JP2004008015A - Solid-fat microcapsule, and method for producing the same - Google Patents

Solid-fat microcapsule, and method for producing the same Download PDF

Info

Publication number
JP2004008015A
JP2004008015A JP2002162082A JP2002162082A JP2004008015A JP 2004008015 A JP2004008015 A JP 2004008015A JP 2002162082 A JP2002162082 A JP 2002162082A JP 2002162082 A JP2002162082 A JP 2002162082A JP 2004008015 A JP2004008015 A JP 2004008015A
Authority
JP
Japan
Prior art keywords
emulsion
solid fat
water
aqueous phase
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002162082A
Other languages
Japanese (ja)
Other versions
JP4038585B2 (en
Inventor
Tadao Nakajima
中島 忠夫
Masahito Kukizaki
久木崎 雅人
Masataka Shimizu
清水 正高
Toshiro Morishita
森下 敏朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Prefecture
Original Assignee
Miyazaki Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Prefecture filed Critical Miyazaki Prefecture
Priority to JP2002162082A priority Critical patent/JP4038585B2/en
Publication of JP2004008015A publication Critical patent/JP2004008015A/en
Application granted granted Critical
Publication of JP4038585B2 publication Critical patent/JP4038585B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stable solid-fat microcapsule in which a useful substance is encapsulated at a high rate and the particle diameter of which is regulated, causing no leakage of the useful substance during preservation. <P>SOLUTION: The solid-fat microcapsule has such a structure that a water soluble substance is enclosed with solid fat. In the microcapsule, a prepared W/O/W emulsion is dehydrated using a monodispersed solid fat microcapsule whose average particle diameter is 0.1-100μm, cumulative volume distribution of 10% diameter is half or more based on that of 50% diameter, and in which the particle diameter distribution of 90% diameter is ≤1.5 times as large as that of 50% diameter or less. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、固体脂を壁材とするマイクロカプセルおよびその製造方法に関する。
【0002】
【従来の技術】
液体マイクロカプセルの1つである W/O/Wエマルションは、内水相に有用物質を封入することにより、食品、医薬、化粧品、化学等の幅広い分野において多くの製品に応用することが可能である。W/O/Wエマルションの製造は、一般に、W/Oエマルションをホモミキサーなどを用いて外水相に分散させる方法がとられている。しかし、この方法では機械的な煎断力が作用するため、W/O粒子が機械的に破壊され、内水相が外水相に高い割合で漏洩する。また、得られる W/O/Wエマルションは多分散となり、W/O粒子の粒径制御が困難である。
【0003】
一方、構造的に安定な W/O/Wエマルションを調製しても W/O/Wエマルションの保存中に内水相に封入した有用物質が外水相へ漏洩する問題がしばしば発生し、実用上の大きな問題となっている。W/O/Wエマルションに見られるこのような現象は、内水相に封入した有用物質が油相を透過して外水相に漏洩することに起因している。
【0004】
【発明が解決しようとする課題】
本発明は、高い封入率で有用物質が封入され、粒径が制御されたマイクロカプセルであって、保存中に有用物質が漏洩しない安定したマイクロカプセル及びその製造方法を提供することを主な目的とする。
【0005】
【課題を解決するための手段】
本発明者は、鋭意研究を行った結果、膜状多孔体を介して単分散 W/O/Wエマルションを製造する膜乳化法を利用し、有用物質を含有した水溶液および固体脂をそれぞれ内水相および油相に用いて、W/O/Wエマルションから、凍結乾燥、噴霧乾燥などにより外水相を脱水することにより、有用物質の封入率が高く、粒径が制御され、内封物質の漏洩が抑制された固体脂マイクロカプセルが得られることを見出して、本発明を完成するに至った。
【0006】
すなわち、本発明は下記の固体脂マイクロカプセルおよびその製造方法に係るものである。
項1 水溶性物質を固体脂で内包した固体脂マイクロカプセルであって、平均粒径が0.1〜100μmであって、積算体積分布の10%径が50%径の1/2以上、90%径が50%径の1.5倍以下の粒径分布を有する単分散固体脂マイクロカプセル。
項2 水溶性物質が核酸系旨味調味料である項1に記載の固体脂マイクロカプセル。
項3 水溶性物質が塩酸イリノテカンである項1に記載の固体脂マイクロカプセル。
項4 水溶性物質を固体脂で内包した固体脂マイクロカプセルの製造方法であって、
(1)水溶性物質の水溶液を水相とし、固体脂を油相として調製したW/Oエマルションを、均一な大きさの細孔を有する親水性膜状多孔体に透過させ、外水相に分散してW/O/Wエマルションを調製する工程、及び
(2)該W/O/Wエマルションから外水相を脱水して固体脂マイクロカプセルを生成する工程
を含む製造方法。
項5 水溶性物質を固体脂で内包した固体脂マイクロカプセルの製造方法であって、
(a)内水相に水溶性物質が溶解し、固体脂を油相とするW/O/Wエマルションを、均一な大きさの細孔を有する親水性膜状多孔体であって、該W/O/WエマルションのW/O粒子の平均径が細孔の孔径の1〜100倍となるような細孔を有する膜状多孔体に透過させてW/O/Wエマルションを調製する工程、及び
(b)上記(a)工程で得られたW/O/Wエマルションから外水相を脱水して固体脂マイクロカプセルを生成する工程
を含む製造方法。
【0007】
【発明の実施の形態】
以下、本発明をその実施の形態とともに説明する。
【0008】
本明細書中では、特に言及されない限り、各用語を次のようにそれぞれ記す。
【0009】
「固体脂」とは、融解開始温度が20℃を越える油であって、水と相溶性のないものであれば特に限定されない。
【0010】
油中水型のエマルションを「W/Oエマルション」、これを分散相にして連続水相に分散した水中油中水型のエマルションを「W/O/Wエマルション」と表記する。W/O/Wエマルションの場合は、分散相の粒子を「W/O粒子」、その内部の水滴を「内水相」もしくは「内水相粒子」、連続水相を「外水相」と記す。また、W/O/Wエマルションを調製するために用いるW/Oエマルションにおいても、その内部の水滴を「内水相」もしくは「内水相粒子」と記す場合がある。
【0011】
「単分散」とは、積算体積分布の 10%径が50%径の 1/2以上、90%径が 50%径の1.5倍以下の、粒子の大きさがよく揃った状態を表し、このような粒径分布をもたない不揃いな粒子の場合は「多分散」と表す。また、本明細書では、積算体積分布の 50%径を「平均粒径」と記す。
【0012】
「膜乳化法」あるいは「膜乳化技術」とは、特許第 2106958号および特許第 2733729号で提案されている多孔質ガラス膜などの膜状多孔体を用いる乳化方法のことである。
【0013】
「均一な大きさの細孔を有する」とは、相対累積細孔分布曲線において、細孔(貫通孔)容積が全体の 10%を占めるときの細孔径を細孔容積が全体の 90%を占めるときの細孔経で除した値が実質的に 1から 1.5までの範囲内にある場合を意味する。
【0014】
「水溶性物質」とは、固体脂マイクロカプセルに封入する水溶性の物質である。水溶性物質は、化成品であっても天然物であってもかまわない。水溶性物質は、親水性が高く、水に対する油への分配率の小さいもののことである。水に対する油への分配率の小さいものとは、オクタノール/水系において水に対するオクタノールへの分配率が約0.1以下のものをいう。
【0015】
乳化剤は、水相(特に、外水相となる連続水相)に溶解して使用するものを「水性乳化剤」、油相に溶解して使用するものを「油性乳化剤」と表す。
【0016】
「HLB」は乳化剤の親水性/疎水性バランスを表す指標のことである。本明細書では、HLB値は、下記数式
HLB=Σ(親水性部の基数)+Σ(親油性部の基数)+7
(上記式において、原子団の基数は、J.T.Davies, et al.,“Interfacial Phenomina”, Academic Press (1961)に記載されたものに基づく。)に従って算出た値とする。
【0017】
以下、本発明の固体脂マイクロカプセルとその製造方法についてさらに詳しく説明する。
【0018】
本発明の固体脂マイクロカプセルは、水溶性物質が固体脂の中に閉じこめられた構造を有しており、0.1μmから 100μmの範囲内に任意に平均粒径が設定され、その積算体積分布の 10%径が 50%径の 1/2以上、90%径が 50%径の 1.5倍以下である単分散マイクロカプセルのことである。
【0019】
本発明で用いられる固体脂は融解開始温度が20℃を越える油であって、水と相溶性のないものであれば特に限定されず、エマルション製造用に従来から用いられている天然または合成の油を用いることができる。例えば、カカオ脂、パーム油、パーム核油、牛脂、ロウ等の動植物油脂類;液体油脂を水素添加して硬化した動植物油;これらを分別精製した動植物油等が挙げられる。また、炭化水素系、シリコン系、ポリアルキレングリコール系、カルボン酸エステル系、有機珪酸エステル系等の天然または合成油も用いることができる。これらは、単独で用いてもよく、2種以上の混合して用いることもできる。
【0020】
本発明で使用される水溶性物質は、何らかの機能を有する有用な物質であれば特に限定されず、天然物であっても化成品であってもかまわない。本発明では、特に、医薬品、食品、化成品、化粧品、農薬として有効な水溶性の物質が好ましい。
【0021】
天然物は、植物や動物等の生物または鉱物もしくはこれらの処理物から抽出または精製したもの、特に、医薬品、化粧品、農薬および食品として有効な水溶性の生理活性物質が好ましい。例えば、植物や動物等の生物または鉱物もしくはこれらの処理物から抽出または精製した水溶性の物質が挙げられる。抽出または精製した後に変質処理を施した水溶性の物質も利用できる。抽出方法としては、溶剤に水、アルコール、プロピレングリコール、グリセリン、液体炭酸ガス等を用い、原料と溶剤を接触させた後、溶剤を取り除く方法が一般的である。精製方法としては、吸着法、ろ過法、蒸留法などがあげられる。抽出と精製は併用しても良い。水溶性の抽出物または精製物の例としては、グアニル酸、イノシン酸、アスパラギン酸およびその塩類などの核酸系旨味調味料;アルギニン、アスパラギン、タウリンなどの調味料;各種アミノ酸;カテキン、アントシアニン、カフェイン、ステビア抽出物、甘茶抽出物、抽出タンニン、柑橘類抽出物、茶抽出物、肉エキス、魚貝エキス、酵母エキスなどが挙げられる。水溶性薬物としては、特に限定されないが、抗腫瘍(ガン)剤(例えば、塩酸イリノテカン)、抗生物質、解熱剤、鎮痛剤、消炎剤、鎮咳去たん剤、鎮静剤、筋弛緩剤、抗てんかん剤、抗潰瘍剤、抗うつ剤、抗アレルギー剤、強心剤、不整脈治療剤、血管拡張剤、降圧利尿剤、糖尿病治療剤、候凝血剤、止血剤、抗結核剤、ホルモン剤、麻薬拮抗剤、生理活性を有するペプチドなどが挙げられる。また、栄養剤やサプリメントなどに用いられる機能性物質として、水溶性ビタミン類(アスコルビン酸等)や水溶性ミネラル類(クエン酸鉄アンモニウム等)などが挙げられる。
【0022】
次に、本発明における固体脂マイクロカプセルの調製方法を説明する。
【0023】
W/O/W  エマルションの調製方法
まず、第1段乳化物である W/Oエマルションの製造方法を記述する。
【0024】
W/O エマルションの水相は水溶性の有用物質を含む水溶液とし、油性乳化剤を溶解した固体脂を油相として調製する。
【0025】
水溶性物質及び固体脂としては、上述したような種類のものを用いることができる。
【0026】
(内)水相における水溶性物質の量は、用途に応じて適宜選択することができるが、通常、(内)水相全体積に対して、0.1〜50重量/体積%程度(例えば、(内)水相100mlに対して、0.1〜50g程度となるような量)である。
【0027】
油性乳化剤としては、公知の非イオン系の親油性乳化剤を使用することが好ましい。このような乳化剤としては、例えば、一般的に使用される、グリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ポリグリセリン脂肪酸エステル、ポロオキシエチレン硬化ヒマシ油、ポリオキシエチレンポリオキシプロピレングリコール、レシチン等が挙げられる。特にポリグリセリン脂肪酸エステルまたはショ糖脂肪酸エステルが望ましい。これら油性乳化剤のHLBは、6程度以下が好ましく、2程度以下がより好ましい。例えば、ポリグリセリン縮合リシノレイン酸エステルのHLBは明らかでないが、その性質からHLBは6以下であると言われている。これらは単独で、または2種以上を混合して用いることができる。また,乳化剤の種類は室温で固体のものに限定されず、液体の乳化剤を用いることもできるが、室温で固体の乳化剤を用いるのが好ましい。
【0028】
油性乳化剤の使用量は、十分な乳化効果が得られる限り、特に限定されないが、通常、油相全体積に対して 0.1〜30重量/体積 %程度(例えば、油相100mlに対して、0.1〜30g程度となるような量)である。
【0029】
内水相には、有用物質に悪影響を与えたり、エマルションを壊す作用がない限り、浸透圧調整剤、防腐剤を添加してもよい。例えば、浸透圧調製剤として食塩、塩化カルシウム、塩化マグネシウム、塩化鉄、リン酸カリウムなどの塩類;グルコース、ラクトース、ショ糖、デキストリンどの糖類が挙げられる。また、防腐剤としては、ソルビン酸、パラオキシベンゼン、フェノキセトール、安息香酸ナトリウム、ブチルパラベン、デヒドロ酢酸ナトリウムなどが挙げられる。さらに、内水相の pHを調整するため、pH調整剤や緩衝液を加えても良い。pHを調整する物質として、塩酸などの無機酸、各種有機酸、水酸化ナトリウムなどの塩基類が挙げられる。また、緩衝液としては、酸系、酢酸系、フタル酸系、ホウ酸系などの各種緩衝液を用いることができる。
【0030】
また、本発明では、油相に油溶性の有用物質を適宜配合することもできる。これにより油溶性および水溶性有用物質を同時に摂取できるマイクロカプセルとすることができる。このような油溶性物質としては、例えば、ビタミンA、ビタミンE、カロチン、ドコサヘキサエン酸(DHA)、エイコサペンタエン酸(EPA)などが挙げられる。その場合の配合量は、油溶性物質の種類や、固体脂マイクロカプセルの用途に応じて適宜設定すればよい。
【0031】
第1段乳化の方法は特に限定されず、ホモミキサー、撹拌機、高圧ホモジナイザー、膜状多孔体などを用いる方法があげられる。乳化温度は固体脂が完全に液化する温度、例えば35〜90℃程度で行う。乳化条件としては、所望の粒径のW/Oエマルションを得ることができれば特に限定されるものではないが、例えば、ホジナイザーを用いて乳化する場合は、通常、5,000〜300,000rpm程度(好ましくは8,000〜240,000rpm程度)にて、0.5〜15分間程度(好ましくは1〜15分間程度)である。
【0032】
内水相粒子の粒径とその粒径分布も用途に合わせて適宜設定すれば良いが、目的とする W/O/Wエマルションの W/O粒子径よりも小さくした方が、調製中あるいは保存中に W/O粒子が壊れて内水相が外水相へ漏洩する確率が低くなるので好ましい。例えば、内水相粒子の平均粒径は、0.1〜5μm程度とするのが好ましい。W/Oエマルションの内水相粒子は、多分散であってもよいが、単分散である方が好ましい。
【0033】
膜状多孔体を用いる乳化方法は、単分散エマルションを調製できるばかりでなく、膜状多孔体の細孔径を変えることによってエマルションの粒径を任意に変えることができるという点で優れている。本発明で用いる膜状多孔体の種類は、固体脂の融点より高い耐熱性がある膜状多孔体であれば特に限定されるものではない。例えば、膜状多孔体の細孔は円柱状であっても、角柱状であっても、あるいは他の形状であってもよい。また、細孔が膜面に対して垂直あるいは斜めに貫通したり、あるいは絡み合い構造でも粒子は生成するので、いずれの構造であってもよい。
【0034】
膜状多孔体では、細孔の水力学的直径および有効長さが均一であることが重要であり、本発明ではこのような細孔構造を有しているものを用いるのが好ましい。一般に、膜状多孔体はパイプ状あるいは平膜型など形状によって多くの種類があり、構造的にも対称膜と非対称膜あるいは均質膜と不均質膜などに分けられるが、そうした形状や構造は本質的に本発明の効果に影響を与えないので、特に制限されない。多孔体の材質も、例えば、ガラス、セラミックス、シリコン、耐熱性高分子などが挙げられ、接触角が 90°を越えて固体脂に濡れない、親水性のものであれば、特に制限されない。このような膜状多孔体としては、例えばガラスのミクロ相分離を利用して製造される多孔質ガラスが好適に使用できる。具体的には、特許第 1504002号に開示された CaO−B−SiO−Al系多孔質ガラス、特許第 1518989号および米国特許第 4857875号に開示されたCaO−B−SiO−Al−NaO系多孔質ガラス、CaO−B−SiO−Al−NaO−MgO系多孔質ガラス、特許願 2000−366670号に記載の SiO−ZrO−Al−B−NaO−CaO系多孔質ガラス等が挙げられる。また、これらの多孔質ガラスの中でも、特に、相対累積細孔分布曲線において、細孔容積が全体の 10%を占めるときの細孔径を細孔容積が全体の 90%を占めるときの細孔経で除した値が実質的に 1から 1.5までの範囲内にあるミクロ多孔膜体を用いることが望ましい。このような膜は、本発明で単分散固体脂マイクロカプセルを生成するのに適している。
【0035】
また、W/Oエマルションを調製する際に膜状多孔体を用いる場合、好ましい膜状多孔体は、細孔径の平均が0.1〜5μm程度のものである。
【0036】
膜状多孔体を用いてW/Oエマルションを製造する場合の製造方法は、特に限定されるものではなく、所望の粒径や粒径分布が得られる限り、特に限定されるものではなく、(内)水相を、膜状多孔体に透過させ、油相中に分散させればよい。透過は、圧力をかけながら行うのが好ましく(圧入透過)、例えば、圧入圧力が10kPa〜4MPa程度、温度が35〜90℃程度である。
【0037】
得られたW/Oエマルションを、常法に従って脱水して、これに内水相を加えた後、油相に分散させるという操作を繰り返すことにより、内水相の水溶性物質の濃度を高めたり、W/Oエマルションの内水相粒子の割合を高めることが可能となる。
【0038】
次いで、W/Oエマルションを分散相として第2段乳化を行い、外水相中にW/O粒子が分散したW/O/Wエマルションを調製する。
【0039】
ここで調製するW/O/WエマルションのW/O粒子は、最終的に得られる固体脂マイクロカプセルの所望の平均粒径や粒径分布に応じて適宜調製することができるが、平均粒径が0.1〜100μm程度であって、単分散であることが好ましい。
【0040】
外水相には、水性乳化剤が添加されている。外水相に添加する水性乳化剤としては、公知の親水性の乳化剤を使用することができる。このような乳化剤としては、例えば、非イオン系乳化剤として、グリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ポリオキシエチレン硬化ヒマシ油、ポリオキシエチレンポリオキシプロピレングリコール、レシチン、高分子乳化剤等が挙げられる。陰イオン系乳化剤としては、カルボン酸塩、スルフォン酸塩、硫酸エステル塩等が挙げられる。これらの水性乳化剤の HLBは 8.0以上であることが望ましく、10.0以上がより好ましい。これらの水性乳化剤は所望の乳化特性に応じて単独で、または2種以上混合して用いることができる。これらの水性乳化剤の添加量についても、十分な乳化効果が得られる限り、特に制限されないが、通常外水相の全体積に対して、0.1〜10重量/体積%程度(例えば、外水相100mlに対して0.1〜10gとなるような量)である。また,乳化剤の種類は室温で固体のものに限定されず、液体の乳化剤を用いることもできるが、室温で固体の乳化剤を用いるのが好ましい。
【0041】
外水相には、水性乳化剤の他に、必要に応じて水溶性の浸透圧調整剤、防腐剤、pH調整剤、緩衝液、乳化安定剤、分散安定剤などを添加して良く、これらの例として上記内水相に添加したものと同様のものが挙げられる。乳化安定剤、分散安定剤については、デキストリン、ゼラチン、ポリビニルピロリドン、メチルセルロース、ポリビニルアルコール、ポリエチレングリコール、シリカなどが挙げられるが、有用物質に悪影響を与えたり、エマルションを壊す作用がなければ、その種類は問わない。
【0042】
第2段乳化の方法は特に限定されず、撹拌、ホモジナイザー、ホモミキサー、2液混合器、ポンピング法などの一般的な方法を、所望の粒径などに応じて選択することができる。乳化温度は第1段乳化と同様に、固体脂が完全に液化する温度、例えば35〜90℃程度で行う。
【0043】
本発明では、これら以外の方法として、W/Oエマルションを膜状多孔体に透過して外水相に分散する膜乳化法が挙げられる。膜乳化法は、W/O粒子の粒径が制御しやすく粒子生成時の破壊が非常に少ないので好ましい。また、膜乳化法の他の態様としては、一旦、撹拌、ホモジナイザーなどにより調製した W/O/Wエマルション自体を膜状多孔体に透過して目的とする粒径に W/O粒子を細分化する方法が挙げられる。この場合、予め調製するW/O/WエマルションのW/O粒子の平均粒径は、特に限定されるものではないが、通常、0.1〜1000μm程度である。
【0044】
膜状多孔体としては、W/Oエマルションの製造に関する上述したようなものを用いることができる。
【0045】
W/O/Wエマルションを調製する場合に膜状多孔体を用いる場合には、膜状多孔体の細孔径は、所望のW/O粒子の粒径に応じて適宜設定することができるが、通常、平均孔径が0.1〜30μm程度のものを用いる。また、一旦、撹拌、ホモジナイザーなどにより調製した W/O/Wエマルション自体を膜状多孔体に透過して目的とする粒径に W/O粒子を細分化する場合には、W/O粒子の平均径が細孔(貫通孔)の孔径の1〜100倍となるような細孔を有する多孔体を用いるのが好ましい。例えば、予め平均粒径が0.1〜1000μm程度のW/O粒子を調製した場合には、細孔径の平均は、0.1〜10μm程度とすればよい。
【0046】
W/O/Wエマルションを製造する場合の膜乳化の条件については、所望の粒径が得られる限り特に限定されるものではないが、例えば、W/Oエマルションを膜状多孔体に透過して外水相に分散する場合、乳化は圧力をかけながら行うのが好ましく、圧入の圧力が1kPa〜1MPa程度、温度35〜90℃程度にて行う。一旦調製した W/O/Wエマルション自体を膜状多孔体に透過して目的とする粒径に W/O粒子を細分化する方法の場合、例えば、ホモジナイザーで5,000〜300,000rpm程度(好ましくは8,000〜240,000rpm程度)にて、0.5〜15分間程度(好ましくは1〜15分間程度)でW/O/Wエマルションを調製し、該エマルションを、膜状多孔体に、例えば上記と同様(1kPa〜1MPa程度、温度35〜90℃程度)の条件にて透過させることができる。
膜状多孔体への透過は、繰返し行ってもよく、例えば、2〜10回程度行ってもよい。
【0047】
上記 W/Oエマルション及び W/O/Wエマルションにおける水相(内水相又は外水相)と油相の体積分率は特に制限されるものでなく、通常は W/Oエマルションの場合、内水相と油相の体積分率が、内水相:油相=0.5:99.5〜50:50程度であり、 W/O/Wエマルションの場合はW/O粒子と外水相の体積分率が、W/O粒子:外水相=0.1:99.9〜50:50程度である。
【0048】
乳化に際しては,内水相及び外水相の浸透圧は、水溶性物質の種類や水に対する溶解度などに応じて適宜設定することができるが、通常,外水相は,塩類や糖類を溶解してその浸透圧を内水相のそれと等しいか,もしくは高く設定するのが好ましい。外水相の浸透圧を内水相のそれより高く設定した場合は, W/O/Wエマルションの調製中あるいは調製後に,内水相から外水相へ浸透圧を駆動力にして水が移動する。このため,内水相粒子はW/Oエマルションを調製したときより粒径が小さくなる。この現象を利用して固体脂マイクロカプセルの壁厚を制御することができる。また,第1次乳化で調製される W/Oエマルションの水相と内水相の体積分率を変えることによっても、マイクロカプセルの壁厚を制御することが可能である。
【0049】
固体脂マイクロカプセルの生成
次に、W/O/Wエマルションを凍結乾燥または噴霧乾燥により外水相の脱水を行い、固体脂マイクロカプセルを調製する。 W/O/Wエマルションの凍結乾燥には、通常の凍結乾燥法が使用できる。凍結温度、凍結時間、真空度および乾燥時間は使用する水溶性物質、固体脂、乳化剤の種類などに応じて適宜設定することができるが、一般には、−196〜−10℃程度(好ましくは−196〜−20℃程度)で、10分〜2時間程度(好ましくは10分〜1時間程度)凍結し、0.01〜100 Pa程度(好ましくは0.1〜10 Pa)程度で 2〜20時間程度真空乾燥する。また、噴霧乾燥の場合も通常の噴霧乾燥法を用いることができる。噴霧乾燥の条件は、W/O/Wエマルションの内水相に封入した水溶性の有用物質や固体脂が変質しないような条件が望ましく、一般には、温度が 80〜200℃程度、乾燥空気量が毎分 0.4〜0.8 m程度、噴霧圧力が 100〜200 kPa程度の条件で行う。
【0050】
このようにして、本発明の固体脂マイクロカプセルを調製することができる。
【0051】
【発明の効果】
本発明によれば、固体脂のカプセルに内包した水溶性の有用物質の漏洩がほとんど無い単分散の固体脂マイクロカプセルを調製できる。このマイクロカプセルは、封入する有用物質を目的に応じて選定することで、その物質が安定に内封された様々な商品が容易な方法で製造できる。このため、医薬品、医薬部外品、機能性食品、化粧品、農薬,化成品など幅広い分野に適用できる。
【0052】
【実施例】
以下、本発明を実施例により更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。
【0053】
実施例1
固体脂として、融点が 65℃のトリパルミチン(和光純薬工業(株)製)を用い、
水溶性の有用物質として核酸系旨味調味料を封入した固体脂マイクロカプセルを調製した。
【0054】
固体脂マイクロカプセルを調製するためのW/O/Wエマルションの組成および乳化条件を表1に示し、固体脂マイクロカプセルの調製フローを図1に示す。
【0055】
【表1】

Figure 2004008015
【0056】
核酸系調味料には 5’−ヌクレオチドの 5’−イノシン酸ナトリウムおよび 5’−グアニル酸ナトリウムを等量混合したものを使用した。油相乳化剤としては、ポリグリセリン縮合リシノレート(阪本薬品工業(株)製、PGCR)を用いた。また、外水相には乳化剤としてポリオキシエチレンを 60モル付加した硬化ヒマシ油(日本サーファクタント工業(株)製、HCO−60)を配合した。内水相と外水相の浸透圧を等しくするため、外水相に食塩を加えた。
【0057】
まず、ホモジナイザー(JANKE& KUNKEL Inc.製、ULTRA−TURRAX)を用いてW/Oエマルションを調製し、これを分散相にして膜乳化法により W/O/Wエマルションを調製した。ホモジナイザーによる乳化は、トリパルミチンが完全に融解する 70℃で、240,000rpmにて1分間程度行った。膜乳化に用いた多孔質ガラス膜(SPGテクノ(株)製)の平均孔径は 5.1μmで、乳化圧力 7 kPa、乳化温度 70℃とした。得られた W/O/Wエマルションを液体窒素により −196℃で 20分凍結した。次に、これを 10 Paで 15時間、真空凍結乾燥し、固体脂マイクロカプセルを調製した。
【0058】
W/O/Wエマルションおよび固体脂マイクロカプセルの粒度分布は、レーザー回折/散乱式粒度分布計((株)島津製作所製、SALD2000)により測定した。また、固体脂マイクロカプセルの微細構造は、走査電子顕微鏡((株)日立製作所製、S−800M)を用いて観察した。さらに、マイクロカプセルを 25℃の純水に分散して最長7日間保持し、封入した核酸系調味料の漏洩試験を行った。漏洩率は、マイクロカプセルに封入した 5’−ヌクレオチドが分散液に漏洩した割合から求めた。具体的には、分画分子量 100000のメンブレンフィルターを用いて分散液を毎分 3000回転で3分間遠心ろ過した後、ろ液中に含まれる 5’−ヌクレオチドの濃度を液体クロマトグラフ(島津製作所(株)製、LC−10ADvp)により定量し、漏洩率を算出した。
【0059】
トリパルミチンを油相に用いて膜乳化法により調製した W/O/Wエマルションおよびこれを用いて得た固体脂マイクロカプセルの粒度分布を図2に示す。平均粒子径(積算体積分布の 50%径)が16.8μmの単分散 W/O/Wエマルションが得られていた。
【0060】
エマルション調製直後の5’−ヌクレオチドの漏洩率は0.6重量%であり、内水相粒子に溶解した5’−ヌクレオチドの99.4重量%がW/O/W エマルションに封入されていた。W/O/Wエマルションを凍結乾燥して得られた固体脂マイクロカプセルの粒度分布は、図2に示すように、W/O/Wエマルションの W/O粒子とほぼ同じ粒度分布を示し、平均粒子径16.3μmであり、単分散であった。
【0061】
また、マイクロカプセルを 10℃の冷水で洗浄して外水相の乳化剤や溶質を除去した後、走査電子顕微鏡により観察した結果を図3に示す。マイクロカプセルの表面は壁材のトリパルミチンが結晶化するため、襞状の微細構造を有していた。マイクロカプセルを 25℃の純水に分散したとき、7日後の5’−ヌクレオチドの漏洩率は 0.8重量%で漏洩はほとんど認められなかった。
【0062】
実施例2
固体脂としてトリパルミチンを用いて、抗がん剤の塩酸イリノテカン(ヤクルト本社(株)製、CPT−11)を封入した経口 DDS製剤用の固体脂マイクロカプセルを調製した。
【0063】
塩酸イリノテカンを封入した固体脂マイクロカプセルの調製フローを図1に示す。内水相には 10mg/cmの塩酸イリノテカン水溶液を用い、油性乳化剤のショ糖エルカ酸エステル(三菱化学フーズ(株)製、ER−290)および卵黄レシチン(和光純薬工業(株)製)をそれぞれ油相全体積に対して5.0重量/体積%、2.0重量/体積%溶解したトリパルミチンを油相とした。外水相は、蒸留水に水性乳化剤としてショ糖ラウリン酸エステル(三菱化学フーズ(株)製、L−1695)を水相全体積に対して1.0重量/体積 %熱溶解し、グルコースを加えて内水相と外水相の浸透圧を等しくした。
【0064】
90℃で、20 gの油相に内水相 1 cmを滴下しながらホモジナイザーを用いて W/Oエマルションを調製した(乳化の条件は、8,000rpmで3分間とした。)後、ロータリーエバポレーターにより90℃で、100mmHgにて30分間、窒素ガス雰囲気下で内水相を脱水した後、これに再び内水相1cmを滴下して上記と同様にして乳化し、得られた乳化物の内水相を再度脱水した。この操作を合計2回繰り返し、1次乳化物を得た。次に、外水相(80cm)に1次乳化物(20cm)を加えてマグネティックスターラーにより、100rpmで1分間撹拌し、多分散W/O/Wエマルションを調製した。得られた多分散W/O/WエマルションのW/O粒子の平均粒径は、50μmであった。得られたW/O/Wエマルションを、平均孔径が 14.7μmの多孔質ガラス膜(SPGテクノ(株)製)に透過して単分散W/O/Wエマルションを調製した。さらに、これを液体窒素に浸漬し、−196℃で 20分凍結した後、10 Paで15時間、真空凍結乾燥し、塩酸イリノテカンを封入した固体脂マイクロカプセルを調製した。
【0065】
レーザー回折/散乱式粒度分布計を用いて、膜乳化法により調製した W/O/Wエマルションおよび固体脂マイクロカプセルの粒度分布を測定した結果を図2に示す。 W/O/Wエマルションおよびこれより得られた固体脂マイクロカプセルの平均粒径は、それぞれ 18.1μm、17.4μmであり、ほぼ同じ値を示した。
【図面の簡単な説明】
【図1】実施例1の核酸系調味料を封入した固体脂マイクロカプセルの調製フローを示す。
【図2】実施例1の、エマルションおよび固体脂マイクロカプセルの粒度分布を示す。
【図3】実施例1の、核酸系調味料を封入した固体脂マイクロカプセルの走査電子顕微鏡写真を示す。
【図4】実施例2の、塩酸イリノテカンを封入した固体脂マイクロカプセルの調製フローを示す。
【図5】実施例2の、塩酸イリノテカンを封入したエマルションと固体脂マイクロカプセルの粒度分布を示す。
【符号の説明】
(1) 膜乳化法により調製したエマルションの粒度分布
(2)  (1) を凍結乾燥して得られた固体脂マイクロカプセルの粒度分布[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a microcapsule using solid fat as a wall material and a method for producing the same.
[0002]
[Prior art]
W / O / W emulsion, one of the liquid microcapsules, can be applied to many products in a wide range of fields such as food, medicine, cosmetics, and chemistry by encapsulating useful substances in the inner aqueous phase. is there. The production of W / O / W emulsions is generally carried out by dispersing the W / O emulsions in an external water phase using a homomixer or the like. However, in this method, the mechanical decay force acts, so that the W / O particles are mechanically broken, and the internal water phase leaks to the external water phase at a high rate. Further, the obtained W / O / W emulsion is polydispersed, and it is difficult to control the particle size of the W / O particles.
[0003]
On the other hand, even if a structurally stable W / O / W emulsion is prepared, the problem often arises that the useful substance encapsulated in the inner aqueous phase leaks to the outer aqueous phase during storage of the W / O / W emulsion. Is a big problem. Such a phenomenon, which is observed in the W / O / W emulsion, is attributable to the fact that useful substances encapsulated in the inner aqueous phase leak through the oil phase to the outer aqueous phase.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a microcapsule in which a useful substance is encapsulated at a high encapsulation rate and whose particle size is controlled, and which does not leak a useful substance during storage, and a method for producing the same. And
[0005]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have utilized a membrane emulsification method for producing a monodisperse W / O / W emulsion through a membrane-like porous body, and separated an aqueous solution containing a useful substance and a solid fat into internal water, respectively. By dehydrating the outer aqueous phase from the W / O / W emulsion by freeze-drying, spray-drying or the like using the W / O / W emulsion as the oil phase and the oil phase, the encapsulation rate of useful substances is high, the particle size is controlled, and The inventors have found that a solid fat microcapsule in which leakage is suppressed can be obtained, and have completed the present invention.
[0006]
That is, the present invention relates to the following solid fat microcapsules and a method for producing the same.
Item 1 A solid fat microcapsule containing a water-soluble substance encapsulated in solid fat, having an average particle size of 0.1 to 100 μm, and a 10% diameter of the cumulative volume distribution is 以上 or more of a 50% diameter, 90% or less. Monodispersed solid fat microcapsules having a particle size distribution whose% diameter is 1.5 times or less the 50% diameter.
Item 2 The solid fat microcapsule according to Item 1, wherein the water-soluble substance is a nucleic acid umami seasoning.
Item 3. The solid fat microcapsule according to item 1, wherein the water-soluble substance is irinotecan hydrochloride.
Item 4 is a method for producing a solid fat microcapsule in which a water-soluble substance is encapsulated in solid fat,
(1) A W / O emulsion prepared by using an aqueous solution of a water-soluble substance as an aqueous phase and a solid fat as an oil phase is allowed to permeate through a hydrophilic membrane-like porous body having pores of uniform size, and into an external aqueous phase. Dispersing to prepare a W / O / W emulsion, and
(2) a step of dehydrating an external aqueous phase from the W / O / W emulsion to produce solid fat microcapsules
A manufacturing method including:
Item 5: A method for producing a solid fat microcapsule containing a water-soluble substance in solid fat,
(A) A W / O / W emulsion in which a water-soluble substance is dissolved in an internal aqueous phase and a solid fat is used as an oil phase is converted into a hydrophilic film-like porous body having pores of uniform size, Preparing a W / O / W emulsion by permeating through a porous membrane having pores such that the average diameter of W / O particles in the / O / W emulsion is 1 to 100 times the pore diameter of the pores; as well as
(B) a step of dehydrating the external aqueous phase from the W / O / W emulsion obtained in the above step (a) to produce solid fat microcapsules
A manufacturing method including:
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described along with its embodiments.
[0008]
In this specification, unless otherwise specified, each term is described as follows.
[0009]
The “solid fat” is an oil whose melting onset temperature exceeds 20 ° C. and is not particularly limited as long as it is not compatible with water.
[0010]
The water-in-oil emulsion is referred to as "W / O emulsion", and the water-in-oil-in-water emulsion obtained by dispersing the emulsion in a continuous aqueous phase is referred to as "W / O / W emulsion". In the case of a W / O / W emulsion, the particles of the dispersed phase are referred to as “W / O particles”, the water droplets therein as “internal water phase” or “internal water phase particles”, and the continuous aqueous phase as “outer aqueous phase”. Write. Also, in a W / O emulsion used for preparing a W / O / W emulsion, water droplets inside the W / O emulsion may be referred to as “internal water phase” or “internal water phase particles”.
[0011]
The term “monodisperse” refers to a state in which the size of the particles is uniform, in which the 体積 10% diameter of the cumulative volume distribution is or more of the 50% diameter and the 90% diameter is 1.5 times or less the 50% diameter. In the case of irregular particles having no such particle size distribution, they are expressed as "polydispersion". Further, in the present specification, the 50% diameter of the integrated volume distribution is referred to as “average particle diameter”.
[0012]
The term “membrane emulsification method” or “membrane emulsification technique” refers to an emulsification method using a film-like porous body such as a porous glass film proposed in Patent Nos. # 2106958 and # 2733729.
[0013]
The phrase “having uniform-sized pores” means that the pore diameter when the pore (through-hole) volume occupies 10% of the total in the relative cumulative pore distribution curve is 90% of the total pore volume. It means that the value divided by the pore size when occupying is substantially in the range from $ 1 to $ 1.5.
[0014]
The “water-soluble substance” is a water-soluble substance encapsulated in solid fat microcapsules. The water-soluble substance may be a chemical product or a natural product. A water-soluble substance is a substance having high hydrophilicity and a small distribution ratio of oil to water. A substance having a small partition ratio to water with respect to water refers to a substance having a partition ratio of octanol to water of about 0.1 or less in an octanol / water system.
[0015]
The emulsifier used is dissolved in an aqueous phase (particularly, a continuous aqueous phase serving as an external aqueous phase) and used as an "aqueous emulsifier", and the one used dissolved in an oil phase is referred to as an "oil-based emulsifier".
[0016]
“HLB” is an index indicating the hydrophilic / hydrophobic balance of the emulsifier. In the present specification, the HLB value is represented by the following mathematical formula.
HLB = {(base of hydrophilic part) +} (base of lipophilic part) +7
(In the above formula, the radix of the atomic group is a value calculated in accordance with the description in JT Davies, et al., “Interfacial Phenomina”, Academic Press (1961)).
[0017]
Hereinafter, the solid fat microcapsules of the present invention and the method for producing the same will be described in more detail.
[0018]
The solid fat microcapsule of the present invention has a structure in which a water-soluble substance is confined in solid fat, the average particle size is arbitrarily set in a range of 0.1 μm to 100 μm, and the integrated volume distribution Are monodisperse microcapsules having a 10% diameter of 1/2 or more of the 50% diameter and a 90% diameter of 1.5 times or less of the 50% diameter.
[0019]
The solid fat used in the present invention is an oil having a melting onset temperature exceeding 20 ° C. and is not particularly limited as long as it is not compatible with water, and natural or synthetic oils conventionally used for emulsion production are used. Oil can be used. For example, animal and vegetable oils such as cocoa butter, palm oil, palm kernel oil, beef tallow, and wax; animal and vegetable oils obtained by hydrogenating liquid oils and fats; and animal and vegetable oils obtained by fractionating and purifying them. Further, natural or synthetic oils such as hydrocarbon-based, silicon-based, polyalkylene glycol-based, carboxylate-based and organic silicate-based oils can also be used. These may be used alone or in combination of two or more.
[0020]
The water-soluble substance used in the present invention is not particularly limited as long as it is a useful substance having some function, and it may be a natural product or a chemical. In the present invention, a water-soluble substance that is effective as a drug, food, chemical, cosmetic, or pesticide is particularly preferable.
[0021]
The natural product is preferably extracted or purified from living organisms such as plants and animals or minerals or processed products thereof, particularly water-soluble physiologically active substances effective as pharmaceuticals, cosmetics, agricultural chemicals and foods. For example, water-soluble substances extracted or purified from living organisms such as plants and animals or minerals or processed products thereof can be mentioned. A water-soluble substance which has been subjected to denaturation after extraction or purification can also be used. As an extraction method, a method is generally used in which water, alcohol, propylene glycol, glycerin, liquid carbon dioxide gas, or the like is used as a solvent, the raw material is brought into contact with the solvent, and then the solvent is removed. Examples of the purification method include an adsorption method, a filtration method, and a distillation method. Extraction and purification may be used in combination. Examples of the water-soluble extract or purified product include nucleic acid-based umami seasonings such as guanylic acid, inosinic acid, aspartic acid and salts thereof; seasonings such as arginine, asparagine, taurine; various amino acids; catechin, anthocyanin, cafe And stevia extract, sweet tea extract, extracted tannin, citrus extract, tea extract, meat extract, fish and shellfish extract, yeast extract and the like. Examples of the water-soluble drug include, but are not particularly limited to, an antitumor (cancer) agent (for example, irinotecan hydrochloride), an antibiotic, an antipyretic, an analgesic, an antiinflammatory, an antitussive, an analgesic, a muscle relaxant, an antiepileptic agent , Anti-ulcer, anti-depressant, anti-allergic, cardiotonic, antiarrhythmic, vasodilator, antihypertensive diuretic, antidiabetic, anticoagulant, hemostatic, antituberculous, hormone, narcotic, physiology Peptides having activity and the like. In addition, examples of functional substances used in nutritional supplements and supplements include water-soluble vitamins (such as ascorbic acid) and water-soluble minerals (such as iron ammonium citrate).
[0022]
Next, a method for preparing a solid fat microcapsule according to the present invention will be described.
[0023]
W / O / W Emulsion preparation method
First, a method for producing a first-stage emulsion, ie, a W / O emulsion, will be described.
[0024]
The water phase of the W / O @ emulsion is prepared as an aqueous solution containing a water-soluble useful substance, and a solid fat in which an oil emulsifier is dissolved is prepared as an oil phase.
[0025]
As the water-soluble substance and the solid fat, those described above can be used.
[0026]
The amount of the water-soluble substance in the (inner) aqueous phase can be appropriately selected depending on the application, but is usually about 0.1 to 50% by weight / volume (for example, based on the total volume of the (inner) aqueous phase. , (Inner) amount of about 0.1 to 50 g with respect to 100 ml of the aqueous phase).
[0027]
As the oily emulsifier, a known nonionic lipophilic emulsifier is preferably used. Examples of such emulsifiers include, for example, commonly used glycerin fatty acid ester, sucrose fatty acid ester, sorbitan fatty acid ester, propylene glycol fatty acid ester, polyglycerin fatty acid ester, poloxyethylene hydrogenated castor oil, polyoxyethylene poly Oxypropylene glycol, lecithin and the like can be mentioned. Particularly, polyglycerin fatty acid ester or sucrose fatty acid ester is desirable. The HLB of these oil-based emulsifiers is preferably about 6 or less, more preferably about 2 or less. For example, although the HLB of polyglycerin condensed ricinoleate is not clear, it is said that the HLB is 6 or less from its properties. These can be used alone or in combination of two or more. The type of the emulsifier is not limited to a solid at room temperature, and a liquid emulsifier can be used. However, it is preferable to use an emulsifier that is solid at room temperature.
[0028]
The amount of the oily emulsifier is not particularly limited as long as a sufficient emulsifying effect is obtained, but is usually about {0.1 to 30% by weight / volume}% based on the total volume of the oil phase (for example, for 100 ml of the oil phase, 0.1 g to about 30 g).
[0029]
An osmotic pressure regulator and a preservative may be added to the inner aqueous phase as long as they do not adversely affect the useful substances or break the emulsion. Examples of the osmotic pressure adjusting agent include salts such as salt, calcium chloride, magnesium chloride, iron chloride, and potassium phosphate; and sugars such as glucose, lactose, sucrose, and dextrin. Examples of the preservative include sorbic acid, paraoxybenzene, phenoxetol, sodium benzoate, butylparaben, and sodium dehydroacetate. Further, a pH adjuster or a buffer may be added to adjust the pH of the internal aqueous phase. Substances for adjusting the pH include inorganic acids such as hydrochloric acid, various organic acids, and bases such as sodium hydroxide. As the buffer, various buffers such as acid, acetic, phthalic, and boric acids can be used.
[0030]
Further, in the present invention, an oil-soluble useful substance can be appropriately added to the oil phase. As a result, a microcapsule capable of simultaneously ingesting the oil-soluble and water-soluble useful substances can be obtained. Examples of such an oil-soluble substance include vitamin A, vitamin E, carotene, docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and the like. In this case, the blending amount may be appropriately set according to the type of the oil-soluble substance and the use of the solid fat microcapsule.
[0031]
The method of the first-stage emulsification is not particularly limited, and examples thereof include a method using a homomixer, a stirrer, a high-pressure homogenizer, a porous membrane, or the like. The emulsification temperature is a temperature at which the solid fat is completely liquefied, for example, about 35 to 90 ° C. The emulsification conditions are not particularly limited as long as a W / O emulsion having a desired particle size can be obtained. For example, when emulsification is performed using a homogenizer, the emulsification is usually about 5,000 to 300,000 rpm ( It is preferably about 8,000 to 240,000 rpm) for about 0.5 to 15 minutes (preferably about 1 to 15 minutes).
[0032]
The particle size of the internal aqueous phase particles and the particle size distribution may be appropriately set according to the intended use. However, it is preferable to make the particle size smaller than the intended ΔW / O / W emulsion particle size during preparation or storage. It is preferable because the probability that the W / O particles are broken therein and the inner aqueous phase leaks to the outer aqueous phase is reduced. For example, the average particle size of the inner aqueous phase particles is preferably about 0.1 to 5 μm. The inner aqueous phase particles of the W / O emulsion may be polydispersed, but are preferably monodispersed.
[0033]
The emulsification method using a film-like porous material is excellent in that not only a monodispersed emulsion can be prepared, but also the particle size of the emulsion can be arbitrarily changed by changing the pore size of the film-like porous material. The type of the porous membrane used in the present invention is not particularly limited as long as it has a heat resistance higher than the melting point of the solid fat. For example, the pores of the membrane porous body may be cylindrical, prismatic, or other shapes. Further, since the pores penetrate perpendicularly or obliquely to the membrane surface, or particles are generated even in an entangled structure, any structure may be used.
[0034]
It is important for the membrane-like porous body that the pores have a uniform hydraulic diameter and effective length, and in the present invention, those having such a pore structure are preferably used. In general, there are many types of porous membranes depending on the shape, such as pipe or flat membrane type, and they are also structurally divided into symmetric membranes and asymmetric membranes or homogeneous membranes and heterogeneous membranes. It does not particularly affect the effect of the present invention and is not particularly limited. The material of the porous body includes, for example, glass, ceramics, silicon, and a heat-resistant polymer, and is not particularly limited as long as the material has a contact angle exceeding 90 ° and is not wetted by solid fat and is hydrophilic. As such a film-like porous body, for example, porous glass produced by utilizing microphase separation of glass can be suitably used. Specifically, the CaO-B disclosed in Japanese Patent No. 15040022O3-SiO2-Al2O3-Based porous glass, CaO-B disclosed in US Pat. No. 15,518,899 and US Pat. No. 4,857,8752O3-SiO2-Al2O3-Na2O-based porous glass, CaO-B2O3-SiO2-Al2O3-Na2O-MgO based porous glass, {SiO described in Patent Application No. 2000-366670}2-ZrO-Al2O3-B2O3-Na2O-CaO-based porous glass is exemplified. Among these porous glasses, in particular, in the relative cumulative pore distribution curve, the pore diameter when the pore volume occupies 10% of the whole is the pore diameter when the pore volume occupies 90% of the whole. It is desirable to use a microporous membrane having a value divided by Δ substantially in the range of 1 to 1.5. Such a membrane is suitable for producing monodisperse solid fat microcapsules in the present invention.
[0035]
When a film-like porous material is used when preparing a W / O emulsion, a preferable film-like porous material has an average pore diameter of about 0.1 to 5 μm.
[0036]
The production method when producing a W / O emulsion using the film-like porous body is not particularly limited, and is not particularly limited as long as a desired particle size and particle size distribution can be obtained. (Inner) The aqueous phase may be permeated through the porous membrane and dispersed in the oil phase. The permeation is preferably performed while applying pressure (press-in permeation). For example, the press-in pressure is about 10 kPa to 4 MPa and the temperature is about 35 to 90 ° C.
[0037]
The obtained W / O emulsion is dehydrated according to a conventional method, and after adding an internal aqueous phase thereto, dispersing it in an oil phase, the concentration of the water-soluble substance in the internal aqueous phase is increased. , W / O emulsion, it is possible to increase the ratio of the internal water phase particles.
[0038]
Next, a second-stage emulsification is performed using the W / O emulsion as a dispersion phase to prepare a W / O / W emulsion in which W / O particles are dispersed in an external aqueous phase.
[0039]
The W / O particles of the W / O / W emulsion prepared here can be appropriately prepared according to the desired average particle size and particle size distribution of the finally obtained solid fat microcapsule. Is about 0.1 to 100 μm, and is preferably monodispersed.
[0040]
An aqueous emulsifier is added to the outer aqueous phase. As the aqueous emulsifier to be added to the outer aqueous phase, a known hydrophilic emulsifier can be used. Examples of such emulsifiers include, as nonionic emulsifiers, glycerin fatty acid ester, sucrose fatty acid ester, sorbitan fatty acid ester, polyglycerin fatty acid ester, polyoxyethylene hydrogenated castor oil, polyoxyethylene polyoxypropylene glycol, lecithin, Polymer emulsifiers and the like can be mentioned. Examples of the anionic emulsifier include carboxylate, sulfonate, sulfate and the like. The HLB of these aqueous emulsifiers is preferably 8.0 or more, more preferably 10.0 or more. These aqueous emulsifiers can be used alone or in combination of two or more depending on the desired emulsifying properties. The addition amount of these aqueous emulsifiers is not particularly limited as long as a sufficient emulsifying effect is obtained, but is usually about 0.1 to 10% by weight / volume (e.g., 0.1 to 10 g per 100 ml of phase). The type of emulsifier is not limited to a solid at room temperature, and a liquid emulsifier can be used. However, it is preferable to use an emulsifier that is solid at room temperature.
[0041]
In the outer aqueous phase, in addition to the aqueous emulsifier, a water-soluble osmotic pressure adjusting agent, a preservative, a pH adjusting agent, a buffer, an emulsion stabilizer, a dispersion stabilizer, and the like may be added as necessary. Examples include those similar to those added to the internal aqueous phase. Emulsion stabilizers, dispersion stabilizers, dextrin, gelatin, polyvinylpyrrolidone, methylcellulose, polyvinyl alcohol, polyethylene glycol, silica, and the like, and the like. Does not matter.
[0042]
The method of the second-stage emulsification is not particularly limited, and a general method such as stirring, a homogenizer, a homomixer, a two-liquid mixer, or a pumping method can be selected according to a desired particle size and the like. The emulsification temperature is the same as in the first-stage emulsification, at a temperature at which the solid fat is completely liquefied, for example, about 35 to 90 ° C.
[0043]
In the present invention, as another method, a film emulsification method in which a W / O emulsion is transmitted through a film-like porous material and dispersed in an external aqueous phase is exemplified. The membrane emulsification method is preferable because the particle size of the W / O particles is easily controlled and the destruction at the time of particle generation is very small. In another embodiment of the membrane emulsification method, the W / O / W emulsion itself prepared by stirring, homogenizing, or the like is allowed to pass through the porous membrane to subdivide the W / O particles into a desired particle size. Method. In this case, the average particle diameter of the W / O particles of the W / O / W emulsion prepared in advance is not particularly limited, but is usually about 0.1 to 1000 μm.
[0044]
As the film-like porous body, those described above for producing a W / O emulsion can be used.
[0045]
When a film-like porous material is used for preparing a W / O / W emulsion, the pore diameter of the film-like porous material can be appropriately set according to the desired particle size of the W / O particles. Usually, those having an average pore diameter of about 0.1 to 30 μm are used. Further, when the W / O / W emulsion itself prepared by stirring, homogenizer or the like is permeated through the porous membrane to subdivide the W / O particles into a target particle size, It is preferable to use a porous body having pores whose average diameter is 1 to 100 times the pore diameter of the pores (through holes). For example, when W / O particles having an average particle diameter of about 0.1 to 1000 μm are prepared in advance, the average pore diameter may be about 0.1 to 10 μm.
[0046]
The conditions of membrane emulsification in the case of producing a W / O / W emulsion are not particularly limited as long as a desired particle size can be obtained. In the case of dispersing in the external aqueous phase, emulsification is preferably performed while applying pressure, and the emulsification is performed at a pressure of about 1 kPa to 1 MPa and a temperature of about 35 to 90 ° C. In the case of a method in which the once-prepared W / O / W emulsion itself penetrates through the porous membrane to subdivide the W / O particles into a target particle size, for example, a homogenizer may be used at about 5,000 to 300,000 rpm ( A W / O / W emulsion is prepared at about 8,000 to 240,000 rpm) for about 0.5 to 15 minutes (preferably about 1 to 15 minutes), and the emulsion is formed into a porous membrane. For example, the light can be transmitted under the same conditions as described above (about 1 kPa to 1 MPa and a temperature of about 35 to 90 ° C.).
The permeation into the porous membrane may be repeated, for example, about 2 to 10 times.
[0047]
The volume fraction of the aqueous phase (internal or external aqueous phase) and the oil phase in the W / O emulsion and W / O / W emulsion is not particularly limited, and usually, in the case of W / O emulsion, The volume fraction of the water phase and the oil phase is about 0.5: 99.5 to 50:50 in the internal water phase: the oil phase, and in the case of the W / O / W emulsion, the W / O particles and the external water phase Is about 0.1: 99.9 to 50:50 by volume ratio of W / O particles: outer aqueous phase.
[0048]
During emulsification, the osmotic pressure of the internal aqueous phase and external aqueous phase can be appropriately set according to the type of water-soluble substance and solubility in water, but usually the external aqueous phase dissolves salts and saccharides. Preferably, the osmotic pressure is set equal to or higher than that of the internal aqueous phase. If the osmotic pressure of the external aqueous phase is set higher than that of the internal aqueous phase, water will move from the internal aqueous phase to the external aqueous phase using the osmotic pressure as a driving force during or after preparation of the W / O / W emulsion. I do. For this reason, the particle size of the inner aqueous phase particles is smaller than when the W / O emulsion is prepared. By utilizing this phenomenon, the wall thickness of the solid fat microcapsules can be controlled. Also, the wall thickness of the microcapsules can be controlled by changing the volume fraction of the aqueous phase and the internal aqueous phase of the W / O emulsion prepared by the primary emulsification.
[0049]
Production of solid fat microcapsules
Next, the W / O / W emulsion is subjected to dehydration of the external aqueous phase by freeze-drying or spray-drying to prepare solid fat microcapsules.凍結 For freeze-drying of the W / O / W emulsion, a usual freeze-drying method can be used. The freezing temperature, the freezing time, the degree of vacuum, and the drying time can be appropriately set according to the type of the water-soluble substance, the solid fat, the emulsifier, and the like, but are generally about -196 to -10 ° C (preferably-). (About 196 to -20 ° C.), freeze for about 10 minutes to 2 hours (preferably about 10 minutes to 1 hour), and freeze at about 0.01 to 100 ° Pa (preferably 0.1 to 10 ° Pa) for about 2 to 20 hours. Vacuum dry for about an hour. In the case of spray drying, a usual spray drying method can be used. The spray-drying conditions are preferably such that the water-soluble useful substance and solid fat encapsulated in the internal aqueous phase of the W / O / W emulsion do not deteriorate, and generally, the temperature is about 80 to 200 ° C., and the amount of dry air is But 0.4 to 0.8 m per minute3And the spray pressure is about 100 to 200 kPa.
[0050]
Thus, the solid fat microcapsules of the present invention can be prepared.
[0051]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the monodispersed solid fat microcapsule which hardly leaks the water-soluble useful substance enclosed in the solid fat capsule can be prepared. By selecting a useful substance to be encapsulated according to the purpose of the microcapsule, various commodities in which the substance is stably encapsulated can be easily manufactured. Therefore, it can be applied to a wide range of fields such as pharmaceuticals, quasi-drugs, functional foods, cosmetics, agricultural chemicals, and chemical products.
[0052]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist of the present invention.
[0053]
Example 1
As a solid fat, tripalmitin having a melting point of about 65 ° C. (manufactured by Wako Pure Chemical Industries, Ltd.)
Solid fat microcapsules encapsulating a nucleic acid-based umami seasoning as a water-soluble useful substance were prepared.
[0054]
Table 1 shows the composition and emulsification conditions of the W / O / W emulsion for preparing the solid fat microcapsules, and FIG. 1 shows the flow of preparing the solid fat microcapsules.
[0055]
[Table 1]
Figure 2004008015
[0056]
As the nucleic acid seasoning, a mixture of equal amounts of sodium '5'-inosinate and sodium' 5'-guanylate of '5'-nucleotide was used. As the oil phase emulsifier, polyglycerin condensed ricinoleate (PGCR, manufactured by Sakamoto Pharmaceutical Co., Ltd.) was used. The outer water phase was mixed with a hardened castor oil (HCO-60, manufactured by Nippon Surfactant Industry Co., Ltd.) to which オ キ シ 60 mol of polyoxyethylene was added as an emulsifier. To equalize the osmotic pressure of the inner aqueous phase and the outer aqueous phase, salt was added to the outer aqueous phase.
[0057]
First, a W / O emulsion was prepared using a homogenizer (ULTRA-TURRAX, manufactured by JANKE & KUNKEL Inc.), and this was used as a dispersion phase to prepare a W / O / W emulsion by a film emulsification method. Emulsification with a homogenizer was performed at 240,000 rpm for about 1 minute at 70 ° C. at which tripalmitin was completely melted. The average pore size of the porous glass membrane (manufactured by SPG Techno Co., Ltd.) used for membrane emulsification was 5.1 μm, the emulsification pressure was 7 kPa, and the emulsification temperature was 70 ° C. The obtained W / O / W emulsion was frozen with liquid nitrogen at -196 ° C. for 20 minutes. Next, this was freeze-dried in vacuum at {10} Pa for 15 hours to prepare solid fat microcapsules.
[0058]
The particle size distribution of the W / O / W emulsion and the solid fat microcapsules was measured by a laser diffraction / scattering type particle size distribution meter (SALD2000, manufactured by Shimadzu Corporation). The microstructure of the solid fat microcapsules was observed using a scanning electron microscope (S-800M, manufactured by Hitachi, Ltd.). Further, the microcapsules were dispersed in pure water at 25 ° C. and held for up to 7 days, and a leakage test of the encapsulated nucleic acid seasoning was performed. The leak rate was determined from the rate at which the '5'-nucleotide encapsulated in the microcapsules leaked into the dispersion. Specifically, after the dispersion was centrifugally filtered at 3,000 rpm for 3 minutes using a membrane filter having a molecular weight cutoff of $ 100,000, the concentration of $ 5'-nucleotide contained in the filtrate was measured by liquid chromatography (Shimadzu Corporation). And LC-10ADvp), and the leakage rate was calculated.
[0059]
FIG. 2 shows the particle size distribution of a W / O / W emulsion prepared by a membrane emulsification method using tripalmitin as an oil phase and a solid fat microcapsule obtained using the same. A monodisperse W / O / W emulsion having an average particle size (径 50% diameter of the integrated volume distribution) of 16.8 μm was obtained.
[0060]
The leakage rate of 5'-nucleotide immediately after the preparation of the emulsion was 0.6% by weight, and 99.4% by weight of 5'-nucleotide dissolved in the internal aqueous phase particles was enclosed in the W / O / W emulsion. As shown in FIG. 2, the particle size distribution of the solid fat microcapsules obtained by freeze-drying the W / O / W emulsion showed the same particle size distribution as the ΔW / O particles of the W / O / W emulsion. The particle diameter was 16.3 μm, and the particles were monodispersed.
[0061]
FIG. 3 shows the results of observation of the microcapsules with a scanning electron microscope after washing the microcapsules with cold water at 10 ° C. to remove emulsifiers and solutes in the outer aqueous phase. The surface of the microcapsules had a pleated microstructure due to crystallization of the wall material tripalmitin. When the microcapsules were dispersed in pure water at 25 ° C., the leakage rate of 5 の -nucleotide after 7 days was 0.8% by weight, and almost no leakage was observed.
[0062]
Example 2
Using tripalmitin as a solid fat, a solid fat microcapsule for an oral DSDDS preparation encapsulating an anticancer agent irinotecan hydrochloride (CPT-11, manufactured by Yakult Honsha Co., Ltd.) was prepared.
[0063]
FIG. 1 shows a preparation flow of solid fat microcapsules enclosing irinotecan hydrochloride. $ 10mg / cm for inner aqueous phase3Irinotecan hydrochloride aqueous solution of sucrose erucic acid ester (manufactured by Mitsubishi Chemical Foods Co., Ltd., ER-290) and egg yolk lecithin (manufactured by Wako Pure Chemical Industries, Ltd.), respectively, based on the total oil phase volume Tripalmitin dissolved at 5.0% w / v and 2.0% w / v was used as the oil phase. The outer aqueous phase was prepared by heat-dissolving sucrose laurate ester (manufactured by Mitsubishi Chemical Foods, Inc., L-1695) as an aqueous emulsifier in distilled water by 1.0% weight / volume% based on the total volume of the aqueous phase. In addition, the osmotic pressures of the inner and outer water phases were equalized.
[0064]
At 90 ° C, 20 kg oil phase to internal water phase {1 cm}3Was prepared using a homogenizer while dropping water (emulsification conditions were 8,000 rpm for 3 minutes), and then a rotary evaporator at 90 ° C. and 100 mmHg for 30 minutes under a nitrogen gas atmosphere. After dehydrating the internal aqueous phase with 1 cm3Was added dropwise and emulsified in the same manner as described above, and the inner aqueous phase of the obtained emulsion was dehydrated again. This operation was repeated twice in total to obtain a primary emulsion. Next, the outer water phase (80 cm3) To the primary emulsion (20cm3) Was added and the mixture was stirred with a magnetic stirrer at 100 rpm for 1 minute to prepare a polydisperse W / O / W emulsion. The average particle size of the W / O particles in the obtained polydispersed W / O / W emulsion was 50 μm. The obtained W / O / W emulsion was passed through a porous glass membrane (manufactured by SPG Techno Co., Ltd.) having an average pore size of 14.7 μm to prepare a monodispersed W / O / W emulsion. Further, this was immersed in liquid nitrogen, frozen at -196 ° C. for 20 minutes, and then freeze-dried in vacuum at 10 ° Pa for 15 hours to prepare solid fat microcapsules containing irinotecan hydrochloride.
[0065]
FIG. 2 shows the results of measuring the particle size distribution of the W / O / W emulsion and the solid fat microcapsules prepared by the film emulsification method using a laser diffraction / scattering particle size distribution meter. The average particle diameters of the W / O / W emulsion and the solid fat microcapsules obtained therefrom were 18.1 μm and 17.4 μm, respectively, which were almost the same values.
[Brief description of the drawings]
FIG. 1 shows a preparation flow of solid fat microcapsules enclosing the nucleic acid seasoning of Example 1.
FIG. 2 shows the particle size distribution of the emulsion and solid fat microcapsules of Example 1.
FIG. 3 shows a scanning electron micrograph of a solid fat microcapsule enclosing a nucleic acid-based seasoning in Example 1.
FIG. 4 shows a preparation flow of solid fat microcapsules enclosing irinotecan hydrochloride in Example 2.
FIG. 5 shows the particle size distribution of the emulsion containing irinotecan hydrochloride and solid fat microcapsules of Example 2.
[Explanation of symbols]
(1) Particle size distribution of emulsion prepared by membrane emulsification method
(2) Particle size distribution of solid fat microcapsules obtained by freeze-drying {(1)}

Claims (5)

水溶性物質を固体脂で内包した固体脂マイクロカプセルであって、平均粒径が0.1〜100μmであって、積算体積分布の10%径が50%径の1/2以上、90%径が50%径の1.5倍以下の粒径分布を有する単分散固体脂マイクロカプセル。A solid fat microcapsule in which a water-soluble substance is encapsulated in a solid fat, having an average particle diameter of 0.1 to 100 μm, and a 10% diameter of the cumulative volume distribution is 以上 or more of a 50% diameter, and a 90% diameter. Are monodisperse solid fat microcapsules having a particle size distribution of 1.5 times or less the 50% diameter. 水溶性物質が核酸系旨味調味料である請求項1に記載の固体脂マイクロカプセル。The solid fat microcapsule according to claim 1, wherein the water-soluble substance is a nucleic acid-based umami seasoning. 水溶性物質が塩酸イリノテカンである請求項1に記載の固体脂マイクロカプセル。The solid fat microcapsule according to claim 1, wherein the water-soluble substance is irinotecan hydrochloride. 水溶性物質を固体脂で内包した固体脂マイクロカプセルの製造方法であって、
(1)水溶性物質の水溶液を水相とし、固体脂を油相として調製したW/Oエマルションを、均一な大きさの細孔を有する親水性膜状多孔体に透過させ、外水相に分散してW/O/Wエマルションを調製する工程、及び
(2)該W/O/Wエマルションから外水相を脱水して固体脂マイクロカプセルを生成する工程
を含む製造方法。
A method for producing a solid fat microcapsule containing a water-soluble substance in a solid fat,
(1) A W / O emulsion prepared by using an aqueous solution of a water-soluble substance as an aqueous phase and a solid fat as an oil phase is allowed to permeate through a hydrophilic membrane-like porous body having pores of uniform size, and into an external aqueous phase. A manufacturing method comprising the steps of: preparing a W / O / W emulsion by dispersing; and (2) dehydrating an external aqueous phase from the W / O / W emulsion to produce solid fat microcapsules.
水溶性物質を固体脂で内包した固体脂マイクロカプセルの製造方法であって、
(a)内水相に水溶性物質が溶解し、固体脂を油相とするW/O/Wエマルションを、均一な大きさの細孔を有する親水性膜状多孔体であって、該W/O/WエマルションのW/O粒子の平均径が細孔の孔径の1〜100倍となるような細孔を有する膜状多孔体に透過させてW/O/Wエマルションを調製する工程、及び
(b)上記(a)工程で得られたW/O/Wエマルションから外水相を脱水して固体脂マイクロカプセルを生成する工程
を含む製造方法。
A method for producing a solid fat microcapsule containing a water-soluble substance in a solid fat,
(A) A W / O / W emulsion in which a water-soluble substance is dissolved in an internal aqueous phase and a solid fat is used as an oil phase is converted into a hydrophilic film-like porous body having pores of uniform size, Preparing a W / O / W emulsion by permeating through a porous membrane having pores such that the average diameter of W / O particles in the / O / W emulsion is 1 to 100 times the pore diameter of the pores; And (b) a method for producing a solid fat microcapsule by dehydrating an external aqueous phase from the W / O / W emulsion obtained in the step (a).
JP2002162082A 2002-06-03 2002-06-03 Solid fat microcapsule and method for producing the same Expired - Fee Related JP4038585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002162082A JP4038585B2 (en) 2002-06-03 2002-06-03 Solid fat microcapsule and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002162082A JP4038585B2 (en) 2002-06-03 2002-06-03 Solid fat microcapsule and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004008015A true JP2004008015A (en) 2004-01-15
JP4038585B2 JP4038585B2 (en) 2008-01-30

Family

ID=30430949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002162082A Expired - Fee Related JP4038585B2 (en) 2002-06-03 2002-06-03 Solid fat microcapsule and method for producing the same

Country Status (1)

Country Link
JP (1) JP4038585B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008011810A (en) * 2006-07-07 2008-01-24 Japan Tobacco Inc Food composition and method for producing the same
WO2009060609A1 (en) 2007-11-07 2009-05-14 Kaneka Corporation Method for producing microcapsule using solid fat
JP2012511556A (en) * 2008-12-12 2012-05-24 ユニベルシテ ダンジュ Method for producing lipid nanoparticles
JP2014511847A (en) * 2011-03-25 2014-05-19 セレクタ バイオサイエンシーズ インコーポレーテッド Osmotically mediated release synthetic nanocarrier
JP5618307B2 (en) * 2009-07-09 2014-11-05 国立大学法人九州大学 Water-soluble drug carrier and method for producing the same
WO2016075708A1 (en) 2014-11-11 2016-05-19 Council Of Scientific & Industrial Research Microcapsule composition containing watersoluble amine and a process for the preparation thereof
WO2016084849A1 (en) * 2014-11-25 2016-06-02 Cbc株式会社 Janus particles and method for producing same
CN115530251A (en) * 2022-09-20 2022-12-30 湖北工业大学 Oil phase semi-cured grease microcapsule powder and preparation method and application thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152236A (en) * 1984-12-27 1986-07-10 Meiji Milk Prod Co Ltd Production of w/o/w type emulsifiable powder product
JPH05220382A (en) * 1991-06-29 1993-08-31 Miyazaki Pref Gov Monodisperse single and double emulsion and its production
JPH0671151A (en) * 1992-08-28 1994-03-15 Miyazaki Pref Gov Manufacture of water-in-oil type emulsion particle, resultant water-in-oil type emulsion and condensation and separation of water-soluble component
JPH06315617A (en) * 1992-12-01 1994-11-15 Miyazaki Pref Gov Emulsifying method and device
JPH07289197A (en) * 1994-04-26 1995-11-07 Kanegafuchi Chem Ind Co Ltd Seasoning containing phosphatase inhibitor and 5'-ribonucleotide and food prepared by using the seasoning
JPH107587A (en) * 1996-06-24 1998-01-13 Hirohito Tsubouchi Emulsified preparation containing hepatocyte growth factor and its production
JPH1017499A (en) * 1996-07-05 1998-01-20 Miyazaki Pref Gov Emulsion pharmaceutical preparation for diagnosing liver cancer and its production
JPH10158152A (en) * 1996-07-05 1998-06-16 Miyazaki Pref Gov Anticancer agent-containing emulsified pharmaceutical preparation and its production
JPH10174861A (en) * 1996-12-19 1998-06-30 Lion Corp Microcapsule and production of microcapsule
JPH10203962A (en) * 1997-01-27 1998-08-04 Miyazaki Pref Gov Sustained release emulsion preparation of medicine and its production
JP2001179077A (en) * 1999-12-24 2001-07-03 Sunstar Inc Polyphase emulsion

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152236A (en) * 1984-12-27 1986-07-10 Meiji Milk Prod Co Ltd Production of w/o/w type emulsifiable powder product
JPH05220382A (en) * 1991-06-29 1993-08-31 Miyazaki Pref Gov Monodisperse single and double emulsion and its production
JPH0671151A (en) * 1992-08-28 1994-03-15 Miyazaki Pref Gov Manufacture of water-in-oil type emulsion particle, resultant water-in-oil type emulsion and condensation and separation of water-soluble component
JPH06315617A (en) * 1992-12-01 1994-11-15 Miyazaki Pref Gov Emulsifying method and device
JPH07289197A (en) * 1994-04-26 1995-11-07 Kanegafuchi Chem Ind Co Ltd Seasoning containing phosphatase inhibitor and 5'-ribonucleotide and food prepared by using the seasoning
JPH107587A (en) * 1996-06-24 1998-01-13 Hirohito Tsubouchi Emulsified preparation containing hepatocyte growth factor and its production
JPH1017499A (en) * 1996-07-05 1998-01-20 Miyazaki Pref Gov Emulsion pharmaceutical preparation for diagnosing liver cancer and its production
JPH10158152A (en) * 1996-07-05 1998-06-16 Miyazaki Pref Gov Anticancer agent-containing emulsified pharmaceutical preparation and its production
JPH10174861A (en) * 1996-12-19 1998-06-30 Lion Corp Microcapsule and production of microcapsule
JPH10203962A (en) * 1997-01-27 1998-08-04 Miyazaki Pref Gov Sustained release emulsion preparation of medicine and its production
JP2001179077A (en) * 1999-12-24 2001-07-03 Sunstar Inc Polyphase emulsion

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SPGフォーラム講演要旨集, vol. 第36巻, JPNX007035555, 2001, pages 54 - 57, ISSN: 0000869322 *
SPGフォーラム講演要旨集, vol. 第36巻, JPNX007053168, 2001, pages 54 - 57, ISSN: 0000899866 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4597920B2 (en) * 2006-07-07 2010-12-15 日本たばこ産業株式会社 Food composition and method for producing the same
JP2008011810A (en) * 2006-07-07 2008-01-24 Japan Tobacco Inc Food composition and method for producing the same
WO2009060609A1 (en) 2007-11-07 2009-05-14 Kaneka Corporation Method for producing microcapsule using solid fat
US8496968B2 (en) 2007-11-07 2013-07-30 Kaneka Corporation Method for production of microcapsules using solid fat
JP5419704B2 (en) * 2007-11-07 2014-02-19 株式会社カネカ Method for producing microcapsules using solid fat
JP2012511556A (en) * 2008-12-12 2012-05-24 ユニベルシテ ダンジュ Method for producing lipid nanoparticles
JP5618307B2 (en) * 2009-07-09 2014-11-05 国立大学法人九州大学 Water-soluble drug carrier and method for producing the same
JP2014511847A (en) * 2011-03-25 2014-05-19 セレクタ バイオサイエンシーズ インコーポレーテッド Osmotically mediated release synthetic nanocarrier
JP2018076331A (en) * 2011-03-25 2018-05-17 セレクタ バイオサイエンシーズ インコーポレーテッドSelecta Biosciences,Inc. Osmotic mediated release synthetic nanocarriers
WO2016075708A1 (en) 2014-11-11 2016-05-19 Council Of Scientific & Industrial Research Microcapsule composition containing watersoluble amine and a process for the preparation thereof
US10653134B2 (en) 2014-11-11 2020-05-19 Council Of Scientific And Industrial Research Microcapsule composition containing water-soluble amine and a process for the preparation thereof
WO2016084849A1 (en) * 2014-11-25 2016-06-02 Cbc株式会社 Janus particles and method for producing same
CN115530251A (en) * 2022-09-20 2022-12-30 湖北工业大学 Oil phase semi-cured grease microcapsule powder and preparation method and application thereof
CN115530251B (en) * 2022-09-20 2024-01-30 湖北工业大学 Oil phase semi-solidified grease microcapsule powder and preparation method and application thereof

Also Published As

Publication number Publication date
JP4038585B2 (en) 2008-01-30

Similar Documents

Publication Publication Date Title
Charcosset Preparation of emulsions and particles by membrane emulsification for the food processing industry
AU2009300494B2 (en) Double emulsion and method to produce such
Young et al. Microencapsulating properties of whey proteins. 2. Combination of whey proteins with carbohydrates
JP5563304B2 (en) Aerated food and method for preparing the same
Kumar et al. New insights into water-in-oil-in-water (W/O/W) double emulsions: Properties, fabrication, instability mechanism, and food applications
FR2493701A1 (en) PROCESS FOR ENCAPSULATING OILS AND LIPOSOLUBLE SUBSTANCES, SUCH AS VITAMINS, AND MICROCAPSULES OBTAINED
Song et al. Microencapsulation of Lactobacillus casei YIT 9018 using a microporous glass membrane emulsification system
US20100172875A1 (en) Oil-in-water emulsion and its use for the delayed release of active elements
Vuillemard Recent advances in the large-scale production of lipid vesicles for use in food products: microfluidization
JPWO2008044550A1 (en) Lignan compounds containing O / W / O type emulsion and composition containing the same
WO2012157721A1 (en) Liposome containing pyrroloquinoline quinone and sugar
CN110809410A (en) Emulsions in food products
Srivastava et al. Application of various chemical and mechanical microencapsulation techniques in food sector-A review
JP4038585B2 (en) Solid fat microcapsule and method for producing the same
Khalid et al. Critical review of encapsulation methods for stabilization and delivery of astaxanthin
JP5494054B2 (en) Method for producing liposomes by two-stage emulsification
CN100382881C (en) Emulsifier, process for producing the same and emulsified composition using the emulsifier
Chai et al. Food liposomes: Structures, components, preparations, and applications
Rodríguez-Cortina et al. Microcapsules of Sacha Inchi seed oil (Plukenetia volubilis L.) obtained by spray drying as a potential ingredient to formulate functional foods
JP2003164754A (en) Stabilized w/o/w emulsion and manufacturing method therefor
Charcosset Preparation of nanomaterials for food applications using membrane emulsification and membrane mixing
Güell et al. Membranes for enhanced emulsification processes
KR101057283B1 (en) Method for preparing egg yolk lecithin-containing water-soluble nanoemulsion
JP3011530B2 (en) Spreads and how to make them
Zhi et al. Alternative oil structuring techniques: oil powders, double emulsions and oil foams

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071016

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees