JPH06315617A - Emulsifying method and device - Google Patents

Emulsifying method and device

Info

Publication number
JPH06315617A
JPH06315617A JP5339109A JP33910993A JPH06315617A JP H06315617 A JPH06315617 A JP H06315617A JP 5339109 A JP5339109 A JP 5339109A JP 33910993 A JP33910993 A JP 33910993A JP H06315617 A JPH06315617 A JP H06315617A
Authority
JP
Japan
Prior art keywords
liquid
dispersed phase
chamber
emulsion
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5339109A
Other languages
Japanese (ja)
Other versions
JP3242776B2 (en
Inventor
Tadao Nakajima
忠夫 中島
Masataka Shimizu
正高 清水
Yoshihiko Iwasaki
義彦 岩崎
Kenji Fujimoto
健二 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIYOMOTO TEKKO KK
MIYAZAKI PREF GOV
Original Assignee
KIYOMOTO TEKKO KK
MIYAZAKI PREF GOV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIYOMOTO TEKKO KK, MIYAZAKI PREF GOV filed Critical KIYOMOTO TEKKO KK
Priority to JP33910993A priority Critical patent/JP3242776B2/en
Publication of JPH06315617A publication Critical patent/JPH06315617A/en
Application granted granted Critical
Publication of JP3242776B2 publication Critical patent/JP3242776B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23123Diffusers consisting of rigid porous or perforated material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • B01F23/4105Methods of emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3142Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction
    • B01F25/31421Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction the conduit being porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/113Propeller-shaped stirrers for producing an axial flow, e.g. shaped like a ship or aircraft propeller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/45Magnetic mixers; Mixers with magnetically driven stirrers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Colloid Chemistry (AREA)

Abstract

PURPOSE:To obtain an emulsion where loss volume has been decreased even for a small quantity and which is uniform and excels in stability by forcibly feeding a liquid for a dispersed phase into a flowing liquid for a continuous phase through a porous member to disperse it. CONSTITUTION:A emulsifying vessel 11 is divided into a chamber for a liquid for a dispersed phase 13 and a chamber for a liquid for a continuous phase 14 by a porous member 12. The porous member is preferably that of 0.1-10 micron average pore diameter and is preferably a porous membrane in the form of a plate or a cylinder. The pressurization of the liquid for a dispersed phase in the liquid chamber 13 is performed through a line 26 communicating with a gas pressurizing source or by a pressurizing member, such as a piston. The liquid for a continuous phase in the liquid chamber 14 is agitated by a rotor 23, etc. In this way, the liquid for a dispersed phase is pressurized even for a small quantity of 1-10ml of the emulsified quantity. And also the liquid chamber 14 is provided with an introducing pipe 39 for the liquid for a continuous phase and an emulsion takeoff port to continuously produce an emulsion little by little. In this case, the liquid chamber 13 is preferably provided with an introducing pipe 32 for the liquid for a dispersed phase.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、乳化方法及びその乳化
装置に関し、特に、極めて安定で粒子径の均一な水中油
型、油中水型又は水中油中水型エマルションを製造でき
る乳化方法及びその乳化装置に関する。また、本発明
は、少量のエマルション製造用の乳化方法及び小型の乳
化装置に関し、特に1乃至100mlの少量のエマルシ
ョンを製造するに適した単分散乳化法及びその小型乳化
器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an emulsification method and an emulsification apparatus therefor, and more particularly to an emulsification method and method capable of producing an extremely stable oil-in-water type, water-in-oil type or water-in-oil-in-water type emulsion. It relates to the emulsifying device. The present invention also relates to an emulsification method and a small emulsification apparatus for producing a small amount of emulsion, and particularly to a monodisperse emulsification method suitable for producing a small amount of emulsion of 1 to 100 ml and a small emulsifier thereof.

【0002】[0002]

【従来の技術】エマルションは、連続相及び分散相を一
緒に機械的に処理して、連続相中に分散相を分散させて
製造されている。このようにエマルションを工業的に生
産する手段としては、これまで、高速撹拌式乳化機、高
圧ホモゲナイザーあるいは超音波乳化機などの主に機械
物理的方法が用いられている。しかし、これらの製法で
は、分散相の破壊が必ずしも一様かつ再現よく行われな
いために、エマルションの粒子径を均一に制御すること
が難しく、安定で良質のエマルションを製造することは
容易でない。
BACKGROUND OF THE INVENTION Emulsions are made by mechanically treating a continuous phase and a dispersed phase together to disperse the dispersed phase in the continuous phase. As a means for industrially producing an emulsion, a mechanical-physical method such as a high-speed stirring emulsifier, a high-pressure homogenizer, or an ultrasonic emulsifier has been used so far. However, in these production methods, it is difficult to uniformly control the particle size of the emulsion because the destruction of the dispersed phase is not always performed uniformly and reproducibly, and it is not easy to produce a stable and high-quality emulsion.

【0003】そこで、粒子径を均一に制御し、安定な良
質なエマルションを製造するために、孔径が微細で且つ
均一な多孔質ガラス膜を分散相の分散素子として用いる
新しい方法が提案されている(特開平2−95433号
公報)。この方法の概略を図8に示す。この方法におい
て、水中油型(O/W)のエマルションを製造する場合
には、分散素子として、油相よりも水相に濡れ易い管状
の多孔質ガラス膜1が使用される。この管状の多孔質ガ
ラス膜1の周囲を分散相の油性の液体2で満たし、加圧
ポンプ3により分散相の油性の液体を多孔質ガラス管に
圧入し、循環ポンプ4により循環させた連続相の水性の
液体5中に分散相の油性の液体を乳化分散させることを
特徴にしている。したがって、この方法によると、分散
素子の素材の特性を反映して、粒子径にむらが無く、均
一で安定性の良好なエマルション(以下、単分散エマル
ションと言う。)を製造することができ、また該分散素
子の孔径の大きさを変えることにより、エマルションの
用途に見合ったエマルションの粒子設計も可能である。
Therefore, in order to control the particle size uniformly and produce a stable and high-quality emulsion, a new method has been proposed in which a porous glass film having a fine pore size and a uniform size is used as a dispersive element of a dispersed phase. (JP-A-2-95433). The outline of this method is shown in FIG. In this method, when an oil-in-water (O / W) emulsion is produced, the tubular porous glass membrane 1 that is more easily wetted by the water phase than the oil phase is used as the dispersion element. The circumference of the tubular porous glass membrane 1 was filled with the dispersed phase oily liquid 2, the dispersed phase oily liquid was pressed into the porous glass tube by the pressure pump 3, and the continuous phase was circulated by the circulation pump 4. The oily liquid of the dispersed phase is emulsified and dispersed in the aqueous liquid 5 of 1. Therefore, according to this method, it is possible to produce a uniform and stable emulsion (hereinafter, referred to as a monodisperse emulsion), in which the particle size is uniform and the characteristics of the material of the dispersion element are reflected. Also, by changing the size of the pore size of the dispersion element, it is possible to design the emulsion particles suitable for the intended use of the emulsion.

【0004】[0004]

【発明が解決しようとする課題】しかし、この方法で
は、乳化に必要な分散相の液体は、管状の分散素子の周
囲と高圧配管6及び分散相タンク7を満たすのに十分な
量であることを必要とし、さらに、連続相の液体は、管
状の分散素子の内側や循環用配管8及び連続相タンク9
を満たすのに十分な量であることを必要とする。このた
め、この方法でエマルションを量産するときは、分散素
子を増やすなり、分散相タンク7と連続相タンク9をそ
れぞれ適宜スケールアップすればよいが、少量のエマル
ションを製造するには限界があり、最低100mlが限
度である。また、膜モジュール10が複雑な構造をして
いるため、分散素子の装脱着が煩雑であり、多種類のエ
マルションを数多く製造するにも不便がある。以上のよ
うに、この方法は、エマルションの連続的な量産はでき
ても、数ml乃至数十mlの少量のエマルションを製造
することは困難であり、その解決が望まれている。
However, in this method, the amount of the liquid in the dispersed phase required for emulsification is sufficient to fill the periphery of the tubular dispersing element, the high pressure pipe 6 and the dispersed phase tank 7. In addition, the continuous-phase liquid is used inside the tubular dispersion element, the circulation pipe 8 and the continuous-phase tank 9.
It needs to be sufficient to meet. Therefore, when the emulsion is mass-produced by this method, it is necessary to increase the number of dispersion elements and scale up the dispersed phase tank 7 and the continuous phase tank 9 as appropriate, but there is a limit in producing a small amount of emulsion, The minimum is 100 ml. Further, since the membrane module 10 has a complicated structure, loading and unloading of the dispersion element is complicated, and it is inconvenient to manufacture many types of emulsions. As described above, this method is capable of continuous mass production of emulsions, but it is difficult to produce a small amount of emulsion of several ml to several tens of ml, and its solution is desired.

【0005】殊に、近年、医療用新薬の開発や乳化系抗
癌剤の臨床投与において、また高価な乳化原料を使用す
る液晶材料の開発や希少な界面活性剤を用いる新規なエ
マルションの研究開発の現場において、少量でありなが
ら均一で安定性に優れたエマルションの製造が必要とさ
れており、そのような少量のエマルション製造のための
乳化方法及び乳化装置が切望されている。したがって、
本発明は、従来の乳化方法及び乳化装置により、均一で
安定性に優れた少量のエマルションを製造する場合のロ
スボリュウムに係る問題点を解決することを目的として
いる。
Particularly, in recent years, in the development of new medical drugs, clinical administration of emulsifying anticancer agents, development of liquid crystal materials using expensive emulsifying raw materials, and research and development of new emulsions using rare surfactants. In the above, there is a need for the production of an emulsion that is small and uniform and excellent in stability, and an emulsification method and an emulsification apparatus for producing such a small amount of emulsion are desired. Therefore,
It is an object of the present invention to solve the problems associated with ross volume when producing a small amount of a uniform and stable emulsion by the conventional emulsification method and device.

【0006】[0006]

【問題点を解決するための手段】本発明は、少量であり
ながら、均一で且つ安定性に優れたエマルションを、容
易に製造することができる乳化方法及びその製造装置を
提供することを目的としている。即ち、本発明は、静止
状態にある分散相用の液体を、加圧体による加圧下に、
多孔部材の微細な孔を通して、流動する連続相の液体中
に圧入し、前記分散相の液体を前記連続相の液体内に分
散させることを特徴とする乳化方法にある。また、本発
明は、乳化用容器の内部が、0.1乃至10ミクロンの
平均孔径の孔を均一に有する多孔板により仕切られてお
り、一方に分散相用液体の室が形成され、他方にエマル
ション形成用の室が形成されており、前記分散相用液体
の室には、多孔板と反対側の端部に気体加圧源に連通す
る開口が形成され、前記エマルション形成用の室には、
撹拌用の回転子が設けられ連続相用の液体供給管が接続
していることを特徴とする乳化装置にあり、また本発明
は、乳化用容器の内部が、0.1乃至10ミクロンの平
均孔径の孔を均一に有する多孔板により仕切られてお
り、一方に分散相用液体の室が形成され、他方にエマル
ション形成用の室が形成されており、前記分散相用液体
の室は、円筒状に形成されると共に、その円筒状の内壁
面に液密に接触する往復動子が往復動可能に設けられて
いることを特徴とする乳化装置にある。さらに、本発明
は、乳化用容器の内部が、0.1乃至10ミクロンの平
均孔径の孔を均一に有する多孔円筒体により仕切られて
おり、該円筒体を介して内側に分散相用液体の室が形成
され、外側にエマルション形成用の室が形成されてお
り、前記分散相用液体の室は、気体加圧源に接続する分
散相容器に連通しており、前記エマルション形成用の室
には、撹拌用の回転子が設けられると共に連続相用の液
体供給管が接続していることを特徴とする乳化装置にあ
り、また、本発明は、乳化用容器は、その内部に、両端
部に内側にネジ溝を備える円筒部材が配置されており、
該円筒部材のネジ溝の夫々の内側には、内向きフランジ
が設けられており、夫々の内向きフランジの外側には、
夫々O−リングが、フランジ面に接して配置されてお
り、O−リングの内側リング面により、0.1乃至10
ミクロンの平均孔径の孔が均一に形成されている多孔円
筒体が保持されており、多孔円筒体と円筒の間に形成さ
れる空間に、分散相供給管が接続していることを特徴と
する乳化装置にある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an emulsification method and an apparatus for producing the same, which can easily produce a uniform and stable emulsion even in a small amount. There is. That is, the present invention, the liquid for the dispersed phase in a stationary state, under pressure by the pressurizing body,
The emulsification method is characterized in that the liquid of the disperse phase is dispersed into the liquid of the continuous phase by press-fitting into the liquid of the continuous phase flowing through the fine pores of the porous member. Further, according to the present invention, the inside of the emulsification container is partitioned by a perforated plate having uniform pores having an average pore diameter of 0.1 to 10 microns, and a chamber for the liquid for a dispersed phase is formed on one side and another on the other side. A chamber for forming an emulsion is formed, the chamber for the liquid for dispersed phase has an opening communicating with a gas pressurizing source at the end opposite to the porous plate, and the chamber for forming the emulsion is formed. ,
The emulsification device is characterized in that a rotor for stirring is provided and a liquid supply pipe for a continuous phase is connected to the emulsification device. The present invention also provides an emulsification container having an average of 0.1 to 10 microns. It is partitioned by a perforated plate having pores of uniform pore size, a chamber for the dispersed phase liquid is formed on one side, and a chamber for emulsion formation is formed on the other side, and the chamber for the dispersed phase liquid is a cylinder. The emulsification device is characterized in that a reciprocating member that is formed in a cylindrical shape and that is in liquid-tight contact with the inner wall surface of the cylinder is reciprocally movable. Further, according to the present invention, the inside of the emulsification container is partitioned by a porous cylinder having uniform pores having an average pore diameter of 0.1 to 10 microns, and the inside of the liquid for the dispersed phase is divided through the cylinder. A chamber is formed, a chamber for emulsion formation is formed on the outside, the chamber for the dispersed phase liquid is in communication with a dispersed phase container connected to a gas pressurizing source, and the chamber for emulsion formation is Is an emulsification device characterized in that a rotor for stirring is provided and a liquid supply pipe for a continuous phase is connected, and the present invention is an emulsification container, in which the both end portions are provided. There is a cylindrical member with a thread groove inside,
Inside each of the thread grooves of the cylindrical member, an inward flange is provided, and on the outside of each inward flange,
The O-rings are respectively arranged in contact with the flange surfaces, and the inner ring surface of the O-rings provides 0.1 to 10
A porous cylinder in which pores having an average pore diameter of micron are uniformly formed is held, and a dispersed phase supply pipe is connected to a space formed between the porous cylinder and the cylinder. It is in an emulsifying device.

【0007】本発明において、ロスボリュウムを小さく
するために、分散相用の液体の加圧を気体、分散相用の
液体に容易に溶解しない液体、或いはピストン等の加圧
用部材により行う。加圧用の気体としては、分散相用の
液体に対して不活性であれば足り、空気、窒素、その他
不活性な気体を使用することができる。本発明におい
て、分散相用の液体は、加圧されて多孔板等の多孔部材
の微細な孔を通り、撹拌されて流動状態にある連続相用
の液体中に分散させ、エマルションを形成させる。この
場合、多孔部材の孔径は、平均孔径で0.1乃至10μ
mのものが好ましい。
In the present invention, in order to reduce the loss volume, the liquid for the dispersed phase is pressurized by a gas, a liquid which is not easily dissolved in the liquid for the dispersed phase, or a pressure member such as a piston. As the gas for pressurization, it is sufficient that it is inert to the liquid for the dispersed phase, and air, nitrogen, or other inert gas can be used. In the present invention, the liquid for the dispersed phase is pressurized and passes through the fine pores of the porous member such as a perforated plate, and is stirred to be dispersed in the liquid for the continuous phase in a fluid state to form an emulsion. In this case, the pore size of the porous member is 0.1 to 10 μm in average pore size.
m is preferable.

【0008】本発明において、上記の多孔部材は、多孔
質であるのが好ましい。特に、多孔部材が、均一な孔径
を有するものであると、生成するエマルションの粒径が
均一に形成できるので、多孔部材の孔径を均一な孔径と
するのがより好ましい。本発明において、多孔部材とし
ては、板状多孔部材、円筒状多孔部材、多孔質板状膜及
び多孔質円筒状膜を使用することができる。本発明にお
いては、このような多孔部材として、CaO−B
−SiO−Al系の多孔質ガラス、CaO−B
−SiO−Al−NaO系の多孔質ガ
ラス及びCaO−B−SiO−Al−N
O−MgO系の多孔質ガラスなどを板状又は円筒状
に形成した多孔質材料、例えば板状又は円筒状の多孔質
膜を使用するのが好ましい。
In the present invention, the porous member is preferably porous. In particular, if the porous member has a uniform pore diameter, the particle size of the emulsion to be formed can be formed uniformly, so it is more preferable to make the pore diameter of the porous member uniform. In the present invention, a plate-shaped porous member, a cylindrical porous member, a porous plate-shaped membrane and a porous cylindrical membrane can be used as the porous member. In the present invention, as such a porous member, CaO-B 2 O 3
-SiO 2 -Al 2 O 3 based porous glass, CaO-B
2 O 3 -SiO 2 -Al 2 O 3 -Na 2 O -based porous glass and CaO-B 2 O of 3 -SiO 2 -Al 2 O 3 -N
porous material with a formed like porous glass a 2 O-MgO-based in a plate shape or a cylindrical shape, for example, to use a plate-shaped or cylindrical porous membrane preferably.

【0009】本発明において、多孔部材の表面は、分散
相となる油性の液体及び/又は水性の液体に濡れ難い性
質に形成されるのが好ましい。特に、均一な粒径の分散
相の液滴を分散させるには、板状及び円筒状の多孔質体
並びに板状及び円筒状の多孔質膜の表面は、分散相とな
る液体により濡れ難くするのが好ましい。本発明におい
ては、分散相液体を連続相液体中に安定して分散させる
ために界面活性剤が使用される。界面活性剤の添加は、
連続相となる液体側及び/又は分散相となる液体側であ
り、この界面活性剤の使用により、一旦生成した分散相
の液滴を、相互に接触して新しい液滴を形成することを
防止することができる。
In the present invention, it is preferable that the surface of the porous member is formed to have a property of being hard to be wet by an oily liquid and / or an aqueous liquid which is a dispersed phase. In particular, in order to disperse the droplets of the dispersed phase having a uniform particle size, the surfaces of the plate-shaped and cylindrical porous bodies and the plate-shaped and cylindrical porous membranes are hard to be wet by the liquid serving as the dispersed phase. Is preferred. In the present invention, a surfactant is used to stably disperse the dispersed phase liquid in the continuous phase liquid. Addition of surfactant
It is the liquid side that is the continuous phase and / or the liquid side that is the dispersed phase. By using this surfactant, it is possible to prevent the droplets of the dispersed phase that were once generated from contacting each other and forming new droplets. can do.

【0010】本発明においては、分散相となる液体と連
続相となる液体を、ロスボリュウムを小さくして、多孔
部材、例えば、多孔質膜に接触させるために、乳化用容
器内は、多孔質膜を介して、分散相となる液体の室及び
連続相となる液体の室に仕切られて形成される。分散相
となる液体の室、即ち分散相用液体の室は、一つの側で
多孔部材に面し、分散相となる液体、即ち分散相用の液
体を収容し、該分散相用の液体を加圧する加圧手段が設
けられている。連続相となる液体の室、即ち連続相液体
の室は、一つの側で多孔板に面して、連続相となる液
体、即ち連続相用の液体を収容し、多孔板を介して連続
相の液体中に圧入された分散相の液滴を均一に分散させ
るために回転子又は撹拌装置が設けられている。一つの
室壁が多孔板に形成され、底部及び周囲側壁が密閉され
た状態に形成される。
In the present invention, in order to bring the liquid serving as the dispersed phase and the liquid serving as the continuous phase into contact with a porous member such as a porous membrane while reducing the loss volume, the inside of the emulsification container is porous. It is formed by being divided into a liquid chamber which is a dispersed phase and a liquid chamber which is a continuous phase through the membrane. The liquid chamber serving as the dispersed phase, that is, the liquid chamber for the dispersed phase faces the porous member on one side, contains the liquid serving as the dispersed phase, that is, the liquid for the dispersed phase, and stores the liquid for the dispersed phase. Pressurizing means for applying pressure is provided. The continuous-phase liquid chamber, that is, the continuous-phase liquid chamber, faces the porous plate on one side and contains the continuous-phase liquid, that is, the liquid for the continuous phase, and the continuous phase is passed through the porous plate. A rotor or a stirring device is provided to uniformly disperse the droplets of the dispersed phase pressed into the liquid. One chamber wall is formed in the perforated plate, and the bottom and peripheral side walls are formed in a sealed state.

【0011】本発明においては、分散相用液体の室を多
孔板の一方の側に設け、連続相用液体の室を多孔板の他
方の側に設けると共に、多孔板の面積を小さくすること
によって乳化装置を容易に小型化することができ、少量
のエマルションの形成が容易である。また、本発明にお
いては、ロスボリュウムの形成を避けるために、即ち、
エマルションの形成に供しない液体量を避けるために、
多孔板を介して形成される分散相液体の室及び連続相液
体の室は、エマルションの形成に使用される液体量に近
づけることができる。したがって、本発明においては、
分散相用の液体量及び連続相用の液体量は、製造される
エマルションの必要量とすることができ、目的とするエ
マルションの量に応じて使用される。
In the present invention, the chamber for the dispersed phase liquid is provided on one side of the porous plate, the chamber for the continuous phase liquid is provided on the other side of the porous plate, and the area of the porous plate is reduced. The emulsifying device can be easily downsized, and a small amount of emulsion can be easily formed. Further, in the present invention, in order to avoid the formation of loss volume, that is,
To avoid the amount of liquid that does not contribute to the formation of the emulsion,
The dispersed phase liquid chamber and the continuous phase liquid chamber formed through the perforated plate can approximate the amount of liquid used to form the emulsion. Therefore, in the present invention,
The amount of liquid for the dispersed phase and the amount of liquid for the continuous phase can be the required amount of the emulsion to be produced, and are used depending on the amount of the target emulsion.

【0012】本発明においては、乳化の際に、ロスボリ
ュウムを小さくするために、分散相用液体の室は、一つ
の室壁が多孔板に形成され、底部及び周囲側壁が密閉さ
れた状態に形成される。本発明において、多孔板の孔を
通って、連続相用液体の室、即ちエマルション形成用の
液体の室内に、圧力によって侵入する分散相用の液体
を、連続相用の液体内に、強制的に均一に分散させるた
めに、エマルション形成用の液体室には撹拌用の回転子
又は撹拌装置が設けられる。回転子は、磁性により回転
させる形式のものとすることができ、また回転軸に回転
翼を取り付け、この回転軸を外部からエマルション形成
用の液体室内に液密に且つ回転可能に挿通して、外部の
動力により回転翼を回転させることができる。
In the present invention, in order to reduce the loss volume during emulsification, the chamber for the liquid for the dispersed phase has one chamber wall formed of a perforated plate, and the bottom and the surrounding side walls are sealed. It is formed. In the present invention, the liquid for the disperse phase, which penetrates by pressure into the chamber of the liquid for continuous phase, that is, the chamber of the liquid for emulsion formation, through the holes of the perforated plate is forced into the liquid for continuous phase. In order to uniformly disperse the liquid in the emulsion, a rotor or a stirring device for stirring is provided in the liquid chamber for forming the emulsion. The rotor may be of a type that rotates magnetically, and a rotary blade is attached to the rotary shaft, and the rotary shaft is inserted into the liquid chamber for emulsion formation from outside in a liquid-tight and rotatably manner, The rotor can be rotated by external power.

【0013】本発明において、多孔板を通して、分散相
用液体を連続相用液体中に効率よく圧入するために、分
散相用液体の加圧下に、多孔板の表面に付着する気泡を
取り除けるように、多孔板の周縁部に隣接する連続相用
液体の室の壁に、気泡抜き用の流路を開口させるのが好
ましい。本発明において、エマルション形成用の液体室
に連続相用液体の導入口及びエマルション取出し口を設
けて、少量宛連続的に製造することができる。この場
合、分散相用の液体室には、分散相用の液体導入口を設
けるのが好ましい。本発明において、分散相用の液体の
室は、分散相用液体の加圧用として、気体供給源、又は
分散相用の液体に容易に溶解しない液体供給源に、圧力
調整可能に接続して設けられる。加圧体として、ピスト
ン等を使用する場合は、分散相用の液体室をピストンシ
リンダに形成し、該液体室内に加圧体としてのピストン
ロッド又はプランジャを設けることができる。
In the present invention, in order to efficiently press the dispersed phase liquid into the continuous phase liquid through the perforated plate, it is possible to remove bubbles adhering to the surface of the perforated plate under the pressure of the dispersed phase liquid. It is preferable to open a channel for removing bubbles in the wall of the continuous phase liquid chamber adjacent to the peripheral edge of the porous plate. In the present invention, the liquid chamber for emulsion formation may be provided with an inlet for the continuous-phase liquid and an outlet for the emulsion to continuously produce a small amount. In this case, it is preferable to provide a liquid inlet for the dispersed phase in the liquid chamber for the dispersed phase. In the present invention, the chamber for the liquid for the dispersed phase is provided for pressure control of the liquid for the dispersed phase and is connected to a gas supply source or a liquid supply source which is not easily dissolved in the liquid for the dispersed phase so that the pressure can be adjusted. To be When a piston or the like is used as the pressurizing body, the liquid chamber for the dispersed phase can be formed in the piston cylinder, and the piston rod or the plunger as the pressurizing body can be provided in the liquid chamber.

【0014】[0014]

【作用】本発明は、分散相用の液体を気体の加圧下に、
多孔板の微細な孔を通して、流動する連続相の液体中に
圧入して、分散相の液体を連続相内に分散させるので、
乳化量が1乃至100mlの少量であっても、分散相の
液体を加圧でき、均一でむらの無い単分散エマルション
を容易に製造することができる。したがって、本発明に
よると、水中油型(O/W)エマルションや油中水型
(W/O)エマルションのシングルエマルションばかり
でなく、W/O/Wエマルション等のダブルエマルショ
ンについても、同様に少量ながら均一なエマルションと
することができる。また、本発明によると、多孔板を通
って形成される液滴の大きさは、形成過程で膨らむため
に、多孔板の通過する孔の径よりも、遥かに、例えば数
倍大きくなるが、目的の粒子径に応じて選択することに
より、エマルションの粒子設計をおこなうことができ
る。
In the present invention, the liquid for the dispersed phase is pressurized under gas pressure,
Through the fine pores of the perforated plate, it is pressed into the flowing continuous phase liquid to disperse the dispersed phase liquid in the continuous phase,
Even if the emulsified amount is as small as 1 to 100 ml, the liquid in the dispersed phase can be pressurized, and a uniform and uniform monodisperse emulsion can be easily produced. Therefore, according to the present invention, not only single emulsions such as oil-in-water (O / W) emulsions and water-in-oil (W / O) emulsions, but also double emulsions such as W / O / W emulsions are similarly small in amount. However, a uniform emulsion can be obtained. Further, according to the present invention, the size of the liquid droplets formed through the perforated plate is much larger than the diameter of the holes through which the perforated plate passes, for example, several times larger, because the size of the droplets swells during the formation process. By selecting according to the target particle size, the particle design of the emulsion can be performed.

【0015】本発明によると、多種少量で且つ均質で安
定性に優れた高性能のエマルションが簡単に製造できる
ので、このようなエマルションが要求される分野、或い
は乳化物の原料となる分散相用の液体、連続相用の液体
又はこれらに添加される界面活性剤若しくは安定剤が非
常に高価な場合或いは、極めて希少である場合に有効で
ある。例えば、副作用の大幅低減により、注目されてい
る乳化系の抗癌剤では、安定性のため、また薬効の効果
的な発現のため、厳密な粒子設計が求められるが、実際
の臨床投与で必要とされるのは、高々5乃至10mlに
過ぎないが、このような少量のエマルションを簡単且つ
容易に製造することができ、必要量を無駄無く調製する
ことを可能にするものである。
According to the present invention, it is possible to easily produce a high-performance emulsion that is homogeneous and excellent in stability in a small amount of various kinds. Therefore, such an emulsion is required in a field or for a dispersed phase which is a raw material of an emulsion. It is effective when the above liquid, the liquid for the continuous phase, or the surfactant or stabilizer added thereto is very expensive or extremely rare. For example, strict particle design is required for emulsified anti-cancer agents, which have been attracting attention due to the significant reduction in side effects, and for effective expression of drug efficacy, but it is required for actual clinical administration. Although it is only 5 to 10 ml at the most, it is possible to easily and easily produce such a small amount of emulsion and to prepare a necessary amount without waste.

【0016】[0016]

【実施例】以下、本発明の実施の態様について、例を挙
げて説明するが、本発明は、以下の例示及び説明の内容
により何ら限定されるものではない。図1は、本発明の
一実施例を説明するための概略の側断面図であり、図2
は、図1の一実施例を組み込んで構成された乳化装置を
説明する概略の構成図である。図3は、本発明の別の一
実施例を示す概略の側断面図であり、図4は、さらに別
の実施例であり、分散相の液体室が下方に位置する事例
を示す側断面図であり、図5は、本発明の横型の一実施
例を示す側断面図である。図6は、図1乃至図5に示す
本発明の実施例とは異なる別の本発明の実施例を示す図
であり、多孔質円筒の内側から外側へ分散相の液体を乳
化する事例を示す側断面図である。図7は、図6とは逆
の関係に構成された一実施例を示す図であり、多孔質円
筒の外側から内側へ分散相の液体を乳化する事例を示す
側断面図である。これら実施例を示す図において、対応
する箇所には、同一の符号が付されている。
EXAMPLES Hereinafter, embodiments of the present invention will be described with reference to examples, but the present invention is not limited to the contents of the following examples and explanations. 1 is a schematic side sectional view for explaining an embodiment of the present invention.
FIG. 2 is a schematic configuration diagram illustrating an emulsification device configured by incorporating the embodiment of FIG. 1. FIG. 3 is a schematic side sectional view showing another embodiment of the present invention, and FIG. 4 is a further side embodiment showing a case where the liquid chamber of the dispersed phase is located below. FIG. 5 is a side sectional view showing one embodiment of the horizontal type of the present invention. FIG. 6 is a view showing another embodiment of the present invention different from the embodiment of the present invention shown in FIGS. 1 to 5, and shows an example of emulsifying a liquid in a dispersed phase from the inside to the outside of a porous cylinder. It is a sectional side view. FIG. 7 is a view showing an embodiment constructed in a relationship opposite to that of FIG. 6, and is a side sectional view showing an example of emulsifying the liquid of the dispersed phase from the outer side to the inner side of the porous cylinder. In the drawings showing these examples, the same reference numerals are given to corresponding parts.

【0017】図1及び図2に示される実施例において、
乳化装置11は、円板状の多孔質ガラス膜12が使用さ
れている。多孔質ガラス膜12は、分散相タンク13と
連続相タンク14の間に、上下二つのOリング15及び
16により、上下から液密に保持される。本例におい
て、連続相タンク14には段部17が形成されており、
これに分散相タンク13を入れ子に入れ、多孔質ガラス
膜12の周辺が上下二つのOリング15,16により押
さえられるように、袋ナット18で締めて、分散相タン
ク13を連続相タンク14に圧着する。
In the embodiment shown in FIGS. 1 and 2,
The emulsifying device 11 uses a disk-shaped porous glass film 12. The porous glass film 12 is held between the dispersed phase tank 13 and the continuous phase tank 14 by the upper and lower two O-rings 15 and 16 so as to be liquid-tight from above and below. In this example, the continuous phase tank 14 has a step 17 formed therein,
The disperse phase tank 13 is placed in a nest in this, and the disperse phase tank 13 is transformed into the continuous phase tank 14 by tightening with a cap nut 18 so that the periphery of the porous glass membrane 12 is pressed by the upper and lower two O-rings 15 and 16. Crimp.

【0018】本例において、連続相タンク14には、連
続相用の液体供給管路に接続する小さい通液口19が設
けられており、また、生成したエマルション取出し用の
小さい開口20が設けられている。この開口20には栓
体21が設けられており、栓体21を開口20から取り
外して、開口20からのエマルションの取り出しを行
う。連続相タンク14の開口20の大きさは、連続相の
液体の連続相タンク14内の滞留時間により決定され
る。連続相タンク14には、底部22に、マグネチック
スターラの回転子23が置かれている。この回転子23
は、マグネチックスターラを駆動させて、回転させる。
分散相タンク14の上部には、加圧窒素ガスボンベに精
密圧力調節器を介して接続する管路26が接続する通気
口27が設けられている。
In this example, the continuous-phase tank 14 is provided with a small liquid passage port 19 connected to the liquid supply line for the continuous phase, and a small opening 20 for taking out the produced emulsion. ing. The opening 20 is provided with a plug 21, and the plug 21 is removed from the opening 20 to take out the emulsion from the opening 20. The size of the opening 20 of the continuous phase tank 14 is determined by the residence time of the continuous phase liquid in the continuous phase tank 14. On the bottom 22 of the continuous-phase tank 14, a rotor 23 of a magnetic stirrer is placed. This rotor 23
Drives the magnetic stirrer to rotate it.
A ventilation port 27 is provided in the upper portion of the dispersed phase tank 14 to which a pipe line 26 that connects to a pressurized nitrogen gas cylinder via a precision pressure regulator is connected.

【0019】本例は以上のように構成されているので、
単分散状の水中油型エマルション、即ち、0/Wエマル
ションを製造する場合には、まず連続相タンク14に回
転子23を入れる。この時、連続相タンク14側壁下部
に設けたエマルション採取用開口20の栓体21を取り
外してエマルション取り出し管を接続し、開放状態にし
ておく。多孔質ガラス膜12を連続相タンク14の段部
17に装着されているO−リング16上に置き、その上
に、もう1つのO−リング15を装着し、分散相タンク
13を載せ、袋ナットを18を締め込んで円板状多孔質
ガラス膜12を分散相タンク13と連続相タンク14の
間に固定する。
Since this example is constructed as described above,
In the case of producing a monodisperse oil-in-water emulsion, that is, a 0 / W emulsion, first, the rotor 23 is placed in the continuous phase tank 14. At this time, the plug 21 of the emulsion sampling opening 20 provided at the lower part of the side wall of the continuous phase tank 14 is removed, and the emulsion withdrawing pipe is connected to leave the open state. The porous glass membrane 12 is placed on the O-ring 16 mounted on the step portion 17 of the continuous phase tank 14, another O-ring 15 is mounted thereon, the dispersed phase tank 13 is placed, and The disk-shaped porous glass membrane 12 is fixed between the dispersed phase tank 13 and the continuous phase tank 14 by tightening the nut 18.

【0020】本例において、分散相タンク13の通気口
27は、加圧用気体の導入用であると共に、分散相の液
体導入口であり、エマルションの形成前に、通気口27
から、所定量の油若しくは界面活性剤を溶解した油30
を注入される。分散相の液体が分散相タンク13内に導
入した後に、管路26を精密圧力調節器に接続し、分散
相タンク13内を精密圧力調節器を介して加圧用窒素ガ
スボンベに接続し、加圧の準備が完了する。そこで分散
相タンク13の下方の連続相タンク14内に、連続相の
水又は界面活性剤又は分散助剤を溶解した水溶液28
を、液面が円板状多孔質ガラス膜12の膜面に接するま
で注ぐ。
In this example, the vent 27 of the dispersed phase tank 13 is for introducing the gas for pressurization and is also the liquid inlet for the dispersed phase, and the vent 27 is formed before the emulsion is formed.
From the oil 30 in which a predetermined amount of oil or a surfactant is dissolved
Is injected. After the liquid of the dispersed phase is introduced into the dispersed phase tank 13, the pipe line 26 is connected to a precision pressure controller, and the inside of the dispersed phase tank 13 is connected to a nitrogen gas cylinder for pressurization through the precision pressure controller to pressurize. Is ready. Therefore, in the continuous phase tank 14 below the dispersed phase tank 13, an aqueous solution 28 in which continuous phase water or a surfactant or a dispersion aid is dissolved
Is poured until the liquid surface comes into contact with the film surface of the disk-shaped porous glass film 12.

【0021】乳化を開始する場合は、まずマグネチック
スターラーによって連続相タンク14内の連続水相28
を撹拌する。そして窒素ガスボンベを使って分散相タン
ク13内の分散油相30を加圧する。ここで臨界圧力以
上まで圧力を上げれば、分散油相30は円板状多孔質ガ
ラス膜12を透過し、連続水相28中に均一な大きさの
油滴が形成される。乳化操作中、圧入される油の量だ
け、生成した単分散エマルションは採取口20からオー
バーフローし採取管から回収される。
When emulsification is started, first, the continuous aqueous phase 28 in the continuous phase tank 14 is magnetically stirred.
Is stirred. Then, the dispersed oil phase 30 in the dispersed phase tank 13 is pressurized using a nitrogen gas cylinder. Here, if the pressure is raised to the critical pressure or more, the dispersed oil phase 30 permeates the disk-shaped porous glass membrane 12, and oil droplets of uniform size are formed in the continuous aqueous phase 28. During the emulsification operation, the produced monodisperse emulsion overflows from the collection port 20 and is collected from the collection tube by the amount of the oil to be injected.

【0022】本例においては、連続相タンク14に設け
られる通液口19及び分散相タンクに設けられる通気口
27は一個宛設けられているが、通液口や通気口を増や
して設けることができる。この場合は、異なる操作を行
うことも可能である。例えば通液口19を、エマルショ
ンの採取口20とポンプを介して接続するならば、希薄
なエマルションを通液口19を介して、連続相タンク1
4内に導入でき、所定濃度のエマルションとすることが
でき、また連続的にエマルションを調製することもでき
る。また、精密圧力調節器を設けることにより、圧力の
コントロールを正確に行うことができる。
In this example, the liquid passage port 19 provided in the continuous phase tank 14 and the ventilation port 27 provided in the dispersed phase tank are provided for each one, but it is possible to provide more liquid passage ports and ventilation ports. it can. In this case, different operations can be performed. For example, if the liquid passage port 19 is connected to the emulsion collection port 20 via a pump, the dilute emulsion may be connected via the liquid passage port 19 to the continuous phase tank 1
4 can be introduced into the emulsion to give an emulsion having a predetermined concentration, or the emulsion can be continuously prepared. Further, by providing the precision pressure regulator, the pressure can be accurately controlled.

【0023】図2は自動乳化装置の一例を示す配置図で
ある。図2において、乳化装置11は、連続相タンク1
4内に入れられているマグネチックスターラー31の回
転子23を回転させるために、マグネチックスターラー
の31上に設けられている。乳化装置11の分散相タン
ク13には、分散相用の液体供給管32が接続されてお
り、この分散相用の液体供給管32は、三方電磁弁33
の一路34に接続している。三方電磁弁33は、分岐流
路の一路35は、分散相用の液体の液体容器36に一端
が浸漬されており、残る一路37は、分散相用のシリン
ダポンプ38に接続している。
FIG. 2 is a layout view showing an example of the automatic emulsification device. In FIG. 2, the emulsifying device 11 is a continuous phase tank 1
It is provided on the magnetic stirrer 31 in order to rotate the rotor 23 of the magnetic stirrer 31 contained in the motor. A liquid supply pipe 32 for the dispersed phase is connected to the dispersed phase tank 13 of the emulsifying device 11, and the liquid supply pipe 32 for the dispersed phase is a three-way solenoid valve 33.
Connected to the path 34. One end 35 of the branch flow path of the three-way solenoid valve 33 is immersed in a liquid container 36 for the dispersed phase liquid, and the remaining end 37 is connected to a cylinder pump 38 for the dispersed phase.

【0024】乳化装置11の連続相タンク14に接続す
る連続相用の液体の液体供給管39は、三方電磁弁40
の一路41に接続している。三方電磁弁40は、分岐流
路の一路42は、分散相用の液体の液体容器43に一端
が浸漬されており、残る一路44は、連続相用のシリン
ダポンプ45に接続している。また、連続相タンク14
には、多孔板12近くに溢流管46が設けられている。
乳化装置11の分散相タンク13の通気口27から延び
る管路26は、圧力計47、圧力調整弁48及び電磁弁
49を経て窒素ガス源(図示されていない)に接続して
いる。
The liquid supply pipe 39 for the liquid for the continuous phase, which is connected to the continuous phase tank 14 of the emulsifying device 11, has a three-way solenoid valve 40.
It is connected to the path 41. One end 42 of the branch flow path of the three-way solenoid valve 40 is immersed in the liquid container 43 of the liquid for the dispersed phase, and the remaining one end 44 is connected to the cylinder pump 45 for the continuous phase. In addition, the continuous phase tank 14
An overflow pipe 46 is provided near the perforated plate 12.
The conduit 26 extending from the vent 27 of the dispersed phase tank 13 of the emulsifying device 11 is connected to a nitrogen gas source (not shown) via a pressure gauge 47, a pressure adjusting valve 48 and a solenoid valve 49.

【0025】本例は以上のように構成されているので、
三方電磁弁33の分岐流路37を35に連通させ、分散
相用のシリンダポンプ38を吸引側に作動させて、分散
相用の液体を液体容器36から、分散相用の液体を分散
相用のシリンダポンプ38内に吸引採取する。そこで、
三方電磁弁33を切り換えて、三方電磁弁33の分岐流
路37を分岐流路34に連通させ、分散相用のシリンダ
ポンプ38を吐出側に作動させて、分散相用のシリンダ
ポンプ38内に吸引された分散相用の液体を、分散相用
の液体供給管32から分散相タンク13内に供給する。
Since this example is constructed as described above,
The branch flow path 37 of the three-way solenoid valve 33 is connected to 35, the cylinder pump 38 for the dispersed phase is operated to the suction side, the liquid for the dispersed phase is discharged from the liquid container 36, and the liquid for the dispersed phase is used for the dispersed phase. It is sucked and collected in the cylinder pump 38. Therefore,
By switching the three-way solenoid valve 33, the branch flow passage 37 of the three-way solenoid valve 33 is communicated with the branch flow passage 34, and the cylinder pump 38 for the dispersed phase is operated to the discharge side so that the cylinder pump 38 for the dispersed phase is provided. The sucked liquid for dispersed phase is supplied into the dispersed phase tank 13 from the liquid supply pipe 32 for dispersed phase.

【0026】三方電磁弁40の分岐流路44を42に連
通させ、連続相用のシリンダポンプ45を吸引側に作動
させて、連続相用の液体を液体容器43から、連続相用
の液体を連続相用のシリンダポンプ45内に吸引採取す
る。そこで、三方電磁弁40を切り換えて、三方電磁弁
40の分岐流路44を分岐流路41に連通させ、連続相
用のシリンダポンプ45を吐出側に作動させて、連続相
用のシリンダポンプ40内に吸引された連続相用の液体
を、連続相用の液体供給管39から連続相タンク14内
に供給する。そこで、連続相の液体中に分散相の液体
が、均一に分散するように、連続相の液体を撹拌させる
ために、マグネチックスターラー31の作動及び回転子
23の回転動作を開始させる。
The branch flow passage 44 of the three-way solenoid valve 40 is connected to 42, and the cylinder pump 45 for the continuous phase is operated to the suction side to transfer the liquid for the continuous phase from the liquid container 43 to the liquid for the continuous phase. It is sucked and collected in the cylinder pump 45 for the continuous phase. Therefore, the three-way solenoid valve 40 is switched so that the branch flow passage 44 of the three-way solenoid valve 40 communicates with the branch flow passage 41, and the continuous-phase cylinder pump 45 is operated to the discharge side, so that the continuous-phase cylinder pump 40. The liquid for the continuous phase sucked inside is supplied into the continuous phase tank 14 from the liquid supply pipe 39 for the continuous phase. Therefore, the operation of the magnetic stirrer 31 and the rotation operation of the rotor 23 are started in order to stir the liquid of the continuous phase so that the liquid of the dispersed phase is uniformly dispersed in the liquid of the continuous phase.

【0027】圧力調整弁48を調整して、分散相タンク
13内の圧力を所定の範囲内に調整する。分散相タンク
13内が所定の圧力(臨界圧)を越えたところで、分散
相用の液体30は多孔板12を通して連続相タンク14
内に圧入される。乳化の開始と共に、分散相用の液体が
圧入された分溢流管46からエマルションが溢流して連
続相用の液体容器43内に流出する。連続相用の液体容
器43の下方には、重量計(図示されていない)が設け
られており、分散相用の液体の全量が連続相タンク14
内に圧入されたことを検出することができる。
The pressure adjusting valve 48 is adjusted to adjust the pressure in the dispersed phase tank 13 within a predetermined range. When the inside of the dispersed phase tank 13 exceeds a predetermined pressure (critical pressure), the liquid 30 for the dispersed phase passes through the porous plate 12 and the continuous phase tank 14
It is pressed in. With the start of the emulsification, the emulsion overflows from the overflow pipe 46 into which the liquid for the dispersed phase has been press-fitted and flows out into the liquid container 43 for the continuous phase. Below the liquid container 43 for the continuous phase, a weight scale (not shown) is provided, and the total amount of the liquid for the dispersed phase is stored in the continuous phase tank 14
It can be detected that it has been press-fitted in.

【0028】図3に示す実施例は、気体による加圧に代
えて、ピストンにより加圧する形式のエマルションの製
造装置である。本例においては、多孔質ガラス膜12
は、図1の実施例と同様に分散相タンク13及び連続相
タンク14の間に周縁部が、O−リング15及び16に
より、液密に挟着保持されている。本例においては、連
続相タンク14の段部17に、多孔板に付着する気泡を
外部に取り除くための流路55の開口51が形成されて
いる。本例においては、この気泡抜きの流路55を溢流
路として兼用できるように設けられている。もとより、
溢流路と気泡抜きの流路を別々に設けることもできる。
連続相タンク14には、図1及び図2の実施例と同様
に、連続相用液体中に分散相液体が、均一に分散するよ
うに、回転子が設けられている。回転子は、マグネチッ
クスターラー31を作動させ、回転子を回転させ、連続
相の液体の撹拌を行う。本例においては、分散相タンク
13には、分散相用の液体を加圧するために、ピストン
52が取り付けられており、ピストン52を下方に移動
させることにより、分散相の液体30の加圧を行うこと
ができる。
The embodiment shown in FIG. 3 is an apparatus for producing an emulsion of the type in which pressure is applied by a piston instead of pressurization by gas. In this example, the porous glass film 12
In the same manner as in the embodiment of FIG. 1, the peripheral portion is liquid-tightly held and held by the O-rings 15 and 16 between the dispersed phase tank 13 and the continuous phase tank 14. In this example, the stepped portion 17 of the continuous phase tank 14 is provided with an opening 51 of a flow passage 55 for removing bubbles adhering to the perforated plate to the outside. In this example, the flow path 55 for removing air bubbles is provided so as to also serve as an overflow flow path. Of course,
It is also possible to separately provide the overflow channel and the bubble removal channel.
The continuous phase tank 14 is provided with a rotor so that the dispersed phase liquid is uniformly dispersed in the continuous phase liquid, as in the embodiment of FIGS. 1 and 2. The rotor operates the magnetic stirrer 31, rotates the rotor, and stirs the continuous phase liquid. In this example, a piston 52 is attached to the dispersed phase tank 13 to pressurize the liquid for the dispersed phase, and the piston 52 is moved downward to pressurize the liquid 30 in the dispersed phase. It can be carried out.

【0029】本例において、分散相タンク13には分散
相の液体の導入用の管路32が形成されている。管路3
2には開閉弁54が設けられており、エマルションの形
成時に気泡の除去後、閉鎖されて、加圧を行う密閉容器
を構成する。本例においては、多孔質ガラス膜12の周
囲に気泡が付着するのを極力避けることができるので、
エマルションの形成効率が高くなる。
In this example, the dispersed phase tank 13 is provided with a conduit 32 for introducing the dispersed phase liquid. Pipeline 3
An opening / closing valve 54 is provided at 2 to form a closed container that is closed after the bubbles are removed during the formation of the emulsion and that is pressurized. In this example, it is possible to avoid bubbles from adhering around the porous glass film 12 as much as possible,
Emulsion formation efficiency increases.

【0030】図4に示す実施例は、分散相タンク13が
連続相タンク14の下方に形成されている例であり、連
続相の液体の撹拌を行うために、撹拌用回転軸に撹拌翼
53を備える撹拌装置56が、上方の連続相タンク14
内に設けられている。分散相タンク13と連続相タンク
14の間に、多孔質ガラス膜12が、O−リング15及
び16により液密に挟着保持されている。本例において
は、分散相タンク13には、分散相用液体供給管32が
接続し、連続相タンク14には、連続相の液体供給管1
9が設けられている。気泡抜きの流路兼溢流路50は、
分散相タンク13の段部17に形成され、気泡抜きの流
路兼溢流路55は、連続相タンク14の段部17に形成
されている。図5に示す実施例は、横型に形成されたも
のであり、分散相タンク13と連続相タンク14の間
に、多孔質ガラス膜12が、O−リング15及び16に
より、垂直方向に張られて、液密に挟着保持されてい
る。分散相タンク13内に、ピストン52が加圧手段と
して設けられ、連続相タンク14には、上部壁57に、
図4の実施例と同様の撹拌翼53を備える撹拌装置56
が設けられている。本例において、分散相タンク13の
上部壁58には、分散用相液体の供給管32及び気泡抜
きの流路50が形成され、また連続相タンク14の上部
壁57には、連続相液体供給管19及び気泡抜きの流路
55が形成されている。
The embodiment shown in FIG. 4 is an example in which the dispersed phase tank 13 is formed below the continuous phase tank 14, and in order to stir the liquid of the continuous phase, the stirring blade 53 is provided on the stirring rotary shaft. An agitator 56 with an upper continuous phase tank 14
It is provided inside. The porous glass film 12 is liquid-tightly sandwiched and held between the dispersed phase tank 13 and the continuous phase tank 14 by O-rings 15 and 16. In this example, a dispersed phase liquid supply pipe 32 is connected to the dispersed phase tank 13, and a continuous phase liquid supply pipe 1 is connected to the continuous phase tank 14.
9 is provided. The flow path for bubble removal and the overflow flow path 50 is
The flow passage / overflow passage 55 for removing air bubbles is formed in the step portion 17 of the dispersed phase tank 13, and is formed in the step portion 17 of the continuous phase tank 14. The embodiment shown in FIG. 5 is formed horizontally, and the porous glass membrane 12 is vertically stretched between the dispersed phase tank 13 and the continuous phase tank 14 by O-rings 15 and 16. And is held in a liquid tight manner. A piston 52 is provided as a pressurizing means in the dispersed phase tank 13, and the continuous phase tank 14 has an upper wall 57.
A stirring device 56 including a stirring blade 53 similar to that of the embodiment of FIG.
Is provided. In the present example, the dispersion phase liquid supply pipe 32 and the bubble removal channel 50 are formed in the upper wall 58 of the dispersed phase tank 13, and the continuous phase liquid supply is provided in the upper wall 57 of the continuous phase tank 14. A pipe 19 and a flow path 55 for removing bubbles are formed.

【0031】図6に示す実施例は、分散相タンク13の
底部に連絡した中空パイプ59の端部に窓60が形成さ
れており、該窓60の上側及び下側に外向きのフランジ
部61及び62形成されており、外向きフランジ部61
及び62の外側には、円筒状多孔質ガラス膜12’が、
押さえナット63及び押さえボルト64により圧着され
るO−リング16により、液密に固定されている事例で
ある。本例においては、円筒状の多孔質ガラス膜12’
の円筒内側には、分散相タンク13から分散相用の液体
30を充填でき、また分散相用の液体30を加圧するこ
とができるように形成されている。本例においては、円
筒状多孔質ガラス膜12’を連続相タンク14の液体2
8に浸漬し、連続相の液体28をマグネチックスターラ
ー31により回転子23で回転、撹拌しながら分散相タ
ンク13を所定の圧力で加圧することにより、分散相の
液体30を円筒状多孔質ガラス膜12’を介して連続相
の液体28中に分散乳化することができるように形成さ
れている。
In the embodiment shown in FIG. 6, a window 60 is formed at the end of a hollow pipe 59 which communicates with the bottom of the dispersed phase tank 13, and an outward flange portion 61 is provided above and below the window 60. And 62 are formed, and the outward flange portion 61 is formed.
Outside the and 62, a cylindrical porous glass membrane 12 'is
In this case, the O-ring 16 is crimped by the holding nut 63 and the holding bolt 64 to be liquid-tightly fixed. In this example, the cylindrical porous glass membrane 12 '
The inside of the cylinder is formed so that the dispersed phase liquid 30 can be filled from the dispersed phase tank 13 and the dispersed phase liquid 30 can be pressurized. In this example, the cylindrical porous glass membrane 12 ′ is filled with the liquid 2 in the continuous phase tank 14.
8 and the liquid 28 in the continuous phase is rotated and stirred by the magnetic stirrer 31 by the rotor 23 while pressurizing the dispersed phase tank 13 at a predetermined pressure, thereby the liquid 30 in the dispersed phase is cylindrical porous glass. It is formed so that it can be dispersed and emulsified in the continuous phase liquid 28 through the membrane 12 ′.

【0032】図7に示す実施例においては、円筒状多孔
質ガラス膜12’は、その円筒外面65が、円筒構造体
66の上側フランジ部67と上側押さえボルト68で押
さえられている上側O−リング16、及び円筒構造体6
6の下側フランジ部69と押さえナット70で圧着され
ている下側O−リング16により、円筒構造体66に液
密に固定されており、該円筒構造体66と円筒状多孔質
ガラス膜12’との間の空間71が分散相タンク13と
連結している例である。本例においては、円筒状多孔質
ガラス膜12’の円筒外側を分散相の液体30で充填す
る際、膜面に気泡が残留するのを防ぐための気泡抜きの
流路50が形成されている。本例において、円筒状多孔
質ガラス膜12’を固定した円筒構造体66は連続相の
液体28で完全に液面下に没するように配置し、さらに
回転子23により円筒構造体68に固定された多孔質ガ
ラス膜の内側を連続相の液体28が循環流動できるよう
に形成されている。
In the embodiment shown in FIG. 7, the cylindrical porous glass membrane 12 'has an outer cylindrical surface 65 whose upper surface O- is clamped by an upper flange portion 67 of a cylindrical structure 66 and an upper pressing bolt 68. Ring 16 and cylindrical structure 6
6 is liquid-tightly fixed to the cylindrical structure 66 by the lower O-ring 16 which is pressure-bonded with the lower flange portion 69 of 6 and the pressing nut 70. The cylindrical structure 66 and the cylindrical porous glass membrane 12 In this example, the space 71 between the space and the space is connected to the dispersed phase tank 13. In the present example, when the outside of the cylinder of the cylindrical porous glass membrane 12 'is filled with the liquid 30 in the dispersed phase, a bubble removal channel 50 is formed to prevent bubbles from remaining on the membrane surface. . In this example, the cylindrical structure 66 to which the cylindrical porous glass membrane 12 ′ is fixed is arranged so as to be completely submerged below the liquid surface by the continuous phase liquid 28, and further fixed to the cylindrical structure 68 by the rotor 23. The continuous-phase liquid 28 is formed so as to circulate and flow inside the formed porous glass film.

【0033】以上の例に示された装置により、単分散状
の油中水型エマルション(以下、W/Oエマルションと
言う。)を製造する場合には、あらかじめ、円板状又は
円筒状の多孔質ガラス膜を表面化学修飾により、疎水化
した後、連続油相で十分濡らして、小型乳化器に装着す
る。分散相と連続相の配置はO/Wエマルションを製造
する場合に比べて、液体の種類が全く逆になるけれど
も、基本的には同じ考え方で乳化を実施すれば良い。
When a monodisperse water-in-oil emulsion (hereinafter referred to as W / O emulsion) is produced by the apparatus shown in the above example, a disk-shaped or cylindrical porous material is prepared in advance. The porous glass membrane is hydrophobized by surface chemical modification, then sufficiently wetted with a continuous oil phase, and attached to a small emulsifier. The disperse phase and the continuous phase are arranged in the completely opposite kind of liquid as compared with the case of producing an O / W emulsion, but basically the emulsification may be performed in the same way.

【0034】また、単分散状の水中油中水型エマルショ
ン(以下、W/O/Wエマルションと言う。)を製造す
る場合には、まず、W/Oエマルションを上記の方法も
しくは従来のホモゲナイザーや超音波乳化機を使って調
製しておき、これを分散相タンク13に装填する。連続
相側に水あるいは界面活性剤か分散助剤を溶解した水溶
液を入れ、分散素子には親水性の多孔質ガラス膜を用い
て乳化させる。
In the case of producing a monodisperse water-in-oil-in-water emulsion (hereinafter referred to as W / O / W emulsion), the W / O emulsion is first prepared by the above method or a conventional homogenizer. It is prepared using an ultrasonic emulsifying machine and loaded in the dispersed phase tank 13. Water or an aqueous solution in which a surfactant or a dispersion aid is dissolved is added to the continuous phase side, and a hydrophilic porous glass film is used as a dispersion element to emulsify the dispersion element.

【0035】以下に図1及び図2に示される装置を使用
してエマルションを製造した例を示す。図3乃至図7に
示される装置によっても同様にエマルションを製造する
ことができる。
An example of producing an emulsion using the apparatus shown in FIGS. 1 and 2 is shown below. An emulsion can be similarly produced by the apparatus shown in FIGS. 3 to 7.

【0036】例1 小型乳化器による単分散O/Wエマルションの製造 上記図2に示した小型乳化器を使い、単分散O/Wエマ
ルションを調製した。分解油相は、臨床用油性造影剤の
ヨード化ケシ油脂肪酸エチルエステル(ラボラトワール
・ゲルベ社製 Lipiodol Ultra−Flu
ide)であり、これに油溶性界面活性剤のテトラグリ
セリン縮合リシノレイン酸エステル(阪本薬品工業
(株)製 CR−310)が5重量%の濃度になるよう
に添加したものを5ml使用した。連続水相は、ミドリ
十字製薬(株)製のプルローニックF68が1重量%、
グルコースが5重量%の濃度になるように調整した水溶
液5mlである。これらを先に記した手順に従って、小
型乳化器にセットした。用いた円板状多孔質ガラス膜
(伊勢化学工業(株)製 外径35mm、厚さ1mm)
の細孔径は、1.4μmであった。約50kPaの圧力
を加え、約30分後に、平均粒子径が9.0μmの単分
散O/Wエマルション10mlが得られた。
Example 1 Production of Monodisperse O / W Emulsion by Small Emulsifier A monodisperse O / W emulsion was prepared by using the small emulsifier shown in FIG. The decomposed oil phase is an iodized poppy oil fatty acid ethyl ester (lipiodol Ultra-Flu manufactured by Laboratoire Guerbet Co., Ltd.) as a clinical oily contrast agent.
5 ml of tetraglycerin-condensed ricinoleic acid ester (CR-310 manufactured by Sakamoto Yakuhin Kogyo Co., Ltd.), which was an oil-soluble surfactant, was added thereto to a concentration of 5% by weight. 1% by weight of Pluronic F68 manufactured by Midori Jushi Pharmaceutical Co., Ltd.
5 ml of an aqueous solution adjusted to have a glucose concentration of 5% by weight. These were set in a small emulsifier according to the procedure described above. Disc-shaped porous glass membrane used (Ise Chemical Industry Co., Ltd. outer diameter 35 mm, thickness 1 mm)
Had a pore diameter of 1.4 μm. A pressure of about 50 kPa was applied, and after about 30 minutes, 10 ml of a monodisperse O / W emulsion having an average particle size of 9.0 μm was obtained.

【0037】例2 小型乳化器による単分散W/Oエマルションの製造 発明者らが合成した円板状多孔質ガラス膜(外径35m
m、厚さ1mm、熱処理条件は775℃ 4時間)をシ
リコーンレジン(信越化学工業(株)製 KP−18
C)を用いて表面コーティングし、疎水化した。この疎
水化膜および実施例1と同じ小型乳化器を使用して、平
均粒子径7.1μmの単分散W/Oエマルション10m
lを製造した。分散水相は、抗悪性腫瘍薬剤のカルボプ
ラチン(Johnson Matthey 社製 Pa
raplatin)1.4重量%および食塩2.7重量
%濃度の水溶液であり、連続油相はヨード化ケシ油脂肪
酸エチルエステルにテトラグリセリン縮合リシノレイン
酸エステルを2重量%の濃度になるように添加したもの
を使用した。圧力は約80kPa、乳化時間は約1時間
であった。
Example 2 Production of Monodisperse W / O Emulsion by Small Emulsifier Disk-shaped porous glass membrane synthesized by the inventors (outer diameter 35 m)
m, thickness 1 mm, heat treatment conditions: 775 ° C. for 4 hours) with a silicone resin (KP-18 manufactured by Shin-Etsu Chemical Co., Ltd.).
It was surface coated with C) and made hydrophobic. Using this hydrophobized membrane and the same small emulsifier as in Example 1, 10 m of monodispersed W / O emulsion having an average particle diameter of 7.1 μm was used.
1 was produced. The dispersed aqueous phase was carboplatin (John Matthey Pa
RAPLATIN) 1.4% by weight and 2.7% by weight sodium chloride, and the continuous oil phase was prepared by adding tetraglycerin-condensed ricinoleic acid ester to iodinated poppy seed oil fatty acid ethyl ester to a concentration of 2% by weight. I used one. The pressure was about 80 kPa and the emulsification time was about 1 hour.

【0038】例3 小型乳化器による単分散W/O/Wエマルションの製造 分散水相(内水相)に5重量%のカルボプラチンおよび
0.75重量%の食塩を含有する水溶液、連続油相にテ
トラグリセリン縮合リシノレイン酸エステルを5重量%
含有するヨード化ケシ油脂肪酸エチルエステルを用い、
超音波乳化機((株)日本精機製作所製 US−15
0)を使って、粒子が全て1μm以下の大きさのW/O
エマルションをあらかじめ調製した。超音波は20kH
zで10分間照射した。次に、小型乳化器を用いて、該
W/Oエマルションを分散相タンクに、外水相を連続相
タンクに入れ、膜乳化により単分散W/O/Wエマルシ
ョンを得た。外水相は、プルローニックF68が2重量
%、グルコースが5.8重量%濃度の水溶液であり、細
孔径が1.4μmと4.2μmの2種類の円板状多孔質
ガラス膜(伊勢化学工業(株)製 外径35mm、厚さ
1mm)を使用した。
Example 3 Production of Monodisperse W / O / W Emulsion by Small Emulsifier An aqueous solution containing 5% by weight of carboplatin and 0.75% by weight of sodium chloride in a dispersed aqueous phase (inner aqueous phase) and a continuous oil phase. 5% by weight of tetraglycerin condensed ricinoleic acid ester
Using iodized poppy oil fatty acid ethyl ester containing,
Ultrasonic Emulsifier (Nippon Seiki Seisakusho Co., Ltd. US-15)
0), all particles have a W / O size of 1 μm or less.
The emulsion was prepared beforehand. Ultrasonic wave is 20kH
Irradiated with z for 10 minutes. Next, using a small emulsifier, the W / O emulsion was placed in a dispersed phase tank and the external water phase was placed in a continuous phase tank to obtain a monodispersed W / O / W emulsion by membrane emulsification. The outer aqueous phase is an aqueous solution containing 2% by weight of Pluronic F68 and 5.8% by weight of glucose, and has two kinds of disc-shaped porous glass membranes (Ise Chemical Industry Co., Ltd.) having pore diameters of 1.4 μm and 4.2 μm. An outer diameter of 35 mm and a thickness of 1 mm manufactured by K.K. were used.

【0039】その結果、細孔径1.4μmでは、約50
kPaの圧力で、平均粒子径9.0μmの単分散W/O
/Wエマルションが得られ、4.2μmでは、約20k
Paで平均粒子径25.3μmの単分散W/O/Wエマ
ルションを10ccを製造することができた。この時、
内水相、油相および外水相の容積比は1:2:7であっ
た。
As a result, when the pore diameter is 1.4 μm, about 50
Monodisperse W / O with an average particle size of 9.0 μm at a pressure of kPa
/ W emulsion was obtained, and at 4.2 μm, about 20 k
It was possible to produce 10 cc of a monodisperse W / O / W emulsion having an average particle diameter of 25.3 μm at Pa. At this time,
The volume ratio of the inner water phase, the oil phase and the outer water phase was 1: 2: 7.

【0040】これと同様の条件で、ただし抗悪性腫瘍薬
剤の塩酸エピルビシン(ファルミタリア カルロエルバ
社製 Farmorubicin)0.2重量%とグル
コース5.8重量%濃度の水溶液を内水相にして、単分
散W/O/Wエマルションを製造した。上の例と同じ
く、細孔径1.4μmでは平均粒子径9.0μm、4.
2μmでは23.9μmの単分散W/O/Wエマルショ
ンが得られ、内水相をほぼ100%封入することに成功
した。またこれらのエマルションは、1週間以上経過し
てもほとんど形態が変化しないほど安定であった。
Under the same conditions as above, an aqueous solution containing 0.2% by weight of epirubicin hydrochloride (Farmitolia Carlo Erba's Farmorubicin), which is an antineoplastic agent, and 5.8% by weight of glucose was used as an inner aqueous phase to form a monodisperse W A / O / W emulsion was produced. Similar to the above example, when the pore size is 1.4 μm, the average particle size is 9.0 μm and 4.
At 2 μm, a 23.9 μm monodisperse W / O / W emulsion was obtained, and it succeeded in encapsulating almost 100% of the inner aqueous phase. Further, these emulsions were so stable that their morphology hardly changed even after 1 week or more.

【0041】[0041]

【発明の効果】本発明は、静止状態にある分散相用の液
体を、気体等の加圧体の加圧下に、多孔板の微細な孔を
通して、流動する連続相の液体中に圧入して、分散相用
の液体を連続相の液体中に分散させるので、乳化量が1
ml乃至100mlと、従来の方法に比べて極めて少量
でありながら、均一でむらの無い単分散エマルションが
製造できる。また、従来法と同様、O/Wエマルション
やW/Oエマルションのシングルエマルションばかりで
なく、W/O/Wエマルション等のダブルエマルション
の粒子設計が行える。
INDUSTRIAL APPLICABILITY According to the present invention, a liquid for a dispersed phase in a stationary state is pressed into a flowing continuous phase liquid through fine pores of a perforated plate under pressure of a pressure body such as gas. Since the liquid for the dispersed phase is dispersed in the liquid for the continuous phase, the emulsification amount is 1
It is possible to produce a uniform and even monodisperse emulsion, which is a very small amount of 100 to 100 ml as compared with the conventional method. Further, similar to the conventional method, not only single emulsion such as O / W emulsion and W / O emulsion but also double emulsion such as W / O / W emulsion can be designed.

【0042】このことは多種少量で且つ均質で安定性に
優れた高性能のエマルションが要求される分野、あるい
は乳化物の原料となる分散相用の液体や連続相用の液体
およびこれらに添加される界面活性剤や安定剤が非常に
高価であるか、極めて希少である場合に優れた効能を現
す。
This means that various types of small amounts, homogeneous and high-performance emulsions with high stability are required, or a liquid for a dispersed phase or a liquid for a continuous phase which is a raw material of an emulsion and added to these. It exhibits excellent efficacy when the surface active agent or stabilizer is very expensive or extremely rare.

【0043】本発明は、分散相の液体を静止状態とし、
この分散相用の液体を、気体、ピストン等の加圧体によ
り加圧して、分散相用の液体を多孔板を通して連続相の
液体中に分散させるので、分散相用の液体の量が少なく
でき、それに対応して連続相の液体の量も少なくなる。
したがって、分散相用液体の室及び連続相用液体の室の
容積を小さくすることができ、乳化装置の小型化が容易
となる。
According to the present invention, the liquid in the dispersed phase is kept stationary,
Since the liquid for the dispersed phase is pressurized by a gas or a pressurizing body such as a piston to disperse the liquid for the dispersed phase in the liquid for the continuous phase through the porous plate, the amount of the liquid for the dispersed phase can be reduced. Correspondingly, the amount of continuous phase liquid is also reduced.
Therefore, the volumes of the dispersion phase liquid chamber and the continuous phase liquid chamber can be reduced, which facilitates downsizing of the emulsifying apparatus.

【0044】例えば、副作用の大幅低減により、注目さ
れている乳化系の抗癌剤では、安定性のため、また薬効
の効果的な発現のため、厳密な粒子設計が求められる
が、実際の臨床投与で必要とされるのは、高々5乃至1
0mlに過ぎない。これを従来型の乳化装置で製造する
と、最低でも100mlは製造しなければならず、余剰
の90ml以上は廃棄せざるを得ない。乳化物の原料と
なる抗癌剤が一般には高価であることを考慮すると、こ
の方法は経済的に容認できるものではない。本発明によ
れば、必要量を無駄無く調製することができるから、医
療現場において、低コストの効果的な癌治療を提供する
ことができる。
For example, an emulsified anti-cancer drug, which has been attracting attention due to the drastic reduction of side effects, requires strict particle design for stability and effective expression of drug effect, but in actual clinical administration At most 5 to 1
Only 0 ml. When this is manufactured with a conventional emulsification device, at least 100 ml must be manufactured, and the excess of 90 ml or more must be discarded. This method is not economically acceptable in view of the fact that the anticancer drug used as the raw material of the emulsion is generally expensive. According to the present invention, a necessary amount can be prepared without waste, so that it is possible to provide an effective cancer treatment at low cost in a medical field.

【0045】本発明において、乳化装置は、構造が簡単
であるので、従来の乳化装置に比して、部品の金型加工
による量産が可能となり、乳化装置のコストダウンが実
現できる。また、本発明においては、装置の組み立て分
解が容易に行えるとともに、部品の洗浄や滅菌が簡単で
あるので、多種類のエマルションを能率的に調製するこ
とができる。さらに、本発明における乳化装置は、従来
の乳化装置に比して、その取り扱いが簡単で、高度な知
識と熟練を要しないで済み、また、連続相側の容器に透
明プラスチックを使用することにより、乳化状態がリア
ルタイムで監視できる。
In the present invention, since the emulsification device has a simple structure, it is possible to mass-produce the parts by die processing and to reduce the cost of the emulsification device as compared with the conventional emulsification device. Further, in the present invention, since the device can be easily assembled and disassembled and the parts can be easily washed and sterilized, it is possible to efficiently prepare various kinds of emulsions. Furthermore, the emulsifying apparatus of the present invention is simpler to handle than conventional emulsifying apparatuses, does not require a high degree of knowledge and skill, and by using transparent plastic in the container on the continuous phase side. The emulsification status can be monitored in real time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を説明するための概略の側断
面図である。
FIG. 1 is a schematic side sectional view for explaining an embodiment of the present invention.

【図2】図1の一実施例を組み込んで構成された乳化装
置を説明する概略の構成図である。
FIG. 2 is a schematic configuration diagram illustrating an emulsification device configured by incorporating the embodiment of FIG.

【図3】本発明の別の一実施例を示す概略の側断面図で
ある。
FIG. 3 is a schematic side sectional view showing another embodiment of the present invention.

【図4】本発明のさらに別の実施例であり、分散相の液
体室が下方に位置する事例を示す側断面図である。
FIG. 4 is a side sectional view showing still another embodiment of the present invention, showing a case where the liquid chamber of the dispersed phase is located below.

【図5】本発明の横型の一実施例を示す側断面図であ
る。
FIG. 5 is a side sectional view showing an example of a horizontal type of the present invention.

【図6】図1乃至図5に示す本発明の実施例とは異なる
別の本発明の実施例を示す図であり、多孔質円筒の内側
から外側へ分散相の液体を乳化する事例を示す側断面図
である。
FIG. 6 is a view showing another embodiment of the present invention different from the embodiment of the present invention shown in FIGS. 1 to 5, showing an example of emulsifying a liquid in a dispersed phase from the inside to the outside of a porous cylinder. It is a sectional side view.

【図7】図6とは逆の関係に構成された一実施例を示す
図であり、多孔質円筒の外側から内側へ分散相の液体を
乳化する事例を示す側断面図である。
FIG. 7 is a view showing an embodiment constructed in a relationship opposite to that of FIG. 6, and is a side sectional view showing an example of emulsifying a dispersed phase liquid from the outside to the inside of a porous cylinder.

【図8】従来の方法の概略の説明図である。FIG. 8 is a schematic explanatory diagram of a conventional method.

【符号の説明】[Explanation of symbols]

1 多孔質ガラス膜 2 分散相の油性の液体 3 加圧ポンプ 4 循環ポンプ 5 連続相の水性の液体 6 高圧配管 7 分散相タンク 8 循環用配管 9 連続相タンク 10 膜モジュール 11 乳化装置 12 多孔質ガラス膜 12’円筒状多孔質ガラス膜 13 分散相タンク 14 連続相タンク 15、16Oリング 17 段部 18 袋ナット 19 通液口 20 開口 21 栓体 22 底部 23 回転子 26 管路 27 通気口 28 連続相の水或いは界面活性剤又は分散液 30 分散油相 31 マグネチックスターラー 32 分散相用の液体供給管 33、40 三方電磁弁 34、35、37、41、42、44 分岐流路 36 分散相用の液体容器 38、45 シリンダポンプ 39 連続相用の液体供給管 43 連続相の液体容器 46 溢流管 47 圧力計 48 圧力調整弁 49 電磁弁 50、55 気泡抜きの流路兼溢流路 51 開口 52 ピストン 53 撹拌翼 54 開閉弁 56 撹拌装置 57 連続相タンクの上部壁 58 分散相タンクの上部壁 59 中空パイプ 60 窓 61、62 フランジ部 63 押さえナット 64、68、70 押さえボルト65 円筒状多孔質ガ
ラス膜の円筒外面 66 円筒構造体 67 上側フランジ部 69 下側フランジ部 71 円筒構造体と円筒状多孔質ガラス膜の間の空間
1 Porous Glass Membrane 2 Oily Liquid of Dispersed Phase 3 Pressurizing Pump 4 Circulation Pump 5 Aqueous Liquid of Continuous Phase 6 High Pressure Piping 7 Dispersed Phase Tank 8 Circulation Piping 9 Continuous Phase Tank 10 Membrane Module 11 Emulsifier 12 Porous Glass membrane 12 'Cylindrical porous glass membrane 13 Dispersed phase tank 14 Continuous phase tank 15, 16 O-ring 17 Step part 18 Cap nut 19 Liquid inlet port 20 Opening 21 Plug body 22 Bottom part 23 Rotor 26 Pipe line 27 Vent port 28 Continuous Phase water or surfactant or dispersion liquid 30 Dispersed oil phase 31 Magnetic stirrer 32 Liquid supply pipe for dispersed phase 33, 40 Three-way solenoid valve 34, 35, 37, 41, 42, 44 Branch flow path 36 For dispersed phase Liquid container 38, 45 Cylinder pump 39 Liquid supply pipe for continuous phase 43 Liquid container for continuous phase 46 Overflow pipe 47 Pressure gauge 48 Pressure adjustment Valve 49 Solenoid valve 50, 55 Bubble removal channel / overflow channel 51 Opening 52 Piston 53 Stirring blade 54 Open / close valve 56 Stirrer 57 Upper wall of continuous phase tank 58 Upper wall of dispersed phase tank 59 Hollow pipe 60 Window 61, 62 flange part 63 pressing nut 64, 68, 70 pressing bolt 65 cylindrical outer surface of cylindrical porous glass film 66 cylindrical structure 67 upper flange part 69 lower flange part 71 between cylindrical structure and cylindrical porous glass film space

【手続補正書】[Procedure amendment]

【提出日】平成5年11月24日[Submission date] November 24, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図5[Name of item to be corrected] Figure 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図5】 [Figure 5]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩崎 義彦 宮崎県延岡市土々呂町6丁目1633番地 清 本鐵工株式会社内 (72)発明者 藤本 健二 宮崎県延岡市土々呂町6丁目1633番地 清 本鐵工株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshihiko Iwasaki 6163-3 Totoro-cho, Nobeoka-shi, Miyazaki Kiyomoto Iron Works Co., Ltd. (72) Kenji Fujimoto 6163-3 Totoro-cho, Nobeoka, Miyazaki Prefecture Kiyomoto Inside the Iron Works Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 静止状態にある分散相用の液体を、加圧
体による加圧下に、多孔部材の微細な孔を通して、流動
する連続相の液体中に圧入し、前記分散相の液体を前記
連続相の液体内に分散させることを特徴とする乳化方
法。
1. A stationary phase liquid for a dispersed phase is pressed into a flowing continuous phase liquid through fine pores of a porous member under pressure by a pressure body, and the dispersed phase liquid is aforesaid. An emulsification method characterized by dispersing in a continuous phase liquid.
【請求項2】 乳化用容器の内部が、0.1乃至10ミ
クロンの平均孔径の孔を均一に有する多孔板により仕切
られており、一方に分散相用液体の室が形成され、他方
にエマルション形成用の室が形成されており、前記分散
相用液体の室には、多孔板と反対側の端部に気体加圧源
に連通する開口が形成され、前記エマルション形成用の
室には、撹拌用の回転子が設けられ連続相用の液体供給
管が接続していることを特徴とする乳化装置。
2. The inside of the emulsification container is partitioned by a perforated plate having uniform pores having an average pore diameter of 0.1 to 10 microns, a chamber for a dispersed phase liquid is formed on one side, and an emulsion on the other side. A chamber for formation is formed, the chamber for the liquid for the dispersed phase is formed with an opening communicating with a gas pressurizing source at an end opposite to the porous plate, and the chamber for forming the emulsion, An emulsification device characterized in that a rotor for stirring is provided and a liquid supply pipe for continuous phase is connected.
【請求項3】 乳化用容器の内部が、0.1乃至10ミ
クロンの平均孔径の孔を均一に有する多孔板により仕切
られており、一方に分散相用の室が形成され、他方にエ
マルション形成用の室が形成されており、前記分散相用
液体の室は、円筒状に形成されると共に、その円筒状の
内壁面に液密に接触する往復動子が往復動可能に設けら
れていることを特徴とする乳化装置。
3. The inside of the emulsification container is partitioned by a perforated plate having uniform pores with an average pore diameter of 0.1 to 10 microns, a chamber for the dispersed phase is formed on one side, and an emulsion is formed on the other side. A chamber for liquid is formed, and the chamber for the liquid for the dispersed phase is formed in a cylindrical shape, and a reciprocating element that comes into liquid-tight contact with the inner wall surface of the cylindrical shape is reciprocally provided. An emulsification device characterized by the above.
【請求項4】 分散相用の室には、分散相用の液体供給
用の導管が設けられていることを特徴とする請求項2又
は3に記載の乳化装置。
4. The emulsifying apparatus according to claim 2, wherein the chamber for the dispersed phase is provided with a conduit for supplying a liquid for the dispersed phase.
【請求項5】 乳化用容器の内部が、0.1乃至10ミ
クロンの平均孔径の孔が均一に有する多孔円筒体により
仕切られており、該円筒体を介して何れか一方の側に分
散相用液体の室が形成され、他方の側にエマルション形
成用の室が形成されており、前記分散相用液体の室は、
気体加圧源に接続する分散相容器に連通しており、前記
エマルション形成用の室には、撹拌用の回転子が設けら
れると共に連続相用の液体供給管が接続していることを
特徴とする乳化装置。
5. The inside of the emulsification container is partitioned by a porous cylindrical body having pores having an average pore diameter of 0.1 to 10 microns uniformly, and the dispersed phase is provided on either side through the cylindrical body. The chamber for the liquid for use is formed, and the chamber for forming the emulsion is formed on the other side, and the chamber for the liquid for the dispersed phase is
It is in communication with a dispersed phase container connected to a gas pressure source, the emulsion forming chamber is provided with a rotor for stirring and a liquid supply pipe for continuous phase is connected. Emulsifying equipment.
【請求項6】 乳化用容器の内部に、両端部に内側にネ
ジ溝を備える円筒部材が配置されており、該円筒部材の
ネジ溝の夫々の内側には、内向きフランジが設けられて
おり、夫々の内向きフランジの外側には、夫々O−リン
グが、フランジ面に接して配置されており、O−リング
の内側リング面により、0.1乃至10ミクロンの平均
孔径の孔が均一に形成されている多孔円筒体が保持され
ており、多孔円筒体と円筒の間に形成される空間に、分
散相供給管が接続していることを特徴とする乳化装置。
6. Inside the emulsification container, cylindrical members having threaded grooves on both ends are provided inside, and inward flanges are provided on the inside of each of the threaded grooves of the cylindrical member. , O-rings are arranged outside the respective inward flanges so as to be in contact with the flange surfaces, and the inner ring surface of the O-rings makes holes having an average hole diameter of 0.1 to 10 microns uniform. An emulsification device characterized in that the formed porous cylinder is held, and a dispersed phase supply pipe is connected to a space formed between the porous cylinder and the cylinder.
JP33910993A 1992-12-01 1993-11-22 Emulsifier Expired - Fee Related JP3242776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33910993A JP3242776B2 (en) 1992-12-01 1993-11-22 Emulsifier

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP35529092 1992-12-01
JP4-355290 1992-12-01
JP33910993A JP3242776B2 (en) 1992-12-01 1993-11-22 Emulsifier

Publications (2)

Publication Number Publication Date
JPH06315617A true JPH06315617A (en) 1994-11-15
JP3242776B2 JP3242776B2 (en) 2001-12-25

Family

ID=26576325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33910993A Expired - Fee Related JP3242776B2 (en) 1992-12-01 1993-11-22 Emulsifier

Country Status (1)

Country Link
JP (1) JP3242776B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997030783A1 (en) * 1996-02-20 1997-08-28 JAPAN represented BY DIRECTOR OF NATIONAL FOOD RESEARCH INSTITUTE, MINISTRY OF AGRICULTURE, FORESTRY AND FISHERIES Method and device for producing emulsions
US6177479B1 (en) 1998-03-30 2001-01-23 Japan As Represented By Director Of National Food Research Institute, Ministry Of Agriculture, Forestry And Fisheries Continuous manufacturing method for microspheres and apparatus
JP2001232172A (en) * 2000-02-22 2001-08-28 Japan Organo Co Ltd Stirring device and extrusion piston pump with stirring device
US6576023B2 (en) 2000-10-13 2003-06-10 Japan As Represented By Director Of National Food Research Institute, Ministry Of Agriculture, Forestry And Fisheries Method and apparatus for manufacturing microspheres
JP2004008015A (en) * 2002-06-03 2004-01-15 Miyazaki Prefecture Solid-fat microcapsule, and method for producing the same
JP2005279326A (en) * 2004-03-26 2005-10-13 Spg Techno Kk Disposable membrane module for preparing emulsion
JP2007044664A (en) * 2005-08-12 2007-02-22 Toyohashi Univ Of Technology Electric emulsifying method
JP2007125535A (en) * 2005-11-01 2007-05-24 Kiyomoto Iron & Machinery Works Co Ltd Emulsification process and emulsification apparatus
WO2010002535A3 (en) * 2008-07-03 2010-03-04 H R D Corporation High shear process for air/fuel mixing
JP2013528195A (en) * 2010-06-10 2013-07-08 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム New method
JP5801974B1 (en) * 2015-02-12 2015-10-28 株式会社Nextコロイド分散凝集技術研究所 Multilayer emulsion manufacturing method and capsule manufacturing method
EP3536400A1 (en) * 2011-08-19 2019-09-11 Japan Agency for Marine-Earth Science and Technology Apparatus for preparation of an emulsion
WO2021171701A1 (en) * 2020-02-27 2021-09-02 日東電工株式会社 Method and apparatus for producing emulsion

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4978807B2 (en) * 2008-06-11 2012-07-18 エス・ピー・ジーテクノ株式会社 Porous membrane emulsifier
WO2020005842A1 (en) * 2018-06-25 2020-01-02 Dauntless 2, Inc. Membrane emulsification device with impeller for microsphere creation

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997030783A1 (en) * 1996-02-20 1997-08-28 JAPAN represented BY DIRECTOR OF NATIONAL FOOD RESEARCH INSTITUTE, MINISTRY OF AGRICULTURE, FORESTRY AND FISHERIES Method and device for producing emulsions
US6155710A (en) * 1996-02-20 2000-12-05 Japan, As Represented By Director Of National Food Research Institute, Ministry Of Agriculture, Forestry And Fisheries Method and device for producing emulsions
US6177479B1 (en) 1998-03-30 2001-01-23 Japan As Represented By Director Of National Food Research Institute, Ministry Of Agriculture, Forestry And Fisheries Continuous manufacturing method for microspheres and apparatus
JP2001232172A (en) * 2000-02-22 2001-08-28 Japan Organo Co Ltd Stirring device and extrusion piston pump with stirring device
US6576023B2 (en) 2000-10-13 2003-06-10 Japan As Represented By Director Of National Food Research Institute, Ministry Of Agriculture, Forestry And Fisheries Method and apparatus for manufacturing microspheres
JP2004008015A (en) * 2002-06-03 2004-01-15 Miyazaki Prefecture Solid-fat microcapsule, and method for producing the same
JP2005279326A (en) * 2004-03-26 2005-10-13 Spg Techno Kk Disposable membrane module for preparing emulsion
JP2007044664A (en) * 2005-08-12 2007-02-22 Toyohashi Univ Of Technology Electric emulsifying method
JP2007125535A (en) * 2005-11-01 2007-05-24 Kiyomoto Iron & Machinery Works Co Ltd Emulsification process and emulsification apparatus
US8261726B2 (en) 2008-07-03 2012-09-11 H R D Corporation High shear process for air/fuel mixing
WO2010002535A3 (en) * 2008-07-03 2010-03-04 H R D Corporation High shear process for air/fuel mixing
US8522759B2 (en) 2008-07-03 2013-09-03 H R D Corporation High shear process for air/fuel mixing
EA019107B1 (en) * 2008-07-03 2014-01-30 Эйч А Ди Корпорейшн High shear process for air/fuel mixing
US8807123B2 (en) 2008-07-03 2014-08-19 H R D Corporation High shear process for air/fuel mixing
JP2013528195A (en) * 2010-06-10 2013-07-08 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム New method
EP3536400A1 (en) * 2011-08-19 2019-09-11 Japan Agency for Marine-Earth Science and Technology Apparatus for preparation of an emulsion
US10967336B2 (en) 2011-08-19 2021-04-06 Japan Agency For Marine-Earth Science And Technology Method for producing emulsion
JP5801974B1 (en) * 2015-02-12 2015-10-28 株式会社Nextコロイド分散凝集技術研究所 Multilayer emulsion manufacturing method and capsule manufacturing method
JP2016147233A (en) * 2015-02-12 2016-08-18 株式会社Nextコロイド分散凝集技術研究所 Manufacturing method of multilayer emulsion and manufacturing method of capsule
WO2021171701A1 (en) * 2020-02-27 2021-09-02 日東電工株式会社 Method and apparatus for producing emulsion

Also Published As

Publication number Publication date
JP3242776B2 (en) 2001-12-25

Similar Documents

Publication Publication Date Title
JPH06315617A (en) Emulsifying method and device
KR100852465B1 (en) Method of forming monodisperse bubble
EP0406273B1 (en) Method and apparatus for producing lipid vesicles
US20120256329A1 (en) Processing apparatus for dispersion, dissolution, solubilization, or emulsification of gas/liquid or liquid/liquid
US5013497A (en) Method and apparatus for producing lipid vesicles
JP4981312B2 (en) Emulsification method and emulsifier
JPH0295433A (en) Production of emulsion
US20040022122A1 (en) Devices for cavitational mixing and pumping and methods of using same
US10058837B2 (en) Systems, methods, and devices for production of gas-filled microbubbles
WO1993000156A1 (en) Monodisperse single and double emulsions and production thereof
KR20000057041A (en) Process for mixing or dispersing liquids
JPWO2007034912A1 (en) Nanofluid generator and method
JPH0131414B2 (en)
WO2019239833A1 (en) Fluid-mixing apparatus and emulsion preparation method
JP4309465B2 (en) Free radical scavenging hydrogen solution production equipment
JP2004089888A (en) Device for dissolving powder and feeding solution at constant rate
US5772929A (en) Manufacturing method of microcapsule using phospholipid
JP2000507497A (en) Immiscible phase dispersion
JP4978807B2 (en) Porous membrane emulsifier
JP2577239Y2 (en) Connecting tube for mixing chemicals
JP3884242B2 (en) Method for producing emulsified composition
US20230134670A1 (en) Method and apparatus for producing emulsion
JP2817948B2 (en) Mixing device
TW200416053A (en) Fluid-jet pens configured for making modulated release bioactive agents
CN214681373U (en) Medicament dissolving device that ultra-micro bubble and ultrasonic wave combined together

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees