JPH06316763A - Formation of wear resistant hard film - Google Patents

Formation of wear resistant hard film

Info

Publication number
JPH06316763A
JPH06316763A JP12546393A JP12546393A JPH06316763A JP H06316763 A JPH06316763 A JP H06316763A JP 12546393 A JP12546393 A JP 12546393A JP 12546393 A JP12546393 A JP 12546393A JP H06316763 A JPH06316763 A JP H06316763A
Authority
JP
Japan
Prior art keywords
alloy
hardness
ionization electrode
substrate
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12546393A
Other languages
Japanese (ja)
Inventor
Yuji Chiba
祐二 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP12546393A priority Critical patent/JPH06316763A/en
Publication of JPH06316763A publication Critical patent/JPH06316763A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To remarkably improve the wear resistance of a lightweight structural material such as an Al alloy without deteriorating its hardness and strength, in an ionization electrode type ion plating method by impressing pulse voltage on an ionization electrode under specified conditions. CONSTITUTION:At the time of forming CrN film on a substrate 2 of an Al alloy or the like by using an ion plating device, nitrogen is introduced into a vaccum reaction tank 1, and its pressure is regulated to a prescribed one. the material 5 (Cr-Ti alloy) to be evaporated in a crucible 3 is irradiated with accelerating electrons from an electron gun 4 and is heated and melted to selectively evaporate Cr. At this time, pulse voltage having >=100Hz frequency, >=10% duty ratio and >=40V maximum voltage is impressed on an ionization electrode 9 from a pulse power source 8. In this way, the optimum wear resistant hard film is formed on the substrate 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐摩耗製が要求される
金属材料に最適な耐摩耗性硬質被膜の製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a wear resistant hard coating most suitable for a metal material required to be wear resistant.

【0002】[0002]

【従来の技術】Al合金、Mg合金、Ti合金等は軽量
構造として、自動車部品を始め宇宙航空機関連の主要構
造材、または各種機械部品、金型等に容易られている。
しかし、これらの軽量材料は耐摩耗性が鉄鋼材料に比べ
て著しく劣るという欠点を持っている。このため、これ
らの合金を厳しい摩擦や摩耗を受ける部材に適用するに
は限界があり、理想的にはAl合金等を用いるべきとこ
ろに鉄鋼材料が用いられていることが多い。Al合金等
の耐摩耗性を向上させる方法としては表面硬化法が最も
有効な方法である。
2. Description of the Related Art Al alloys, Mg alloys, Ti alloys, etc. are easy to be used as a lightweight structure for major structural materials related to space aircraft such as automobile parts, or various mechanical parts, dies and the like.
However, these lightweight materials have the drawback of being significantly inferior in wear resistance to steel materials. Therefore, there is a limit in applying these alloys to members that are subjected to severe friction and wear, and ideally, steel materials are often used where Al alloys or the like should be used. The surface hardening method is the most effective method for improving the wear resistance of an Al alloy or the like.

【0003】Al合金等の表面硬化処理は硬質アルマイ
ト処理やNiメッキ、Crメッキ等の各種メッキ法が実
用化されているが、硬度はアルマイト処理でHv300
程度、メッキでHv600〜700であり、膜厚はせい
ぜい数10μmである。軽量座入りよの需要が多くなる
に従い、大きな衝撃や高い面圧に対して耐久性を示す数
mmの厚さの表面硬化処理や、寸法精度を維持するため
の数μmの厚さで高硬度を示す処理が要求されるように
なっている。
As a surface hardening treatment for Al alloys and the like, various plating methods such as hard alumite treatment, Ni plating and Cr plating have been put into practical use, but the hardness is Hv300 by alumite treatment.
Hv 600 to 700 by plating, and the film thickness is several tens of μm at most. As the demand for lightweight seating increases, surface hardening treatment with a thickness of a few mm shows durability against large impact and high surface pressure, and high hardness with a thickness of a few μm to maintain dimensional accuracy. Is required to be displayed.

【0004】Al合金、Mg合金、Ti合金等は120
℃から200℃で時効硬化処理されているものがあり、
200℃以上になると硬度や強度が低下してしまうた
め、これらの合金製の精密部品を表面硬化処理するには
200℃以下の低温で処理することが要求される。これ
らの目的を達成するには、比較的低温で製膜可能なイオ
ンプレーティング法を用いてセラミック硬質被膜を製膜
するのが最適であると考えられるが、これまでの製膜で
は、蒸発源からの輻射熱やイオンの運動エネルギーで、
被膜される金属材料の温度は200℃以上に上昇してし
まう。
120 for Al alloy, Mg alloy, Ti alloy, etc.
Some are age hardened at ℃ to 200 ℃,
When the temperature is 200 ° C. or higher, the hardness and strength decrease, and therefore, in order to surface-harden precision parts made of these alloys, it is required to process them at a low temperature of 200 ° C. or lower. To achieve these objectives, it is considered optimal to form a ceramic hard coating using the ion plating method, which enables film formation at a relatively low temperature. Radiant heat from and kinetic energy of ions,
The temperature of the metal material to be coated rises above 200 ° C.

【0005】これに対して、特願平03−347623
号では全率固溶または共晶を作る合金を蒸発材に用い
て、高蒸気圧金属を選択的に蒸発させることによって、
200℃以下の製膜温度でHv1500以上の被膜を製
膜することに成功している。
On the other hand, Japanese Patent Application No. 03-347623
In this issue, an alloy that forms a solid solution or eutectic is used as an evaporation material, and by selectively evaporating a high vapor pressure metal,
It has succeeded in forming a film having a Hv of 1500 or more at a film forming temperature of 200 ° C. or less.

【0006】[0006]

【発明が解決しようとする課題】しかし、特願平03−
347623号記載の発明を用いても、製膜温度は18
0℃程度で、JIS A7075Pに規格化された一部
のAl合金及びMg合金は硬度の低下は免れなかった。
However, Japanese Patent Application No. 03-
Even when the invention described in 347623 is used, the film forming temperature is 18
At about 0 ° C., the hardness of some Al alloys and Mg alloys standardized in JIS A7075P was unavoidable.

【0007】そこで、本発明の目的は従来の金属材料の
表面処理法によりもさらに低温で高硬度なセラミック被
膜を製膜する方法を提供することにある。
Therefore, an object of the present invention is to provide a method for forming a ceramic film having a high hardness at a lower temperature than the conventional surface treatment method for a metal material.

【0008】[0008]

【課題を解決すめための手段】上記課題を解決するため
に鋭意研究を重ねた結果、金属基板上に硬質被膜を形成
させる方法において、真空槽内で蒸発した金属イオン化
させるための電極を有するイオンプレーティング装置を
用い、さらにこの電極にパルス電圧を発生し得る電源を
用い、パルス電圧の周波数を100Hz以上、デューテ
ィー比を10%インクジェット所、最大電圧を40V以
上とすることによりさらに低温で高硬質なセラミック被
膜を製膜できることを見い出した。
As a result of intensive studies to solve the above problems, in a method for forming a hard coating on a metal substrate, an ion having an electrode for ionizing metal evaporated in a vacuum chamber Using a plating device and a power source capable of generating a pulse voltage at this electrode, a pulse voltage frequency of 100 Hz or more, a duty ratio of 10% at an inkjet station, and a maximum voltage of 40 V or more, the temperature is high and the hardness is high. It has been found that various ceramic coatings can be formed.

【0009】[0009]

【作用】イオンプレーティング法を用いて低温で硬質被
膜を製膜するには蒸発材料を充分にイオン化すると同時
に、蒸発源からの輻射を低減する事が必要である。蒸発
源からの輻射には溶融蒸発材からの輻射とイオン化によ
り発生するプラズマからの輻射がある。前者については
特願平03−347623号で対策が取られており、本
発明は後者の課題(プラズマからの輻射の低減)を解決
するものである。従来法のイオン化電極式イオンプレー
ティング法ではイオン化電極に直流電圧を印加してプラ
ズマを発生させ、蒸発金属をイオン化していた。
In order to form a hard coating at a low temperature using the ion plating method, it is necessary to sufficiently ionize the evaporation material and at the same time reduce the radiation from the evaporation source. Radiation from the evaporation source includes radiation from the molten evaporation material and radiation from plasma generated by ionization. As for the former, a countermeasure is taken in Japanese Patent Application No. 03-347623, and the present invention solves the latter problem (reduction of radiation from plasma). In the conventional ionization electrode type ion plating method, a DC voltage is applied to the ionization electrode to generate plasma and ionize the evaporated metal.

【0010】しかし、この方法ではプラズマを励起する
ために常時エネルギーを提供しているため、プラズマか
らの輻射熱が大きく、製膜時の温度を下げることが困難
であった。しかし、プラズマの寿命は1msec以上あ
り、プラズマ励起のために常時エネルギーを提供しなく
ともプラズマ放電を持続させることは可能である。した
がって、イオン化電極の電源にパルス電源を用いること
によりイオン化電極に断続的にエネルギーを供給して
も、プラズマを消滅させることなく放電を持続させるこ
とができる。しかも、これによれば全体としてプラズマ
に供給させるエネルギーは直流電源を用いたときよりも
低くすることができるため、製膜温度を低下させること
ができる。
However, in this method, since energy is always provided to excite the plasma, radiant heat from the plasma is large, and it is difficult to lower the temperature during film formation. However, the life of the plasma is 1 msec or more, and it is possible to continue the plasma discharge without constantly providing energy for plasma excitation. Therefore, even if energy is intermittently supplied to the ionization electrode by using the pulse power supply as the power supply of the ionization electrode, the discharge can be continued without extinguishing the plasma. Moreover, according to this, the energy supplied to the plasma as a whole can be made lower than that when a DC power source is used, so that the film forming temperature can be lowered.

【0011】パルス条件は蒸発金属、反応ガスなどによ
り多少違いはあるが、パルス電圧の周波数はプラズマを
持続させるためには100Hz以上が必要である。これ
より低いと持続しない。また、パルス1サイクル中に電
圧を印加する時間比であるデューティー比は10%以上
であれば周波数によらずプラズマが持続可能である。パ
ルスの最大電圧は40V以上が必要である。これより低
いとプラズマが発生しない。ベース電流として常時ある
一定の電圧を印加しておき、この上にパルス電圧を重畳
させることも可能である。
The pulse conditions are somewhat different depending on the metal vaporized, the reaction gas, etc., but the frequency of the pulse voltage must be 100 Hz or higher to sustain the plasma. Lower than this will not last. Further, if the duty ratio, which is the time ratio for applying the voltage during one pulse cycle, is 10% or more, the plasma can be sustained regardless of the frequency. The maximum pulse voltage must be 40 V or higher. If it is lower than this, plasma is not generated. It is also possible to always apply a certain voltage as the base current and superimpose the pulse voltage on this.

【0012】しかし、この場合は全エネルギーが直流印
加電圧と同等になってしまっては意味がないので全エネ
ルギーを直流印加電圧以下にする必要がある。さらに、
低融点金属のイオン化を円滑に行うために真空槽内に熱
電子を供給するための電極を設置し、プラズマ領域に熱
電子を供給することも可能である。
However, in this case, it is meaningless if the total energy becomes equal to the DC applied voltage, so it is necessary to make the total energy not more than the DC applied voltage. further,
In order to smoothly ionize the low melting point metal, it is possible to install an electrode for supplying thermoelectrons in the vacuum chamber and supply thermoelectrons to the plasma region.

【0013】表面被膜可能な材料は基本的にはどの金属
材料でも良いが、特に硬化が認められる材料として、A
2014P、A4032P、A6061P、A7075
Pを始めとする時効硬化型Al合金、各種Mg合金、各
種Ti合金、SKD11等の冷間工具鋼等である。
Basically, any metal material may be used as the surface coatable material.
2014P, A4032P, A6061P, A7075
Examples include age-hardening Al alloys including P, various Mg alloys, various Ti alloys, cold tool steels such as SKD11, and the like.

【0014】[0014]

【実施例】次に、発明の実施例を説明する。最初に、本
発明の製膜方法で用いるイオン化電極式イオンプレーテ
ィング装置を説明する。図1はイオン化電極式イオンプ
レーティング装置の概略図である。図1において、符号
1は真空反応槽、2は基板、3はルツボ、4は電子銃、
5は蒸着材料、6は基板ホルダ、7はバイアス電源、8
はパルス電源、9はイオン化電極をそれぞれ示す。従来
例と異なる点は、イオン化電極9には直流電源ではな
く、パルス電源8からパルス電圧が印加されることであ
る。
EXAMPLES Next, examples of the invention will be described. First, an ionization electrode type ion plating device used in the film forming method of the present invention will be described. FIG. 1 is a schematic diagram of an ionization electrode type ion plating apparatus. In FIG. 1, reference numeral 1 is a vacuum reaction tank, 2 is a substrate, 3 is a crucible, 4 is an electron gun,
5 is a vapor deposition material, 6 is a substrate holder, 7 is a bias power source, 8
Is a pulse power source, and 9 is an ionization electrode. The difference from the conventional example is that a pulse voltage is applied to the ionization electrode 9 from the pulse power source 8 instead of the DC power source.

【0015】(実施例1)図1に示すイオンプレーティ
ング装置を用いてCrNを製膜した。また、被覆すべき
基板の例としてJIS A7075PのAl合金を用い
た。この合金の硬度はHv175、引張強度は58Kg
f/mm2 である。このAl合金を有機溶剤により洗浄
後、真空反応槽内にセットし、この真空反応槽内の圧力
を1.3×10-3Pa以上まで真空を引いた。目標真空
度に到達後、150°Cで1時間加熱し、その後Arイ
オンボンバート処理を10分間行った。被膜を形成すべ
き金属の蒸発源としてTiのモル濃度が35%のCr−
Ti合金を用いた。このときの製膜条件は反応ガスとし
て窒素を20cc/min導入し、その圧力を0.13
Paとした。上記蒸発源に9kV−150mAの加速電
子を当てることによって加熱溶融し、Crを選択的に蒸
発させた。イオン化電極には周波数500Hz、デュー
ティ比30%、最大電圧60Vのパルス電圧を印加し、
熱電子電極には6V−30Aの電流を流し蒸発したCr
のイオン化を行った。また、上記Al合金に対して−5
0Vのバイアス電圧を印加する。このような条件で、A
l合金表面にCrの窒化物を生成させるが、約1時間の
製膜反応により、膜厚が4.5μmの被膜が得られた。
製膜中、温度は150°Cであった。被膜のビッカース
硬度を荷重10gで測定したところHv1600であっ
た。また、基板の硬度はHv175であり、硬度の低下
は認められなかった。基板の引張強度は55Kgf/m
2 とやや低下していた。
Example 1 CrN was formed into a film by using the ion plating apparatus shown in FIG. An Al alloy of JIS A7075P was used as an example of the substrate to be coated. The hardness of this alloy is Hv175 and the tensile strength is 58 kg.
f / mm 2 . This Al alloy was washed with an organic solvent and then set in a vacuum reaction tank, and the pressure in the vacuum reaction tank was evacuated to 1.3 × 10 −3 Pa or more. After reaching the target vacuum degree, heating was performed at 150 ° C. for 1 hour, and then Ar ion bombardment treatment was performed for 10 minutes. As the evaporation source of the metal for forming the film, Cr-having a molar concentration of Ti of 35%
A Ti alloy was used. The film forming conditions at this time were that nitrogen was introduced as a reaction gas at 20 cc / min, and the pressure was 0.13.
It was Pa. By applying accelerated electrons of 9 kV-150 mA to the above evaporation source, it was heated and melted, and Cr was selectively evaporated. A pulse voltage with a frequency of 500 Hz, a duty ratio of 30% and a maximum voltage of 60 V is applied to the ionization electrode,
An electric current of 6V-30A was applied to the thermionic electrode to vaporize Cr.
Was ionized. In addition, -5 with respect to the above Al alloy
A bias voltage of 0V is applied. Under such conditions, A
Although a nitride of Cr was produced on the surface of the 1-alloy, a film having a thickness of 4.5 μm was obtained by the film forming reaction for about 1 hour.
During film formation, the temperature was 150 ° C. When the Vickers hardness of the coating was measured with a load of 10 g, it was Hv1600. Moreover, the hardness of the substrate was Hv175, and no decrease in hardness was observed. The tensile strength of the substrate is 55 Kgf / m
It was slightly lower than m 2 .

【0016】(実施例2)蒸着材料にTiを用い、反応
ガスとして窒素のみを25cc/min導入した。さら
に、パルス電圧条件を周波数300Hz、デューティー
比50%、最大電圧50Vとした以外は実施例1と同様
な条件でTiの窒化物の製膜を行った。製膜中の温度は
170℃であった。被膜のビッカース硬度を荷重10g
で測定したところHv1650であった。また、基板の
硬度はHv175で硬度低下は認められなかった。
Example 2 Ti was used as a vapor deposition material, and only nitrogen was introduced as a reaction gas at 25 cc / min. Further, a Ti nitride film was formed under the same conditions as in Example 1 except that the pulse voltage conditions were a frequency of 300 Hz, a duty ratio of 50%, and a maximum voltage of 50V. The temperature during film formation was 170 ° C. Vickers hardness of coating is 10g load
It was Hv1650 when measured by. The hardness of the substrate was Hv175, and no decrease in hardness was observed.

【0017】(実施例3)反応ガスとして窒素を18c
c/min、メタン15cc/minを導入し、パルス
電圧条件を周波数300Hz、デューティー比40%、
最大電圧60Vとした以外は実施例1と同様な条件でC
rの炭窒化物の製膜を行った。製膜中の温度は160℃
であった。被膜のビッカース硬度を荷重10gで測定し
たところHv1700であった。また、基板の硬度はH
v175で硬度低下は認められず、強度は54Kgf/
mm2 であった。
(Example 3) 18 c of nitrogen was used as a reaction gas.
c / min, 15 cc / min of methane were introduced, the pulse voltage condition was frequency 300 Hz, duty ratio 40%,
C under the same conditions as in Example 1 except that the maximum voltage was set to 60V.
A carbonitride of r was formed into a film. The temperature during film formation is 160 ℃
Met. When the Vickers hardness of the coating was measured with a load of 10 g, it was Hv1700. The hardness of the substrate is H
No decrease in hardness was observed at v175, and the strength was 54 Kgf /
It was mm 2 .

【0018】(比較例1)イオン化電極電圧をパルス電
圧ではなく、直流50Vとした以外は実施例1と同様な
条件でCrの窒化物の製膜を行った。製膜中の温度は1
95℃で、製膜温度は本発明に比べて45℃も高かっ
た。そのため、基板の硬度はHv160まで低下してお
り、強度は45Kgf/mm2 と20%以上も低下して
いた。被膜のビッカース硬度を荷重10gで測定したと
ころHv1100であった。
Comparative Example 1 A Cr nitride film was formed under the same conditions as in Example 1 except that the ionization electrode voltage was 50 V DC instead of pulse voltage. The temperature during film formation is 1
At 95 ° C, the film forming temperature was 45 ° C higher than that of the present invention. Therefore, the hardness of the substrate was reduced to Hv160, and the strength was 45 Kgf / mm 2, which was 20% or more. When the Vickers hardness of the coating was measured with a load of 10 g, it was Hv1100.

【0019】[0019]

【発明の効果】上述したように本発明によれば、Al合
金等の軽量構造材料の硬度及び強度を低下させることな
く表面硬化処理ができ、これらの部材の耐摩耗性を大幅
に改善することができる。
As described above, according to the present invention, the surface hardening treatment can be performed without lowering the hardness and strength of the lightweight structural material such as Al alloy, and the wear resistance of these members can be greatly improved. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に用いたイオン化電極式イオン
プレーティング装置の概略図である。
FIG. 1 is a schematic view of an ionization electrode type ion plating apparatus used in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 真空反応槽 2 基板 3 ルツボ 4 電子銃 5 蒸着材料 6 基板ホルダー 7 バイアス電源 8 パルス電源 9 イオン化電極 1 Vacuum Reaction Tank 2 Substrate 3 Crucible 4 Electron Gun 5 Deposition Material 6 Substrate Holder 7 Bias Power Supply 8 Pulse Power Supply 9 Ionization Electrode

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年9月14日[Submission date] September 14, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0001[Correction target item name] 0001

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0001】[0001]

【産業上の利用分野】本発明は、耐摩耗性が要求される
金属材料に最適な耐摩耗性硬質被膜の製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hard wear resistant hard coating most suitable for a metal material requiring wear resistance.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0002[Name of item to be corrected] 0002

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0002】[0002]

【従来の技術】Al合金、Mg合金、Ti合金等は軽量
構造材料として、自動車部品を始め宇宙航空機関連の主
要構造材、または各種機械部品、金型等に容易られてい
る。しかし、これらの軽量材料は耐摩耗性が鉄鋼材料に
比べて著しく劣るという欠点を持っている。このため、
これらの合金を厳しい摩擦や摩耗を受ける部材に適用す
るには限界があり、理想的にはAl合金等を用いるべき
ところに鉄鋼材料が用いられていることが多い。Al合
金等の耐摩耗性を向上させる方法としては表面硬化法が
最も有効な方法である。
2. Description of the Related Art Al alloys, Mg alloys, Ti alloys, etc. are easily used as lightweight structural materials for automobile parts, main structural materials related to space aircraft, various mechanical parts, dies and the like. However, these lightweight materials have the drawback of being significantly inferior in wear resistance to steel materials. For this reason,
There is a limit to applying these alloys to members that are subjected to severe friction and wear, and ideally, steel materials are often used where Al alloys or the like should be used. The surface hardening method is the most effective method for improving the wear resistance of an Al alloy or the like.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Name of item to be corrected] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0003】Al合金等の表面硬化処理は硬質アルマイ
ト処理やNiメッキ、Crメッキ等の各種メッキ法が実
用化されているが、硬度はアルマイト処理でHv300
程度、メッキでHv600〜700であり、膜厚はせい
ぜい数10μmである。軽量材料の需要が多くなるに従
い、大きな衝撃や高い面圧に対して耐久性を示す数mm
の厚さの表面硬化処理や、寸法精度を維持するための数
μmの厚さで高硬度を示す処理が要求されるようになっ
ている。
As a surface hardening treatment for Al alloys and the like, various plating methods such as hard alumite treatment, Ni plating and Cr plating have been put into practical use, but the hardness is Hv300 by alumite treatment.
Hv 600 to 700 by plating, and the film thickness is several tens of μm at most. As the demand for lightweight materials increases, it will be durable to a large impact and high surface pressure.
There is a growing demand for a surface hardening treatment with a thickness of 1 μm and a treatment showing a high hardness with a thickness of several μm in order to maintain dimensional accuracy.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0006】[0006]

【発明が解決しようとする課題】しかし、特願平03−
347623号記載の発明を用いても、製膜温度は18
0℃程度で、JIS A7075Pに規格化された一部
のAl合金及びMg合金は硬度や強度の低下は免れなか
った。
However, Japanese Patent Application No. 03-
Even when the invention described in 347623 is used, the film forming temperature is 18
At about 0 ° C., some Al alloys and Mg alloys standardized in JIS A7075P inevitably suffered a decrease in hardness and strength.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】[0008]

【課題を解決すめための手段】上記課題を解決するため
に鋭意研究を重ねた結果、金属基板上に硬質被膜を形成
させる方法において、真空槽内で蒸発した金属イオン化
させるための電極を有するイオンプレーティング装置を
用い、さらにこの電極にパルス電圧を発生し得る電源を
用い、パルス電圧の周波数を100Hz以上、デューテ
ィー比を10%以上、最大電圧を40V以上とすること
によりさらに低温で高硬質なセラミック被膜を製膜でき
ることを見い出した。
As a result of intensive studies to solve the above problems, in a method for forming a hard coating on a metal substrate, an ion having an electrode for ionizing metal evaporated in a vacuum chamber By using a plating device and a power source capable of generating a pulse voltage at this electrode, and setting the frequency of the pulse voltage to 100 Hz or more, the duty ratio to 10% or more, and the maximum voltage to 40 V or more, it is possible to achieve higher temperature and higher hardness. It has been found that a ceramic coating can be formed.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】表面被覆可能な材料は基本的にはどの金属
材料でも良いが、特に効果が認められる材料として、A
2014P、A4032P、A6061P、A7075
Pを始めとする時効硬化型Al合金、各種Mg合金、各
種Ti合金、SKD11等の冷間工具鋼等である。
The surface coatable material may be basically any metal material, but as a material which is particularly effective, A
2014P, A4032P, A6061P, A7075
Examples include age-hardening Al alloys including P, various Mg alloys, various Ti alloys, cold tool steels such as SKD11, and the like.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属基板上に硬質被膜を形成させる方法
において、真空槽中で蒸発した金属をイオン化させるた
めの電極を有するイオンプレーティング装置を用い、さ
らに該電極にパルス電圧を発生し得る電源を用い、パル
ス電圧の周波数を100Hz以上、デューティー比を1
0%以上、最大電圧を40V以上とすることを特徴とす
るセラミック被膜の製膜方法。
1. A method for forming a hard coating on a metal substrate, which uses an ion plating device having an electrode for ionizing metal evaporated in a vacuum chamber, and a power supply capable of generating a pulse voltage at the electrode. , The pulse voltage frequency is 100Hz or more, and the duty ratio is 1
A method for producing a ceramic coating, wherein the maximum voltage is 0% or more and the maximum voltage is 40V or more.
JP12546393A 1993-04-28 1993-04-28 Formation of wear resistant hard film Pending JPH06316763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12546393A JPH06316763A (en) 1993-04-28 1993-04-28 Formation of wear resistant hard film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12546393A JPH06316763A (en) 1993-04-28 1993-04-28 Formation of wear resistant hard film

Publications (1)

Publication Number Publication Date
JPH06316763A true JPH06316763A (en) 1994-11-15

Family

ID=14910717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12546393A Pending JPH06316763A (en) 1993-04-28 1993-04-28 Formation of wear resistant hard film

Country Status (1)

Country Link
JP (1) JPH06316763A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100430410B1 (en) * 2000-08-24 2004-05-04 재단법인 포항산업과학연구원 Manufacturing method of Aluminum films by ion plating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100430410B1 (en) * 2000-08-24 2004-05-04 재단법인 포항산업과학연구원 Manufacturing method of Aluminum films by ion plating

Similar Documents

Publication Publication Date Title
US4197175A (en) Method and apparatus for evaporating materials in a vacuum coating plant
Randhawa Review of plasma-assisted deposition processes
JPH1025566A (en) Formation of composite hard film excellent in high temperature oxidation resistance by ion plating
Vyskočil et al. Arc evaporation of hard coatings: process and film properties
JP2007126754A (en) Vacuum arc vapor deposition system
US4704168A (en) Ion-beam nitriding of steels
US7279078B2 (en) Thin-film coating for wheel rims
JPH01129958A (en) Formation of titanium nitride film having high adhesive strength
JPS6154869B2 (en)
JPH06316763A (en) Formation of wear resistant hard film
JP2001192861A (en) Surface treating method and surface treating device
JPH0625835A (en) Vacuum deposition method and vacuum deposition device
DE4006457C2 (en) Process for evaporating material in a vacuum evaporation plant and plant thereof
GB1574677A (en) Method of coating electrically conductive components
JPH07300665A (en) Method for forming boron cementation layer and boron film on metallic base material
JPS6342362A (en) Production of surface coated steel material
JPH0791633B2 (en) Method for forming wear resistant hard coating
JP2005307288A (en) Carbon based film and carbon based film forming apparatus
RU2272088C1 (en) Method of the vacuum-ionic-plasmic deposition of the multilayered composites, containing the complex carbides
JPH05331621A (en) Production of wear resistant hard film
FI66656B (en) FOERFARANDE FOER TILLVERKNING AV TITANNITRIDBELAEGGNING VID LAG TEMPERATUR MED HJAELP AV GLIMURLADDNING
WO2023099757A1 (en) A process for depositing a coating on a substrate by means of pvd methods and the coating obtained by said process
RU1812239C (en) Method for vacuum machining of metal articles
KR100193365B1 (en) How to Form Titanium Nitride Film on Metal Surface
JPH06116711A (en) Formation of alumina film