2回目のイオンビ−ムの入射角を基板に対して1
0゜〜40゜とし下地段差側壁部をエッチングすること
を特徴とする請求項1記載の薄膜のエッチング方法。
2. The first ion beam is made to have an incident angle of 60 ° to 90 ° with respect to the substrate, and the flat portion is etched first.
Next, the incident angle of the second ion beam is set to 1 with respect to the substrate.
2. The method for etching a thin film according to claim 1, wherein the side wall portion of the underlying step is etched at an angle of 0 to 40 degrees.
JP10692893A 1993-05-07 1993-05-07 Etching method for thin film Pending JPH06318577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10692893A JPH06318577A (en) 1993-05-07 1993-05-07 Etching method for thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10692893A JPH06318577A (en) 1993-05-07 1993-05-07 Etching method for thin film

Publications (1)

Publication Number Publication Date
JPH06318577A true JPH06318577A (en) 1994-11-15

Family

ID=14446075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10692893A Pending JPH06318577A (en) 1993-05-07 1993-05-07 Etching method for thin film

Country Status (1)

Country Link
JP (1) JPH06318577A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100458521B1 (en) * 2000-10-13 2004-12-03 재단법인 포항산업과학연구원 The fabrication apparatus and method of reverse angle structure
US8530291B2 (en) 2009-01-30 2013-09-10 Sharp Kabushiki Kaisha Method for manufacturing display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100458521B1 (en) * 2000-10-13 2004-12-03 재단법인 포항산업과학연구원 The fabrication apparatus and method of reverse angle structure
US8530291B2 (en) 2009-01-30 2013-09-10 Sharp Kabushiki Kaisha Method for manufacturing display device

Similar Documents

Publication Publication Date Title
JP2637078B2 (en) Method of depositing gate electrode material for tipping thin film field effect transistor
JP4170367B2 (en) Al alloy film for display device, display device, and sputtering target
US5470768A (en) Method for fabricating a thin-film transistor
US5302240A (en) Method of manufacturing semiconductor device
JP3064241B2 (en) Etching of tapered dielectric layers in semiconductor devices
US5286337A (en) Reactive ion etching or indium tin oxide
US5180464A (en) Dry etching method
US5153142A (en) Method for fabricating an indium tin oxide electrode for a thin film transistor
CN110867458A (en) Metal oxide semiconductor thin film transistor array substrate and manufacturing method thereof
KR100580782B1 (en) Dry-etching of indium and tin oxides
JPS5814507B2 (en) Method for selectively ion etching silicon
US6277736B1 (en) Method for forming gate
JP3183929B2 (en) Method for manufacturing semiconductor device
JP3160336B2 (en) Method for manufacturing semiconductor device
JPH06318577A (en) Etching method for thin film
JPH0282579A (en) Thin film transistor
JP2001267301A (en) Method for detecting degree of etching, etching method, method of manufacturing semiconductor, device for detection of etching degree and dry etching device
US6844663B1 (en) Structure and method for forming a multilayer electrode for a flat panel display device
JPH07130712A (en) Method for etching pt-based alloy
JPH0695135A (en) Dry etching method for thin film
JPH0653505A (en) Reverse-staggered thin film transistor and fabrication thereof
JPH0661198A (en) Manufacture of thin film device
JP3304263B2 (en) ITO patterning method
JPH07335614A (en) Dry etching method for thin film
JPH0799180A (en) Dry etching method for thin film