WO2019239833A1 - Fluid-mixing apparatus and emulsion preparation method - Google Patents

Fluid-mixing apparatus and emulsion preparation method Download PDF

Info

Publication number
WO2019239833A1
WO2019239833A1 PCT/JP2019/020385 JP2019020385W WO2019239833A1 WO 2019239833 A1 WO2019239833 A1 WO 2019239833A1 JP 2019020385 W JP2019020385 W JP 2019020385W WO 2019239833 A1 WO2019239833 A1 WO 2019239833A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
pump
bevel gear
gas
spiral
Prior art date
Application number
PCT/JP2019/020385
Other languages
French (fr)
Japanese (ja)
Inventor
奥田 伸二
Original Assignee
株式会社Okutec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Okutec filed Critical 株式会社Okutec
Publication of WO2019239833A1 publication Critical patent/WO2019239833A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons

Definitions

  • the present invention relates to a gas-liquid shearing type fluid mixing apparatus for mixing a plurality of liquids (dispersoid and dispersion medium), and a method for preparing an emulsion composed of a plurality of liquids.
  • the present invention can be refined and homogenized at low cost to a submicron level by generating fine bubbles in a mixture of a plurality of liquids and generating a shear force between the plurality of liquids.
  • a simple pump-circulating fluid mixing device capable of producing a stable emulsion, and a method for preparing a homogeneous and highly stable emulsion using such a fluid mixing device without using a surfactant About.
  • Emulsions are used in foods and beverages such as butter, mayonnaise, milk and ice cream, creams used in pharmaceuticals and cosmetics, inks and paints such as acrylic paint, adhesives, photosensitive layers for photographic films, and sealants for asphalt pavements. It is used in a wide variety of fields, from natural materials to construction materials.
  • a state in which one of a plurality of liquids that are not originally mixed, such as water and oil, becomes fine particles and dispersed in the other is called emulsification, and the emulsified liquid is called an emulsion.
  • emulsions are roughly classified into two.
  • familiar oils such as milk and mayonnaise are oil / water emulsions such as butter and margarine.
  • An emulsion having water droplets dispersed therein is called a W / O (Water in Oil) type emulsion.
  • Emulsification occurs when physical energy such as impact force, shear force, or cavitation force is applied to a plurality of liquids that are not originally mixed, but generally the emulsion is in an extremely unstable state, and if left untreated, it gradually separates into two layers. End up. Therefore, an emulsifier is added to stabilize the emulsion.
  • an emulsifier for example, surfactant
  • an emulsifier having a required HLB (Hydrophilic-Lipophilic Balance) value is selected according to the properties of the oily substance, and emulsified and dispersed.
  • the required HLB value of the surfactant used as the emulsifier needs to be properly used for each of the case of making the O / W type emulsion and the case of making the W / O type emulsion. Therefore, the determination of an appropriate surfactant combination is very cumbersome and requires great effort.
  • the surfactant is not necessary for the original purpose of the solution, may inhibit the function of the solution, and can be an irritant to the skin when used in cosmetics. Furthermore, since the surfactant has low biodegradability and causes foaming, it is a serious problem such as environmental pollution.
  • Patent Document 1 discloses a fluid mixer that mixes a plurality of types of fluids, and it has been confirmed that this fluid mixer has an ability to produce an emulsion having a particle size of about 10 ⁇ m or less.
  • Patent Document 2 uniform dispersion, dissolution, solubilization, and emulsification of a gas in a liquid and uniform dispersion, dissolution, solubilization, and emulsification of a liquid in a different liquid can be performed in a large volume and in a short time.
  • Patent Document 3 discloses a technique for producing an emulsion fuel in which water particles are uniformly dispersed in a fuel oil component by a static mixer without the aid of a chemical action by a surfactant.
  • Patent Document 4 discloses a technique for providing an emulsion having excellent dispersion stability without using an emulsifier (surfactant), and is a water-in-oil type (W) containing hexadecane and water prepared by ultrasonic irradiation.
  • Dispersion stable by adding any one of salt, hydrogen bonding molecule, alcohols (eg sodium chloride, magnesium chloride, urea, formamide, ethanol, glycerin) to the emulsion as a surface inactive substance The effect of improving the properties has been confirmed.
  • alcohols eg sodium chloride, magnesium chloride, urea, formamide, ethanol, glycerin
  • Patent Document 1 is a method of mixing by passing a mixed fluid once like a static mixer, and the obtained emulsion is not at a sufficient level in homogeneity, fineness, and high-concentration emulsification.
  • Example 5 of patent document 2 When the result of Example 5 of patent document 2 is seen, it turns out that the emulsification which does not put gas shows a better result. That is, in this technique, there is a problem that large bubbles enter the pump and lower the pump efficiency, and the effect of emulsification using gas cannot be achieved.
  • the emulsion fuel produced by the apparatus of Patent Document 3 has a dispersion time of about several tens of seconds and is not assumed to provide a long-time stable emulsion.
  • the technique of Patent Document 4 does not use an emulsifier (surfactant), it is necessary to add any one of a salt, a hydrogen bonding molecule, and an alcohol in order to improve the dispersion stability of the emulsion.
  • the present invention pays attention to a circulating batch type gas-liquid shearing type fluid mixing method, and can be emulsified and dispersed at low cost without using an additive such as a surfactant.
  • the main object is to provide a mixing device and a homogeneous and stable emulsion.
  • the present invention generally includes a mixing unit that receives and mixes liquids, a pump unit that mixes and circulates liquids, a liquid transfer unit that transfers circulated liquids, and a gas suction unit that supplies gas from the outside.
  • a gas-liquid shearing type liquid mixing apparatus is provided.
  • the lower part of the mixing unit is provided with a flow path for returning the circulating liquid to the inside of the mixing unit, and a bubble supply unit is provided in the middle of the flow path to introduce gas via the gas suction unit to generate bubbles.
  • Bubbles generated in the bubble supply unit are defined by the International Standards Organization (ISO) Fine Bubble Technical Committee (TC281), according to the diameter, in the form of millibubbles (1 mm or more), submillibubbles (less than 1 mm and 0.1 mm or more) , Microbubbles (less than 0.1 mm (100 ⁇ m) and above 1 ⁇ m) and ultrafine bubbles (less than 1 ⁇ m). Bubbles with a diameter of 100 ⁇ m or more are visible. In addition, microbubbles and ultrafine bubbles having a diameter of less than 100 ⁇ m are collectively referred to as fine bubbles, but the presence of microbubbles can be visually confirmed because water is white and cloudy, and ultrafine bubbles cannot be visually confirmed.
  • ISO International Standards Organization
  • TC281 Fine Bubble Technical Committee
  • the mode diameter of ultrafine bubbles has been confirmed to be 100 nm to 200 nm in diameter by various measurement methods (dynamic scattering method, laser diffraction method, particle tracking analysis method, electrical detection band method). .
  • millibubbles and submillibules rise (approximately 5-6 m / min) and rupture and disappear at the surface of the water.
  • Microbubbles are slowly rising (approximately 3 mm / min) and contract and disappear in water.
  • ultrafine bubbles have a higher viscous drag from the liquid than buoyancy, so they perform Brownian motion in the liquid. However, it stays for a long time (several days to several weeks).
  • the pump cannot be sucked and eventually causes a pump failure. Therefore, it is required to remove bubbles present in the mixing chamber of the mixing unit. Since a rotating flow is generated in the liquid in the mixing chamber, the liquid is unevenly distributed on the outer periphery due to the centrifugal force, while the gas is collected at the center of the rotating flow. Also, bubbles with larger diameters rise faster. Therefore, by attaching a fluid discharge port to the lower part of the outer peripheral wall of the mixing chamber, the fluid from which most bubbles are removed can be taken out.
  • the inner diameter of the mixing chamber depending on the viscosity and type of the target dispersion medium and dispersoid, the inner diameter of the mixing chamber, the height from the attachment point of the discharge port to the upper surface of the fluid, the circumferential speed and the axial speed of the rotating flow
  • millibubbles and submillibules with a diameter of 100 ⁇ m or more are removed, preferably, millibubbles and submillibules with a diameter of 100 ⁇ m or more and microbubbles with a diameter of 1 ⁇ m or more are removed, Only ultrafine bubbles with a diameter of less than 1 ⁇ m remain. This is because even if microbubbles and ultrafine bubbles remain in the fluid, the pump efficiency is not affected.
  • the fluid mixing device having the above-described configuration is composed of an aqueous liquid and a hydrophobic liquid that is incompatible with the aqueous liquid without using an emulsifier such as a surfactant.
  • a stable O / W (Water in Water) type emulsion or W / O (Water in Oil) type emulsion at the submicron level (average diameter is several ⁇ m) can be obtained.
  • the emulsion obtained by the present invention is stably present without separation for 3 days or more, preferably 7 days or more, more preferably 2 weeks or more, and even more preferably 1 month or more.
  • Emulsion is sealed in a sealed bottle and allowed to stand at room temperature, and the occurrence of separation between the cloudy phase and the transparent phase and the complete phase separation between the aqueous liquid and the hydrophobic liquid are visually observed. Judgment by
  • the aqueous liquid constituting the emulsion is selected from the group consisting of water; and a mixture of an organic solvent compatible with water and water, but water is preferable in consideration of the load on the human body and the environment.
  • the hydrophobic liquid constituting the emulsion is not limited as a natural oily substance having an insecticidal or insecticidal effect.
  • Other natural oils include linseed oil, olive oil, giraffe oil, sesame oil, rice bran oil, corn oil, rapeseed oil, palm oil, palm kernel oil, peanut oil, sunflower oil, hazelnut oil, safflower oil, cottonseed oil, coconut oil, etc. Can be mentioned.
  • a natural oil-derived substance having an insecticidal or insecticidal effect and other natural oily substances can be used in combination with a natural product-derived insecticidal or insecticidal substance.
  • Nicotine a tobacco extract that has insecticidal effects
  • Insecticides such as ticks, fish killing From plants of the genus Roncocarpus and Deris (for example, Dokufuji), which are widely effective as agents and pesticides Rotenone issued; and prevents molting and emergence of insect larvae, thereby appetite, and the like neem oil extracted from neem (
  • additives can be added to the emulsion prepared according to the present invention as long as the stability of the emulsion is not adversely affected.
  • the additive that can be used in the present invention is 1 selected from the group consisting of sodium, magnesium, phosphorus, chlorine, potassium, calcium, chromium, manganese, iron, cobalt, copper, zinc, selenium, molybdenum, iodine and the like
  • a plurality of essential minerals including one or more porous materials selected from the group consisting of activated carbon, silica gel, zeolite, silicon dioxide (mesoporous silica), aluminum oxide, and the like.
  • a surfactant having no action to be selected, it is selected from any one of salts, hydrogen-bonding molecules and alcohols (for example, selected from the group consisting of sodium chloride, magnesium chloride, urea, formamide, ethanol and glycerin). Do not use any additives.
  • examples of the gas introduced for gas-liquid shear include air, oxygen, ozone, nitrogen, argon, hydrogen, and the like, which can be selected as appropriate in view of the effectiveness of the insecticidal or insecticidal substance used.
  • air is preferable from the viewpoint of simplicity.
  • Fluid is a general term for a continuum in which no shear stress is generated in a stationary state. In general, it is a continuum that is not solid, and liquids, gases, and plasmas correspond to fluids as forms of substances.
  • Emsion (or sometimes referred to as “emulsion”) refers to a dispersion solution in which both the dispersoid and the dispersion medium are liquid. Also called emulsion or emulsion. Making two separated liquids into an emulsion is called emulsification, and a substance having an emulsifying action is called an emulsifier. In the present invention, it is called an emulsion.
  • Microemulsion is a type of dispersion consisting of two liquids similar to emulsions, but with a diameter as small as about 100 nm or less, composed of micelles, thermodynamically stable, and requires strong stirring. It can be easily formed. Since the micelle is small, there is little scattering of visible light, and the feature is that it looks transparent or translucent.
  • a “dispersed system” is a substance in which particles having a size of about 1 nm to 1000 nm (1 ⁇ m) are suspended or suspended in a gas, liquid, or solid. This phenomenon of floating or suspending is called dispersion.
  • Dispersion medium are solid or liquid particles suspended and suspended in a dispersion system as a dispersoid or dispersion phase, and the medium is referred to as a dispersion medium.
  • an aqueous liquid (dispersion medium or dispersoid) and a hydrophobic liquid that is incompatible with the aqueous liquid (dispersoid or dispersion) are obtained using a circulation type simple structure gas-liquid shearing type fluid mixing device.
  • a stable emulsion at a submicron level can be obtained at low cost simply by circulating a liquid mixture comprising a medium for a short time.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a liquid mixing apparatus according to an embodiment of the present invention. It is sectional drawing of the venturi block integrated in the liquid mixing apparatus shown in FIG. 3 (A) to 3 (C), FIG. 3 (A) is a sectional view of the nozzle block incorporated in the liquid mixing apparatus of FIG. 1, and FIGS. 3 (B) and 3 (C) are others. It is sectional drawing of the nozzle block of a form. The graph which shows the relationship between air introduction amount and pump discharge amount.
  • Microscope image of 1.0 vol% oleic acid / water emulsion No air introduction 2 days after emulsification (A1), 1 month later (A2); Air introduction 2 days after emulsification (B1), 1 month later (B2).
  • Diagram showing the results of emulsion stability test No air introduction Immediately after emulsification (A1), 3 days later (A2), 2 months later (A3); Air introduction immediately after emulsification (B1), 3 days later (B2), 2 months Later (B3).
  • FIG. 1 shows a liquid mixing apparatus 10 according to an embodiment.
  • the liquid mixing apparatus 10 generally includes a mixing unit 100, a pump unit 160, a liquid transfer unit 170, and a gas suction unit 180.
  • the mixing unit 100 is configured by combining a plurality of blocks (a container block 110, a base block 120, a venturi block 131, a flow path block 150, etc.) described below.
  • the container block 110 forms a mixing chamber 111 for mixing two liquids as will be described later.
  • the container block 110 of the embodiment is formed of a hollow cylindrical body, and is arranged with the central axis 112 of the hollow cylindrical body directed in the vertical direction.
  • the upper part of the container block 110 is covered with a lid 113.
  • the lid 113 includes a pressure adjustment valve 114.
  • a circular hole 115 is formed at the bottom of the container block 110 so as to penetrate the container bottom in the vertical direction along the central axis 112.
  • the bottom surface of the container block 110 is configured by an inverted frustoconical inclined bottom surface 116 that gradually increases from the outer peripheral edge of the circular hole 115 toward the radially outer side.
  • the container block 110 is supported by the base block 120.
  • a circular hole 121 having a predetermined depth and having substantially the same cross section as the circular hole 115 is formed immediately below the circular hole 115 at the bottom of the container and adjacent thereto.
  • One large vertical hole 122 is formed together with the circular hole 115 of the container block 110.
  • the base block 120 also includes a flow path 123 extending from the bottom surface of the circular hole 121 to the bottom surface of the base block, and a gas supply hole 124 extending substantially horizontally from a substantially middle stage of the circular hole 121 toward the radially outer side.
  • the fine bubble supply unit 130 shown in FIG. 2 is detachably disposed in the vertical hole 122.
  • the fine bubble supply unit 130 includes a venturi block 131.
  • the venturi block 131 is composed of a vertical cylindrical body made of a single material.
  • the external shape of the venturi block 131 (in particular, the cylindrical outer peripheral surface and the circular bottom surface) substantially matches the shape of the vertical hole 122.
  • the venturi block 131 includes a flow path 132 formed by a hole penetrating the venturi block 131 in the vertical direction along the central axis of the venturi block 131. With the venturi block 131 attached to the base block 120, the central axis of the venturi block 131 coincides with the central axis 112 of the container block 110.
  • the flow path 132 includes a lower flow path portion 133, a middle flow path portion 134, and an upper flow path portion 135.
  • the lower flow path portion 133 has a lower cylindrical portion and an upper truncated cone portion.
  • the upper channel portion 135 has an upper cylindrical portion and a lower inverted truncated cone portion. The upper end of the lower channel truncated cone part and the lower end of the upper channel inverted truncated cone part have substantially the same circular cross section, and the middle channel part 134 is connected between them.
  • one or a plurality of intake holes 136 extending from the middle flow path portion 134 toward the radially outer side are formed. These intake holes 136 are connected to a manifold 137 formed of an annular groove formed on the outer periphery of the venturi block 131.
  • the manifold 137 is provided at a position connected to the gas supply hole 124 of the base block 120 in a state where the venturi block 131 is assembled to the base block 120 as shown in the figure.
  • a nozzle block 140 is disposed on the venturi block 131.
  • the nozzle block 140 includes a flow channel 141 formed by a hole penetrating the nozzle block 140 in the vertical direction along the central axis in the vertical direction.
  • the nozzle block 140 can be detachably fixed to the venturi block 131.
  • the nozzle block 140 is fixed to the venturi block 131 with a bolt, or a female screw portion is formed on one of the venturi block 131 and the nozzle block 140 and a male screw is formed on the remaining other,
  • the nozzle block 140 is preferably detachable from the venturi block 131 by engaging a male screw.
  • the flow path 141 of the nozzle block 140 includes a lower flow path portion 142, a middle flow path portion 143, and an upper flow path portion 144.
  • the lower flow path portion 142 has a lower truncated cone portion and includes a spiral groove (spiral flow forming portion) 145 extending in the vertical direction along the inner surface of the cone.
  • the upper channel portion 144 has an upper inverted truncated cone portion.
  • the upper end of the lower channel truncated cone part and the lower end of the upper channel inverted truncated cone part have substantially the same circular cross section, and the middle channel part 143 is connected between them. Therefore, the lower end opening of the lower flow path portion 142 is connected to the upper end opening of the upper flow path portion 135 of the venturi block 131 in a state where the nozzle block is assembled to the venturi block 131.
  • a flow path block 150 is detachably attached under the base block 120.
  • the flow path block 150 includes a flow path 151.
  • the flow channel 151 forms one liquid supply flow channel 152 together with the flow channel 123 of the base block 120 in a state where the flow channel block 150 is combined with the base block 120.
  • the flow path 151 of the flow path block 150 includes a vertical flow path portion 153 extending downward from the upper surface of the flow path block along the central axis 112 and the vertical flow path portion 153.
  • a horizontal flow path portion 154 extends from the lower end to the flow path block side surface in the flow path block.
  • a liquid recovery channel 155 extending from the inclined bottom surface 116 of the container block 110 toward the outer peripheral side surface of the base block 120 is formed.
  • the liquid recovery channel 155 includes an upper vertical channel portion 156 that passes through the inside of the container bottom from the container inclined bottom surface 116 toward the container bottom surface, and a lower vertical channel portion 157 that extends downward from the upper surface of the base block in the base block.
  • a horizontal flow path portion 158 extending from the lower end of the lower vertical flow path portion 157 in the base block to the side surface of the base block.
  • liquid recovery channel 155 In order to prevent the drawing from becoming complicated, only one liquid recovery channel 155 is shown in FIG. 1, but a plurality of liquid recovery channels 155 may be provided evenly around the central axis.
  • each of the plurality of blocks described above is detachably connected to an adjacent block by appropriate connection means.
  • each of the plurality of blocks described above has an appropriate seal formed between adjacent blocks.
  • the base block contact surface of the container block 110 or the container contact surface of the base block 120 is formed with an annular groove (not shown) surrounding the vertical hole 122 and the liquid recovery channel 155, and a sealing member such as an O-ring is formed there. Is placed.
  • a tubular groove surrounding the liquid supply channel 152 is formed on the channel block contact surface of the base block 120 or the base block contact surface of the channel block 150, and a seal member such as an O-ring is disposed there. . Accordingly, liquid does not leak from the boundary between adjacent blocks.
  • the pump unit 160 has a pump 161.
  • the pump 161 may be any of a non-positive displacement pump, a positive displacement pump, and a special type pump.
  • the non-displacement pump may be any of a centrifugal pump (a vortex pump and a diffuser pump), a mixed flow pump (a vortex pump and a diffuser pump), and an axial flow pump.
  • the pump 161 has a pump casing 162.
  • the pump casing 162 includes a suction port 163, a discharge port 164, and a pump flow path 165 that connects the suction port 163 and the discharge port 164.
  • the pump flow path 165 includes a drive unit 166 that sucks liquid from the suction port 163 and discharges liquid from the discharge port 164.
  • the drive unit is an impeller, and this impeller is drivingly connected to a motor 167 provided outside the pump casing.
  • a liquid extraction port 168 is provided at the lowest position of the pump flow path 165.
  • the liquid transfer unit 170 has a liquid supply pipe 171 and a liquid recovery pipe 172.
  • the liquid supply pipe 171 having one end and the other end connects the pump discharge port 164 and the liquid supply channel 152, and connects the other end connected to the pump discharge port 164 to one end connected to the liquid supply channel 152. It is horizontal towards or has an upslope greater than 0 degrees.
  • the liquid recovery pipe 172 having one end and the other end is horizontal from the other end connected to the pump suction port 163 toward one end connected to the liquid recovery flow path 155 or has an upward gradient exceeding 0 degree. .
  • the gas suction unit 180 has a gas suction pipe 181. One end of the gas suction pipe 181 is connected to the gas supply hole 124 of the venturi block 131, and the gas suction port 182 at the other end is opened to the atmosphere or connected to an appropriate gas cylinder (not shown). Yes.
  • the gas suction pipe 181 includes a flow rate adjustment valve 183, a flow rate sensor 184, and a check valve 185 in order from the other end (the gas suction port 182) toward one end.
  • a liquid mixture 190 in which an aqueous liquid and a hydrophobic liquid are mixed at a predetermined ratio is accommodated in the mixing chamber 111 and the pump 161 is driven.
  • the mixed liquid 190 in the mixing chamber 111 is discharged from the discharge port (exit) 117 formed on the inclined bottom surface 116 of the container block 110 (that is, the upper end opening of the upper vertical channel portion 156 passing through the container bottom).
  • the liquid is sucked into the pump flow path 165 through the liquid recovery path 155 and the liquid recovery pipe 172, and then through the liquid recovery path 192 until reaching the pump suction port 163.
  • the mixed liquid 190 sucked into the pump 161 passes through the pump flow path 165 and is discharged from the discharge port 164.
  • the liquid mixture discharged from the pump discharge port 164 is sent from the pump discharge port 164 to the flow channel 132 of the venturi block 131 through the liquid supply pipe 171 and the liquid supply flow channel 152.
  • the mixed liquid 190 that has reached the venturi block 131 passes from the lower flow path portion 133 having a large cross section through the middle flow path portion 134 having a small cross section and enters the upper flow path portion 135 having a large cross section.
  • a negative pressure is generated in the intake hole 136 opened to the middle flow path portion 134.
  • the gas sucked through the gas suction pipe 181 is mixed with the mixed liquid 190 flowing through the middle flow path portion 134 from the suction hole 136.
  • the amount of gas sucked from the gas suction pipe 181 can be adjusted by the flow rate adjustment valve 183 while watching the output of the flow rate sensor 184.
  • fine bubbles a mixed liquid containing a large amount of microbubbles or ultrafine bubbles (including both of them is referred to as “fine bubbles”) is generated.
  • the liquid mixture is subjected to a strong shearing action in the presence of fine bubbles, and the hydrophobic liquid is dispersed in the aqueous liquid.
  • the mixed liquid 190 injected from the nozzle block 140 into the mixing chamber 111 rises from the upper end injection port 146 of the nozzle block 140 upward in the injection region 193 that spreads in a spindle shape. At this time, the relatively large bubble is moved upward in the mixing chamber 111 under the influence of buoyancy and reaches the water surface. On the other hand, the fine bubbles contained in the mixed liquid descend on the downward flow (swirl flow) of the mixed liquid formed in the mixing chamber 111 and recover the liquid from the discharge port 117 formed on the inclined bottom surface 116 at the bottom of the container. It is taken out to the flow path 155.
  • liquid mixture 190 sent from the liquid recovery flow path 155 through the liquid recovery pipe 172 and sent from the suction port 163 to the flow path 165 in the pump 161 is again subjected to a strong shearing action by the impeller 166 rotating in the pump 161.
  • the hydrophobic liquid is further dispersed in the aqueous liquid.
  • the hydrophobic liquid is uniformly dispersed in the aqueous liquid in the presence of the fine bubbles.
  • the discharge port 117 for sucking out the mixed liquid from the mixing chamber 111 is disposed outside the injection region 193, the large size contained in the mixed liquid 190 injected into the mixing chamber 111 from the injection port 146. Bubbles are not sent to the pump 161 through the outlet 117. Therefore, a strong shear field is formed in the pump 161, and the dispersion of the hydrophobic liquid is remarkably improved.
  • the mixed liquid in which the hydrophobic liquid is uniformly dispersed in the aqueous liquid as described above is extracted from the liquid extraction port 168 of the pump 161.
  • the liquid extraction port 168 is provided at the lowest position of the liquid mixing device 10
  • the liquid mixture present in each part of the liquid mixing device 10 is All gather at the liquid extraction port 168. Therefore, the subsequent disassembly and cleaning can be easily performed.
  • At least a portion in contact with the liquid mixture in the liquid mixing apparatus is made of a stainless material so that the emulsified liquid mixture does not contain impurities.
  • the liquid mixing apparatus described above can be variously modified.
  • a spiral flow of the mixed liquid is formed by forming a truncated cone-shaped flow path in the nozzle block 140 and forming a spiral groove on the inner surface of the flow path.
  • the nozzle block 240 shown in FIG. 3B includes an internal helical helical gear (helical bevel gear) 241 or a spiral bevel gear (spiral bevel gear) having a predetermined pitch cone angle and the number of teeth.
  • FIG. 3C shows an example in which the nozzle block is constituted by a spiral nozzle 340.
  • the venturi method is used to generate fine bubbles, but other methods such as a pressure dissolution method, a cavitation method, an ejector method, a swirl flow method, and a static mixer method are adopted. Also good.
  • the mixed liquid is jetted upward from the bottom of the mixing chamber.
  • the jet port is disposed on the side wall of the mixing chamber, and the jet port is directed horizontally or obliquely upward with respect to the mixing chamber. You may inject a liquid mixture.
  • the inventor of the present invention is a table-type gas-liquid shearing type fluid mixing having a size of width 320 mm ⁇ depth 250 mm ⁇ height 250 mm and a weight of about 15 kg. A device was made.
  • the internal structure is the same as that of the liquid mixing apparatus 10 shown in FIG. 1, but in order to investigate the gas introduction method, a gas supply unit similar to the gas supply unit 180 is provided immediately before the pump inlet 163 and liquid. Mounted on the collection tube 172 (not shown).
  • the influence on the pump performance by the place of gas introduction was investigated.
  • air introduction since air is used as the gas to be introduced, it is referred to as “air introduction”.
  • a flow meter for measuring the flow rate is installed between the pump discharge port 164 and the fluid supply flow path 152, that is, on the liquid supply pipe 171, and a sufficient amount of water is introduced into the mixing chamber 111, and the pump motor is 4,000 rpm. The water was circulated.
  • the “sufficient amount” means an amount capable of forming an injection region in which the liquid mixture injected from the nozzle block into the mixing chamber forms a spindle shape upward from the upper end injection port of the nozzle block.
  • the distance from the upper end of the discharge port formed on the inclined bottom surface of the container block to the water surface is changed to 50 mm or more, preferably 100 mm or more by changing the cross-sectional area inside the mixing chamber according to the amount of liquid to be charged. To be.
  • Comparative Example 1 Air introduction from the upstream side of the pump
  • the fluctuation of the pump discharge amount when the air was introduced from the upstream side of the pump by the gas supply unit (supply unit A) attached immediately before the pump suction port 163 was examined.
  • a result is shown in Table 1, and the graph which plotted the pump discharge amount decreasing rate as a function of the air introduction amount is shown in FIG.
  • Example 1 Air introduction from downstream of pump
  • Table 2 shows the results of examining the variation in pump discharge when air is introduced from downstream of the pump by gas supply unit 180 (gas supply unit B).
  • FIG. 4 shows a graph in which the pump discharge rate reduction rate is plotted as a function of the air introduction amount.
  • a method for preparing an emulsion according to the present invention comprises at least a mixing chamber having an inlet and an outlet, and a pump having an inlet and an outlet, The suction port is fluidly connected, the discharge port and the inlet are fluidly connected, and based on the driving of the pump, the mixed liquid stored in the mixing chamber is sucked from the outlet, After the fine bubbles are discharged from the discharge port via the pump and supplied to the discharged mixed liquid, the mixed liquid supplied with the fine bubbles is injected into the mixing chamber and then injected into the mixing chamber.
  • a method of preparing an emulsion using a liquid mixing apparatus characterized in that the outlet is arranged outside a jetting region of a mixed liquid,
  • the mixed liquid includes an aqueous liquid and a hydrophobic liquid that is incompatible with the aqueous liquid, and is added to a surfactant and an emulsion having a function of reducing interfacial tension at the interface between the aqueous liquid and the hydrophobic liquid.
  • it does not contain an additive selected from any one of salts, hydrogen-bonding molecules, and alcohols among those that do not have an effect of reducing the interfacial tension.
  • Preparation of the emulsion according to the present invention is not limited, but the liquid mixing apparatus 10 according to the present invention is used.
  • An emulsion of 1.0% by volume of water and oleic acid was prepared using the fluid mixing apparatus according to the present invention.
  • Tank 1 was charged with 990 L of water and oleic acid 10 L. Thereafter, the liquid was circulated for 10 minutes at a pump motor of 4,000 rpm.
  • Comparative Example 2 Preparation of emulsion without air introduction
  • liquid was circulated without air introduction. After 10 minutes, the liquid extraction port 168 was opened and the emulsion was taken out. Two days and one month after removal, when the obtained solution was observed using a microscope (VHX-6000 manufactured by KEYENCE) (FIG. 5-A1, A2), only a very heterogeneous emulsion was obtained. Not confirmed. Note that no bubbles were observed with the microscope. According to visual observation, it was an emulsion solution in which the whole was uniformly emulsified immediately after removal (FIG. 6-A1). This emulsion was put in a reagent bottle, sealed, and allowed to stand at room temperature (about 25 ° C.) for 3 days.
  • Example 2 Preparation of Emulsion with Air Introduction
  • the liquid was circulated while introducing air at 100 cc / min from the downstream of the pump in the fine bubble supply unit 130.
  • the liquid extraction port 168 was opened and the emulsion was taken out.
  • the obtained solution was observed using a microscope (VHX-6000 manufactured by KEYENCE) (FIG. 5-B1, B2). It was confirmed that a finely dispersed emulsion was obtained.
  • the average diameter of the emulsion was 0.73 ⁇ m. Note that no bubbles were observed with the microscope. According to visual observation, immediately after removal, the emulsion solution was uniformly emulsified (FIG. 6-B1).
  • the emulsion was sealed in a reagent bottle and allowed to stand at room temperature (about 25 ° C.) for 3 days, but no separation between the cloudy phase and the transparent phase was observed (FIG. 6-B2), and the emulsion was allowed to stand for 2 months. After installation, neither the above-mentioned separation nor the phase separation of water and oleic acid was observed (FIG. 6-B3), and it was found that the emulsion was very stable.
  • the fluid mixing apparatus according to the present invention does not have a complicated mechanism, it can be reduced in size and weight, and a stable emulsion composed only of necessary aqueous liquid and hydrophobic liquid can be easily obtained without using any additive. And can be prepared quickly. That is, it is suitable for research and development because it is possible to produce a large variety of small amounts of emulsion.
  • product development it is possible to respond immediately to consumer demand and provide it on the spot. For example, since preservatives are not required for cosmetics, it is best for consumers who are sensitive to chemical substances. Products can be provided. Furthermore, the cosmetics etc. which a consumer contains only the component which a consumer desires can also be created.
  • Liquid mixing device 100 Mixing unit 110: Container block 111: Mixing chamber 112: Center shaft 113: Lid 114: Pressure adjusting valve 115: Circular hole 116: Inclined bottom surface 117: Discharge port (exit) 120: base block 121: circular hole 122: vertical hole 123: flow path 124: gas supply hole 130: fine bubble supply part 131: venturi block 132: flow path 133: lower flow path part 134: middle flow path part 135: upper flow Road portion 136: Intake hole 137: Manifold 140: Nozzle block 141: Channel 142: Lower channel portion 143: Middle channel portion 144: Upper channel portion 145: Groove (spiral flow forming portion) 146: Upper end injection port (inlet) 150: Channel block 151: Channel 152: Liquid supply channel 153: Vertical channel portion 154: Horizontal channel portion 155: Liquid recovery channel 156: Upper vertical channel portion 157: Lower vertical channel portion 158: Horizontal Channel portion 160: Pump unit 161

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Colloid Chemistry (AREA)
  • Accessories For Mixers (AREA)

Abstract

The present invention addresses the problem of providing a method for providing a homogeneous, stable emulsion from a mixed liquid comprising an aqueous liquid and a hydrophobic liquid that is incompatible with aqueous liquids without using a surfactant, by using a recirculating batch mode gas-liquid shearing fluid mixing apparatus provided at least with a mixing chamber, a pump, a fine bubble-supplying unit, and a gas intake pipe, so as to introduce air from the downstream side of a gas-liquid shearing vortex pump.

Description

流体混合装置およびエマルジョンの調製方法Fluid mixing apparatus and emulsion preparation method
 本発明は、複数の液体(分散質および分散媒)の混合を行うための気液せん断方式の流体混合装置、および複数の液体からなるエマルジョンの調製方法に関する。本発明は、詳しくは、複数の液体の混合物の中にファインバブルを発生させて、前記複数の液体の間にせん断力を発生させることにより、安価にサブミクロンレベルまで微細化され、均質化されたエマルジョンを生成することができる構造簡易なポンプ循環式の流体混合装置および、そのような流体混合装置を用いて、界面活性剤を使用せずに、均質かつ安定性の高いエマルジョンを調製する方法に関する。 The present invention relates to a gas-liquid shearing type fluid mixing apparatus for mixing a plurality of liquids (dispersoid and dispersion medium), and a method for preparing an emulsion composed of a plurality of liquids. In detail, the present invention can be refined and homogenized at low cost to a submicron level by generating fine bubbles in a mixture of a plurality of liquids and generating a shear force between the plurality of liquids. A simple pump-circulating fluid mixing device capable of producing a stable emulsion, and a method for preparing a homogeneous and highly stable emulsion using such a fluid mixing device without using a surfactant About.
 エマルジョンは、バター、マヨネーズ、牛乳、アイスクリームなどの食品および飲料、医薬品や化粧品に使われるクリーム、アクリル絵具などのインクや塗料、接着剤、写真フィルムの感光層、アスファルト舗装のシール剤など、身近なものから工事用の材料まで種々多岐にわたる分野で活用されている。 Emulsions are used in foods and beverages such as butter, mayonnaise, milk and ice cream, creams used in pharmaceuticals and cosmetics, inks and paints such as acrylic paint, adhesives, photosensitive layers for photographic films, and sealants for asphalt pavements. It is used in a wide variety of fields, from natural materials to construction materials.
 水と油のように、本来混ざり合うことのない複数の液体の一方が微粒子となり他方の中に分散した状態を乳化といい、乳化した液体をエマルジョンという。このようなエマルジョンは大きく2つに分類される。身近なものを例にして説明すると、牛乳やマヨネーズなどのように水中に油滴が分散した状態のエマルジョンをO/W (Oil in Water)型エマルジョン、逆に、バターやマーガリンなどのように油中に水滴が分散した状態のエマルジョンをW/O (Water in Oil)型エマルジョンという。 A state in which one of a plurality of liquids that are not originally mixed, such as water and oil, becomes fine particles and dispersed in the other is called emulsification, and the emulsified liquid is called an emulsion. Such emulsions are roughly classified into two. For example, familiar oils such as milk and mayonnaise are oil / water emulsions such as butter and margarine. An emulsion having water droplets dispersed therein is called a W / O (Water in Oil) type emulsion.
 本来混ざり合わない複数の液体に衝撃力、せん断力またはキャビテーション力などの物理的エネルギーを与えれば乳化するが、一般にエマルジョンは非常に不安定な状態にあり、放置すれば徐々に二層に分離してしまう。そこで、エマルジョンを安定化するために、乳化剤を添加する。乳化剤(例えば、界面活性剤)を入れることによって相反する水と油を均等に分散させることができるようになり、得られたエマルジョンが安定する。 Emulsification occurs when physical energy such as impact force, shear force, or cavitation force is applied to a plurality of liquids that are not originally mixed, but generally the emulsion is in an extremely unstable state, and if left untreated, it gradually separates into two layers. End up. Therefore, an emulsifier is added to stabilize the emulsion. By adding an emulsifier (for example, surfactant), it becomes possible to disperse water and oil which are contradictory, and the obtained emulsion is stabilized.
 従来、特定の機能を持った油性物質を水に乳化分散させる場合には、油性物質の性質に応じて所要のHLB (Hydrophilic-Lipophilic Balance)値を有する乳化剤を選定し、乳化分散を行っていた。乳化剤として用いられる界面活性剤の所要HLB値は、O/W型エマルジョンを作る場合とW/O型エマルジョンを作る場合とのそれぞれに対しても使い分ける必要がある。それゆえ、適切な界面活性剤の組合せの決定には、非常に煩雑かつ多大な労力が必要である。ましてや、多種類の油性物質が混在している場合は、安定に乳化させることは殆ど不可能である。また、界面活性剤は、溶液本来の目的には必要がないものであり、溶液の機能を阻害する可能性もあり、化粧品に用いる場合、肌に対する刺激物にもなり得る。さらに、界面活性剤は、生分解性が低く、泡立ちの原因となるので、環境汚染などの深刻な問題となっている。 Conventionally, when an oily substance having a specific function is emulsified and dispersed in water, an emulsifier having a required HLB (Hydrophilic-Lipophilic Balance) value is selected according to the properties of the oily substance, and emulsified and dispersed. . The required HLB value of the surfactant used as the emulsifier needs to be properly used for each of the case of making the O / W type emulsion and the case of making the W / O type emulsion. Therefore, the determination of an appropriate surfactant combination is very cumbersome and requires great effort. In addition, when many kinds of oily substances are mixed, it is almost impossible to stably emulsify. In addition, the surfactant is not necessary for the original purpose of the solution, may inhibit the function of the solution, and can be an irritant to the skin when used in cosmetics. Furthermore, since the surfactant has low biodegradability and causes foaming, it is a serious problem such as environmental pollution.
 そこで、乳化剤を添加しない乳化(またはエマルジョン化)技術が開発されてきた。
 例えば、特許文献1には、複数種類の流体を混合する流体混合器が開示され、この流体混合器は約10μm以下の粒子径のエマルションを生成する能力を有することが確かめられた。
 特許文献2には、気体の液体への均一な分散、溶解、可溶化、乳化、および液体の異種液体への均一な分散、溶解、可溶化、乳化を、大容量かつ短時間で行うことができる処理装置が開示され、乳白状態が半日程度保たれる軽油と水のエマルジョン燃料が得られることが確かめられた。
 特許文献3には、界面活性剤による化学的な作用の助けを借りることなく、スタティックミキサーによって燃料油成分中に水の粒子を均一に分散させるエマルジョン燃料の製造技術が開示されている。
 特許文献4には、乳化剤(界面活性剤)を使用することなく、分散安定性の優れたエマルションを提供する技術が開示され、超音波照射により調製したヘキサデカンと水からなる油中水滴型(W/O)エマルションに、界面不活性物質として、塩、水素結合性分子、アルコール類のいずれか一種類(例えば、塩化ナトリウム、塩化マグネシウム、尿素、ホルムアミド、エタノール、グリセリン)を添加することによって分散安定性を向上させる作用が確認されている。
Therefore, an emulsification (or emulsification) technique without adding an emulsifier has been developed.
For example, Patent Document 1 discloses a fluid mixer that mixes a plurality of types of fluids, and it has been confirmed that this fluid mixer has an ability to produce an emulsion having a particle size of about 10 μm or less.
In Patent Document 2, uniform dispersion, dissolution, solubilization, and emulsification of a gas in a liquid and uniform dispersion, dissolution, solubilization, and emulsification of a liquid in a different liquid can be performed in a large volume and in a short time. A processing apparatus that can be used has been disclosed, and it has been confirmed that an emulsion fuel of light oil and water in which the milky white state is maintained for about half a day can be obtained.
Patent Document 3 discloses a technique for producing an emulsion fuel in which water particles are uniformly dispersed in a fuel oil component by a static mixer without the aid of a chemical action by a surfactant.
Patent Document 4 discloses a technique for providing an emulsion having excellent dispersion stability without using an emulsifier (surfactant), and is a water-in-oil type (W) containing hexadecane and water prepared by ultrasonic irradiation. / O) Dispersion stable by adding any one of salt, hydrogen bonding molecule, alcohols (eg sodium chloride, magnesium chloride, urea, formamide, ethanol, glycerin) to the emulsion as a surface inactive substance The effect of improving the properties has been confirmed.
特開2014-004534号公報JP 2014-004534 A 特許第5380545号明細書Patent No. 5380545 specification 特開2009-203323号公報JP 2009-203323 A 特開2016-165716号公報JP2016-165716A
 特許文献1の技術は、スタティックミキサーのように混合流体の1回の通過により混合する手法であり、得られたエマルジョンは、均質性や微細性、高濃度の乳化において十分なレベルではない。
 特許文献2の実施例5の結果を見ると、気体を入れない乳化の方が良い結果を示すことが分かる。すなわち、この技術では、大きな気泡がポンプ内に入り、ポンプ効率を低下させてしまう課題があり、気体を用いた乳化に効果が出せていない。
 特許文献3の装置で製造されるエマルジョン燃料は分散時間が数十秒程度であり、長時間安定なエマルジョンを提供することは想定していない。
 特許文献4の技術は、乳化剤(界面活性剤)を使用しないものの、エマルジョンの分散安定性を向上するために、塩、水素結合性分子、アルコール類のいずれか一種類を添加する必要がある。
The technique of Patent Document 1 is a method of mixing by passing a mixed fluid once like a static mixer, and the obtained emulsion is not at a sufficient level in homogeneity, fineness, and high-concentration emulsification.
When the result of Example 5 of patent document 2 is seen, it turns out that the emulsification which does not put gas shows a better result. That is, in this technique, there is a problem that large bubbles enter the pump and lower the pump efficiency, and the effect of emulsification using gas cannot be achieved.
The emulsion fuel produced by the apparatus of Patent Document 3 has a dispersion time of about several tens of seconds and is not assumed to provide a long-time stable emulsion.
Although the technique of Patent Document 4 does not use an emulsifier (surfactant), it is necessary to add any one of a salt, a hydrogen bonding molecule, and an alcohol in order to improve the dispersion stability of the emulsion.
 したがって、本発明は、上記課題を解決すべく、循環バッチ方式の気液せん断型流体混合方式に着目し、界面活性剤などの添加物を使うことなく、安価で乳化分散させることが可能な流体混合装置および、均質かつ安定なエマルジョンを提供することを主たる課題とする。 Accordingly, in order to solve the above problems, the present invention pays attention to a circulating batch type gas-liquid shearing type fluid mixing method, and can be emulsified and dispersed at low cost without using an additive such as a surfactant. The main object is to provide a mixing device and a homogeneous and stable emulsion.
 本発明は、概略、液体を受容し混合する混合ユニットと、液体を混合し循環させるポンプユニットと、循環する液体を移送する液体移送ユニット、外部から気体を自給する気体吸入ユニットを有する。気液せん断方式の液体混合装置を提供する。 The present invention generally includes a mixing unit that receives and mixes liquids, a pump unit that mixes and circulates liquids, a liquid transfer unit that transfers circulated liquids, and a gas suction unit that supplies gas from the outside. A gas-liquid shearing type liquid mixing apparatus is provided.
 混合ユニットの下部には、循環する液体を混合ユニット内部に戻す流路が形成され、流路の途中に気体吸入ユニット経由で気体を導入して気泡を発生させるバブル供給部が設けられている。 The lower part of the mixing unit is provided with a flow path for returning the circulating liquid to the inside of the mixing unit, and a bubble supply unit is provided in the middle of the flow path to introduce gas via the gas suction unit to generate bubbles.
 バブル供給部内で発生する気泡は、国際標準化機構 (ISO)のファインバブル技術委員会 (TC281)の定義により、直径にしたがって、ミリバブル(1 mm以上)、サブミリバブル(1 mm未満かつ0.1 mm以上)、マイクロバブル(0.1 mm (100 μm)未満かつ1 μm以上)およびウルトラファインバブル(1 μm未満)に分類される。直径100 μm以上のバブルは目視できる。また、直径100 μm未満のマイクロバブルおよびウルトラファインバブルを包括的にファインバブルというが、マイクロバブルは水が白く濁ることでその存在を目視確認でき、ウルトラファインバブルは目視確認することができない。ウルトラファインバブルの最頻径は、様々な計測方法(動的散乱法、レーザー回折法、粒子トラッキング解析法、電気的検知帯法)によって、直径100 nm~200 nmであることが確認されている。
 水中で、ミリバブルおよびサブミリバブルは上昇し(約5-6 m/分)、水面で破裂して消滅する。マイクロバブルは、ゆっくりと上昇しながら(約3 mm/分)、収縮し水中で消滅するが、ウルトラファインバブルは、浮力よりも液体から受ける粘性抵抗のほうが大きいので、液体中でブラウン運動をしながら、長期間(数日から数週間)停滞する。
Bubbles generated in the bubble supply unit are defined by the International Standards Organization (ISO) Fine Bubble Technical Committee (TC281), according to the diameter, in the form of millibubbles (1 mm or more), submillibubbles (less than 1 mm and 0.1 mm or more) , Microbubbles (less than 0.1 mm (100 μm) and above 1 μm) and ultrafine bubbles (less than 1 μm). Bubbles with a diameter of 100 μm or more are visible. In addition, microbubbles and ultrafine bubbles having a diameter of less than 100 μm are collectively referred to as fine bubbles, but the presence of microbubbles can be visually confirmed because water is white and cloudy, and ultrafine bubbles cannot be visually confirmed. The mode diameter of ultrafine bubbles has been confirmed to be 100 nm to 200 nm in diameter by various measurement methods (dynamic scattering method, laser diffraction method, particle tracking analysis method, electrical detection band method). .
In water, millibubbles and submillibules rise (approximately 5-6 m / min) and rupture and disappear at the surface of the water. Microbubbles are slowly rising (approximately 3 mm / min) and contract and disappear in water. However, ultrafine bubbles have a higher viscous drag from the liquid than buoyancy, so they perform Brownian motion in the liquid. However, it stays for a long time (several days to several weeks).
 流体中に気体が存在すると、ポンプの吸い込み不能やひいてはポンプ故障の原因となる。したがって、混合ユニットの混合室内に存在する気泡を除去することが要求される。
 混合室内の液体中では回転流が発生しているため、遠心力により液体が外周に偏在する一方、気体は回転流の中心に集まってくる。また、直径の大きなバブルほど速く上昇する。したがって、混合室の外周壁の下部に流体の排出口を取り付けることにより、大方のバブルが除去された流体を取り出すことができる。
 本発明においては、対象とする分散媒および分散質の粘性や種類に応じて、混合室の内径、排出口の取付け箇所から流体の上面までの高さ、回転流の周方向速度および軸方向速度、ポンプによる吸入流量を制御することによって、直径100 μm以上のミリバブルおよびサブミリバブルを除去し、好ましくは、直径100 μm以上のミリバブルおよびサブミリバブルならびに直径1 μm以上のマイクロバブルを除去し、望ましくは直径1 μm未満のウルトラファインバブルのみが残留する状態にする。流体内に、マイクロバブルおよびウルトラファインバブルが残留していても、ポンプ効率に影響しないからである。
If gas is present in the fluid, the pump cannot be sucked and eventually causes a pump failure. Therefore, it is required to remove bubbles present in the mixing chamber of the mixing unit.
Since a rotating flow is generated in the liquid in the mixing chamber, the liquid is unevenly distributed on the outer periphery due to the centrifugal force, while the gas is collected at the center of the rotating flow. Also, bubbles with larger diameters rise faster. Therefore, by attaching a fluid discharge port to the lower part of the outer peripheral wall of the mixing chamber, the fluid from which most bubbles are removed can be taken out.
In the present invention, depending on the viscosity and type of the target dispersion medium and dispersoid, the inner diameter of the mixing chamber, the height from the attachment point of the discharge port to the upper surface of the fluid, the circumferential speed and the axial speed of the rotating flow By controlling the suction flow rate by the pump, millibubbles and submillibules with a diameter of 100 μm or more are removed, preferably, millibubbles and submillibules with a diameter of 100 μm or more and microbubbles with a diameter of 1 μm or more are removed, Only ultrafine bubbles with a diameter of less than 1 μm remain. This is because even if microbubbles and ultrafine bubbles remain in the fluid, the pump efficiency is not affected.
 本発明によれば、限定されないが、上記の構成の流体混合装置を用いることによって、界面活性剤などの乳化剤を使用せずに、水性液体および前記水性液体と非相溶性の疎水性液体からなるサブミクロンレベル(平均直径が数μm)の安定なO/W (Oil in Water)型エマルジョンまたはW/O (Water in Oil)型エマルジョンを得ることができる。本発明により得られるエマルジョンは、3日以上、好ましくは7日以上、より好ましくは2週間以上、さらに好ましくは1月以上分離することなく安定に存在する。エマルジョンの安定性は、密封したビンにエマルジョンを封入し、室温にて静置して、白濁相と透明相との分離および水性液体と疎水性液体との完全相分離の発生を目視で観察することにより判断する。 According to the present invention, although not limited, the fluid mixing device having the above-described configuration is composed of an aqueous liquid and a hydrophobic liquid that is incompatible with the aqueous liquid without using an emulsifier such as a surfactant. A stable O / W (Water in Water) type emulsion or W / O (Water in Oil) type emulsion at the submicron level (average diameter is several μm) can be obtained. The emulsion obtained by the present invention is stably present without separation for 3 days or more, preferably 7 days or more, more preferably 2 weeks or more, and even more preferably 1 month or more. Emulsion is sealed in a sealed bottle and allowed to stand at room temperature, and the occurrence of separation between the cloudy phase and the transparent phase and the complete phase separation between the aqueous liquid and the hydrophobic liquid are visually observed. Judgment by
 本発明において、エマルジョンを構成する水性液体は、水;および、水に相溶する有機溶媒と水との混合物よりなる群から選択されるが、人体や環境に対する負荷を考慮すると、水が好ましい。本発明において、エマルジョンを構成する疎水性液体は、防虫または殺虫効果を有する天然油性物質として、例えば、限定されないが、例えば、オールスパイス油、カユプテ油、桂皮油、シダー油、シトロネラ油、ゼラニウム油、ダイズ油、タイム油、丁子油、にんにく油、バジル油、ハッカ油、バーベナ油、ヒマシ油、ペパーミント油、松脂、ラベンダー油、レモングラス油、レモンユーカリ油、ローズマリー油などを挙げることができる。その他の天然油性物質として、亜麻仁油、オリーブ油、キリ油、ゴマ油、米ぬか油、コーン油、ナタネ油、パーム油、パーム核油、ピーナッツ油、ひまわり油、ヘーゼルナッツ油、紅花油、綿実油、ヤシ油などを挙げることができる。 In the present invention, the aqueous liquid constituting the emulsion is selected from the group consisting of water; and a mixture of an organic solvent compatible with water and water, but water is preferable in consideration of the load on the human body and the environment. In the present invention, the hydrophobic liquid constituting the emulsion is not limited as a natural oily substance having an insecticidal or insecticidal effect. For example, allspice oil, caypté oil, cinnamon oil, cedar oil, citronella oil, geranium oil , Soybean oil, thyme oil, clove oil, garlic oil, basil oil, peppermint oil, verbena oil, castor oil, peppermint oil, pine oil, lavender oil, lemongrass oil, lemon eucalyptus oil, rosemary oil, etc. . Other natural oils include linseed oil, olive oil, giraffe oil, sesame oil, rice bran oil, corn oil, rapeseed oil, palm oil, palm kernel oil, peanut oil, sunflower oil, hazelnut oil, safflower oil, cottonseed oil, coconut oil, etc. Can be mentioned.
 本発明のエマルジョンには、上記防虫または殺虫効果を有する天然油性物質その他の天然油性物質と組み合わせて、天然物由来の防虫または殺虫効果を有する物質を使用することができ、限定されないが、例えば、カ、ゴキブリ、ダニ、ハエなどに対して防虫または殺虫効果を有する、除虫菊の胚珠から抽出されるピレスロイド;アブラムシ、コナジラミ、ヨコバイおよびアザミウマなどの吸汁口または穿孔口を持った昆虫に対して防虫または殺虫効果を有する、タバコ抽出物であるニコチン;昆虫に対して接触毒および消化中毒剤として作用する、ユリ科の植物サバジラから抽出されるサバジラ酸(チグリン酸);ダニなどの殺虫剤、殺魚剤、農薬として広く効果を有する、ロンコカルプス属やデリス属の植物(例えば、ドクフジ)から抽出されるロテノン;および、昆虫の幼虫の脱皮や羽化を妨げ、食欲減退させる、ニーム(学名アザディラクタ・インデカ(azadirachta indica))から抽出されるニーム油などを挙げることができる。 In the emulsion of the present invention, a natural oil-derived substance having an insecticidal or insecticidal effect and other natural oily substances can be used in combination with a natural product-derived insecticidal or insecticidal substance. Pyrethroids extracted from larval chrysanthemum ovules that have an insecticidal or insecticidal effect on mosquitoes, cockroaches, mites, flies, etc .; Nicotine, a tobacco extract that has insecticidal effects; Sabaziric acid (Tiglic acid) extracted from lilyaceae plant Savage, which acts as a contact poison and digestive poison for insects; Insecticides such as ticks, fish killing From plants of the genus Roncocarpus and Deris (for example, Dokufuji), which are widely effective as agents and pesticides Rotenone issued; and prevents molting and emergence of insect larvae, thereby appetite, and the like neem oil extracted from neem (scientific name Azadirachta-Indeka (Azadirachta indica)).
 本発明により調製されるエマルジョンには、エマルジョンの安定性に悪影響を与えない限り、種々の添加剤を添加することができる。本発明において用いることができる添加剤は、ナトリウム、マグネシウム、リン、塩素、カリウム、カルシウム、クロム、マンガン、鉄、コバルト、銅、亜鉛、セレン、モリブデン、ヨウ素などからなる群から選択される1または複数の必須ミネラル;活性炭、シリカゲル、ゼオライト、二酸化ケイ素(メソポーラスシリカ)、酸化アルミニウムなどからなる群から選択される1または複数の多孔質材料、などを含む。 Various additives can be added to the emulsion prepared according to the present invention as long as the stability of the emulsion is not adversely affected. The additive that can be used in the present invention is 1 selected from the group consisting of sodium, magnesium, phosphorus, chlorine, potassium, calcium, chromium, manganese, iron, cobalt, copper, zinc, selenium, molybdenum, iodine and the like A plurality of essential minerals; including one or more porous materials selected from the group consisting of activated carbon, silica gel, zeolite, silicon dioxide (mesoporous silica), aluminum oxide, and the like.
 しかしながら、本発明には、いわゆる水性液体(例えば、水)と疎水性液体(例えば、油)との界面における界面張力を低下させる機能を有する界面活性剤ならびにエマルジョンに添加しても界面張力を低下させる作用を有しないもののうち、塩、水素結合性分子、アルコール類のいずれか一種類(例えば、塩化ナトリウム、塩化マグネシウム、尿素、ホルムアミド、エタノール、グリセリンからなる群から選択される。)から選択される添加剤は使用しない。 However, in the present invention, a surfactant having a function of reducing the interfacial tension at the interface between a so-called aqueous liquid (for example, water) and a hydrophobic liquid (for example, oil), and even when added to an emulsion, the interfacial tension is reduced. Among those having no action to be selected, it is selected from any one of salts, hydrogen-bonding molecules and alcohols (for example, selected from the group consisting of sodium chloride, magnesium chloride, urea, formamide, ethanol and glycerin). Do not use any additives.
 本発明において、気液せん断のために導入する気体として、空気、酸素、オゾン、窒素、アルゴン、水素などが挙げられ、用いる防虫または殺虫効果を有する物質の有効性に鑑み、適宜選択することができるが、簡便性の観点から、空気が好ましい。 In the present invention, examples of the gas introduced for gas-liquid shear include air, oxygen, ozone, nitrogen, argon, hydrogen, and the like, which can be selected as appropriate in view of the effectiveness of the insecticidal or insecticidal substance used. However, air is preferable from the viewpoint of simplicity.
 本明細書において用いられる用語の定義を以下に示す。
 「流体」は、静止状態においてせん断応力が発生しない連続体の総称である。概略、固体でない連続体のことであり、物質の形態としては液体と気体およびプラズマが流体に該当する。
 「エマルジョン」(または「エマルション」と呼称するときもある。)は、分散質および分散媒が共に液体である分散系溶液のことである。乳濁液あるいは乳剤ともいう。分離している2つの液体をエマルジョンにすることを乳化といい、乳化する作用をもつ物質を乳化剤という。本発明においてはエマルジョンと呼称する。
 「マイクロエマルジョン」は、エマルジョンに類似した2種の液体からなる一種の分散系であるが、直径が100 nm程度以下と小さく、ミセルにより構成され、熱力学的に安定で、また強い撹拌を要せず容易に形成されるものをいう。ミセルが小さいので可視光の散乱が少なく、透明または半透明に見えるのが特徴である。
 「分散系」は、サイズが1 nmから1000 nm(1μm)程度の粒子が、気体、液体あるいは固体に浮遊あるいは懸濁している物質である。このように浮遊あるいは懸濁する現象を分散と呼ぶ。
 「分散質と分散媒」は、分散系で浮遊懸濁している固体または液体粒子を分散質あるいは分散相であり、媒質の方を分散媒という。
Definitions of terms used in the present specification are shown below.
“Fluid” is a general term for a continuum in which no shear stress is generated in a stationary state. In general, it is a continuum that is not solid, and liquids, gases, and plasmas correspond to fluids as forms of substances.
“Emulsion” (or sometimes referred to as “emulsion”) refers to a dispersion solution in which both the dispersoid and the dispersion medium are liquid. Also called emulsion or emulsion. Making two separated liquids into an emulsion is called emulsification, and a substance having an emulsifying action is called an emulsifier. In the present invention, it is called an emulsion.
“Microemulsion” is a type of dispersion consisting of two liquids similar to emulsions, but with a diameter as small as about 100 nm or less, composed of micelles, thermodynamically stable, and requires strong stirring. It can be easily formed. Since the micelle is small, there is little scattering of visible light, and the feature is that it looks transparent or translucent.
A “dispersed system” is a substance in which particles having a size of about 1 nm to 1000 nm (1 μm) are suspended or suspended in a gas, liquid, or solid. This phenomenon of floating or suspending is called dispersion.
“Dispersoid and dispersion medium” are solid or liquid particles suspended and suspended in a dispersion system as a dispersoid or dispersion phase, and the medium is referred to as a dispersion medium.
 本発明によれば、循環型の構造簡易な気液せん断方式の流体混合装置を用いて、水性液体(分散媒または分散質)および前記水性液体と非相溶性の疎水性液体(分散質または分散媒)からなる液体の混合物を短時間循環させるだけで、安価にサブミクロンレベルの安定なエマルジョンを得ることができる。 According to the present invention, an aqueous liquid (dispersion medium or dispersoid) and a hydrophobic liquid that is incompatible with the aqueous liquid (dispersoid or dispersion) are obtained using a circulation type simple structure gas-liquid shearing type fluid mixing device. A stable emulsion at a submicron level can be obtained at low cost simply by circulating a liquid mixture comprising a medium for a short time.
図1は、本発明の実施形態に係る液体混合装置の概略構成を示す断面図である。FIG. 1 is a cross-sectional view showing a schematic configuration of a liquid mixing apparatus according to an embodiment of the present invention. 図1に示す液体混合装置に組み込まれたベンチュリブロックの断面図である。It is sectional drawing of the venturi block integrated in the liquid mixing apparatus shown in FIG. 図3(A)~図3(C)を含み、図3(A)は図1の液体混合装置に組み込まれているノズルブロックの断面図、図3(B)と図3(C)は他の形態のノズルブロックの断面図である。3 (A) to 3 (C), FIG. 3 (A) is a sectional view of the nozzle block incorporated in the liquid mixing apparatus of FIG. 1, and FIGS. 3 (B) and 3 (C) are others. It is sectional drawing of the nozzle block of a form. エア導入量とポンプ吐出量との関係を示すグラフ。The graph which shows the relationship between air introduction amount and pump discharge amount. 1.0体積%オレイン酸/水のエマルジョンのマイクロスコープ像:エア導入なし 乳化2日後(A1)、1ヵ月後(A2);エア導入あり 乳化2日後(B1)、1ヵ月後(B2)。Microscope image of 1.0 vol% oleic acid / water emulsion: No air introduction 2 days after emulsification (A1), 1 month later (A2); Air introduction 2 days after emulsification (B1), 1 month later (B2). エマルジョンの安定性試験の結果を示す図:エア導入なし 乳化直後(A1)、3日後(A2)、2ヵ月後(A3);エア導入あり 乳化直後(B1)、3日後(B2)、2ヵ月後(B3)。Diagram showing the results of emulsion stability test: No air introduction Immediately after emulsification (A1), 3 days later (A2), 2 months later (A3); Air introduction immediately after emulsification (B1), 3 days later (B2), 2 months Later (B3).
1.気液せん断方式の液体混合装置
 以下、添付図面を参照して本発明に係る液体混合装置の実施形態を説明する。
[概略構成]
 図1は、実施形態の液体混合装置10を示す。液体混合装置10は、概略、混合ユニット100と、ポンプユニット160と、液体移送ユニット170、気体吸入ユニット180を有する。
1. Hereinafter, an embodiment of a liquid mixing apparatus according to the present invention will be described with reference to the accompanying drawings.
[Outline configuration]
FIG. 1 shows a liquid mixing apparatus 10 according to an embodiment. The liquid mixing apparatus 10 generally includes a mixing unit 100, a pump unit 160, a liquid transfer unit 170, and a gas suction unit 180.
[混合ユニット]
 混合ユニット100は、以下に説明する複数のブロック(容器ブロック110、ベースブロック120、ベンチュリブロック131、流路ブロック150等)を組み合わせて構成される。
[Mixing unit]
The mixing unit 100 is configured by combining a plurality of blocks (a container block 110, a base block 120, a venturi block 131, a flow path block 150, etc.) described below.
 容器ブロック110は、後述するように2つの液体を混合するための混合室111を形成している。そのために、実施形態の容器ブロック110は、中空円筒体からなり、該中空円筒体の中心軸112を鉛直方向に向けて配置されている。 The container block 110 forms a mixing chamber 111 for mixing two liquids as will be described later. For this purpose, the container block 110 of the embodiment is formed of a hollow cylindrical body, and is arranged with the central axis 112 of the hollow cylindrical body directed in the vertical direction.
 容器ブロック110の上部は蓋113で覆われている。蓋113は、圧力調整弁114を備えている。容器ブロック110の底部には、中心軸112に沿って容器底部を上下方向に貫通する円形穴115が形成されている。容器ブロック110の底面は、円形穴115の上端外周縁から径方向外側に向かって次第に高くなる逆円錐台形の傾斜底面116によって構成されている。 The upper part of the container block 110 is covered with a lid 113. The lid 113 includes a pressure adjustment valve 114. A circular hole 115 is formed at the bottom of the container block 110 so as to penetrate the container bottom in the vertical direction along the central axis 112. The bottom surface of the container block 110 is configured by an inverted frustoconical inclined bottom surface 116 that gradually increases from the outer peripheral edge of the circular hole 115 toward the radially outer side.
 容器ブロック110はベースブロック120に支持されている。ベースブロック120は、容器底部の円形穴115の直下にこれに隣接して、円形穴115と実質的に同じ横断面を有する所定深さの円形穴121が形成されており、この円形穴121は容器ブロック110の円形穴115と共に一つの大きな縦穴122を形成している。ベースブロック120はまた、円形穴121の底面からベースブロック下面に伸びる流路123と、円形穴121の略中段から径方向外側に向かって略水平に伸びる気体供給孔124を備えている。 The container block 110 is supported by the base block 120. In the base block 120, a circular hole 121 having a predetermined depth and having substantially the same cross section as the circular hole 115 is formed immediately below the circular hole 115 at the bottom of the container and adjacent thereto. One large vertical hole 122 is formed together with the circular hole 115 of the container block 110. The base block 120 also includes a flow path 123 extending from the bottom surface of the circular hole 121 to the bottom surface of the base block, and a gas supply hole 124 extending substantially horizontally from a substantially middle stage of the circular hole 121 toward the radially outer side.
 縦穴122には、図2に示すファインバブル供給部130が着脱自在に配置される。実施形態において、ファインバブル供給部130は、ベンチュリブロック131を備えている。ベンチュリブロック131は、単一の材料からなる縦型円筒体で構成されている。ベンチュリブロック131の外観形状(特に、円筒外周面と円形底面)は縦穴122の形状に実質的に一致している。 The fine bubble supply unit 130 shown in FIG. 2 is detachably disposed in the vertical hole 122. In the embodiment, the fine bubble supply unit 130 includes a venturi block 131. The venturi block 131 is composed of a vertical cylindrical body made of a single material. The external shape of the venturi block 131 (in particular, the cylindrical outer peripheral surface and the circular bottom surface) substantially matches the shape of the vertical hole 122.
 ベンチュリブロック131は、ベンチュリブロック131の中心軸に沿って該ベンチュリブロック131を上下方向に貫通する孔によって形成される流路132を備えている。ベースブロック120にベンチュリブロック131を装着した状態で該ベンチュリブロック131の中心軸は容器ブロック110の中心軸112に一致する。流路132は、下段流路部分133と、中段流路部分134と、上段流路部分135を備えている。実施形態では、下段流路部分133は下部円筒部分と上部円錐台部分を有する。上段流路部分135は、上部円筒部分と下部逆円錐台部分を有する。下段流路円錐台部分の上端と上段流路逆円錐台部分の下端は略同一の円形断面を有し、それらの間が中段流路部分134によって接続されている。 The venturi block 131 includes a flow path 132 formed by a hole penetrating the venturi block 131 in the vertical direction along the central axis of the venturi block 131. With the venturi block 131 attached to the base block 120, the central axis of the venturi block 131 coincides with the central axis 112 of the container block 110. The flow path 132 includes a lower flow path portion 133, a middle flow path portion 134, and an upper flow path portion 135. In the embodiment, the lower flow path portion 133 has a lower cylindrical portion and an upper truncated cone portion. The upper channel portion 135 has an upper cylindrical portion and a lower inverted truncated cone portion. The upper end of the lower channel truncated cone part and the lower end of the upper channel inverted truncated cone part have substantially the same circular cross section, and the middle channel part 134 is connected between them.
 ベンチュリブロック131の中段には、中段流路部分134から径方向外側に向かって伸びる一つ又は複数の吸気孔136が形成されている。これらの吸気孔136は、ベンチュリブロック131の外周に形成された環状溝からなるマニホールド137に接続されている。マニホールド137は、図示するようにベースブロック120にベンチュリブロック131を組み付けた状態で、ベースブロック120の気体供給孔124に接続される位置に設けてある。 In the middle stage of the venturi block 131, one or a plurality of intake holes 136 extending from the middle flow path portion 134 toward the radially outer side are formed. These intake holes 136 are connected to a manifold 137 formed of an annular groove formed on the outer periphery of the venturi block 131. The manifold 137 is provided at a position connected to the gas supply hole 124 of the base block 120 in a state where the venturi block 131 is assembled to the base block 120 as shown in the figure.
 ベンチュリブロック131の上にはノズルブロック140が配置されている。図3(A)に示すように、ノズルブロック140は、上下方向の中心軸に沿って該ノズルブロック140を上下方向に貫通する孔によって形成される流路141を備えている。ノズルブロック140はベンチュリブロック131に対して着脱自在に固定できる。そのために、例えば、ノズルブロック140をボルトによってベンチュリブロック131に固定するか、または、ベンチュリブロック131とノズルブロック140のいずれか一方に雌ねじ部を形成すると共に残る他方に雄ねじを形成し、これら雌ねじと雄ねじをかみ合わせることによって、ノズルブロック140はベンチュリブロック131に対して着脱自在とすることが好ましい。 A nozzle block 140 is disposed on the venturi block 131. As shown in FIG. 3A, the nozzle block 140 includes a flow channel 141 formed by a hole penetrating the nozzle block 140 in the vertical direction along the central axis in the vertical direction. The nozzle block 140 can be detachably fixed to the venturi block 131. For this purpose, for example, the nozzle block 140 is fixed to the venturi block 131 with a bolt, or a female screw portion is formed on one of the venturi block 131 and the nozzle block 140 and a male screw is formed on the remaining other, The nozzle block 140 is preferably detachable from the venturi block 131 by engaging a male screw.
 ノズルブロック140の流路141は、下段流路部分142と、中段流路部分143と、上段流路部分144を備えている。実施形態では、下段流路部分142は下部円錐台部分を有し、円錐内面に沿って上下方向に伸びる螺旋状の溝(螺旋流形成部)145を備えている。上段流路部分144は上部逆円錐台部分を有する。下段流路円錐台部分の上端と上段流路逆円錐台部分の下端は略同一の円形断面を有し、それらの間が中段流路部分143によって接続されている。したがって、ベンチュリブロック131にノズルブロックを組み付けた状態で、下段流路部分142の下端開口がベンチュリブロック131の上段流路部分135の上端開口に接続される。 The flow path 141 of the nozzle block 140 includes a lower flow path portion 142, a middle flow path portion 143, and an upper flow path portion 144. In the embodiment, the lower flow path portion 142 has a lower truncated cone portion and includes a spiral groove (spiral flow forming portion) 145 extending in the vertical direction along the inner surface of the cone. The upper channel portion 144 has an upper inverted truncated cone portion. The upper end of the lower channel truncated cone part and the lower end of the upper channel inverted truncated cone part have substantially the same circular cross section, and the middle channel part 143 is connected between them. Therefore, the lower end opening of the lower flow path portion 142 is connected to the upper end opening of the upper flow path portion 135 of the venturi block 131 in a state where the nozzle block is assembled to the venturi block 131.
 図1に戻り、実施形態では、ベースブロック120の下に流路ブロック150が着脱自在に取り付けられている。流路ブロック150は流路151を備えている。流路151は、流路ブロック150がベースブロック120に組み合わされた状態で、ベースブロック120の流路123と共に一つの液体供給流路152を形成している。 Returning to FIG. 1, in the embodiment, a flow path block 150 is detachably attached under the base block 120. The flow path block 150 includes a flow path 151. The flow channel 151 forms one liquid supply flow channel 152 together with the flow channel 123 of the base block 120 in a state where the flow channel block 150 is combined with the base block 120.
 図示するように、流路ブロック150の流路151は、中心軸112に沿って流路ブロック上面から該流路ブロック150内を下方に伸びる垂直流路部分153と、該垂直流路部分153の下端から流路ブロック内を該流路ブロック側面まで伸びる水平流路部分154によって構成されている。 As shown in the drawing, the flow path 151 of the flow path block 150 includes a vertical flow path portion 153 extending downward from the upper surface of the flow path block along the central axis 112 and the vertical flow path portion 153. A horizontal flow path portion 154 extends from the lower end to the flow path block side surface in the flow path block.
 容器ブロック110とベースブロック120には、容器ブロック110の傾斜底面116からベースブロック120の外周側面に向かって伸びる液体回収流路155が形成されている。液体回収流路155は、容器傾斜底面116から容器底面に向かって容器底部内を貫通する上段垂直流路部分156と、ベースブロック上面から該ベースブロック内を下方に伸びる下段垂直流路部分157と、該下段垂直流路部分157の下端からベースブロック内を該ベースブロック側面まで伸びる水平流路部分158によって構成されている。 In the container block 110 and the base block 120, a liquid recovery channel 155 extending from the inclined bottom surface 116 of the container block 110 toward the outer peripheral side surface of the base block 120 is formed. The liquid recovery channel 155 includes an upper vertical channel portion 156 that passes through the inside of the container bottom from the container inclined bottom surface 116 toward the container bottom surface, and a lower vertical channel portion 157 that extends downward from the upper surface of the base block in the base block. , A horizontal flow path portion 158 extending from the lower end of the lower vertical flow path portion 157 in the base block to the side surface of the base block.
 図面が複雑になるのを防止するために、図1には一つの液体回収流路155のみを示すが、複数の液体回収流路155を中心軸の周りに均等に設けてもよい。 In order to prevent the drawing from becoming complicated, only one liquid recovery channel 155 is shown in FIG. 1, but a plurality of liquid recovery channels 155 may be provided evenly around the central axis.
 上述した複数のブロックはそれぞれ、適当な連結手段によって隣接するブロックと分離可能に連結される。また、上述した複数のブロックはそれぞれ、隣接するブロックとの間に適当なシールが形成されている。例えば、容器ブロック110のベースブロック接触面又はベースブロック120の容器接触面には、縦穴122と液体回収流路155を囲む環状溝(図示せず)が形成され、そこにOリング等のシール部材が配置される。同様に、ベースブロック120の流路ブロック接触面又は流路ブロック150のベースブロック接触面には、液体供給流路152を囲む管状溝が形成され、そこにOリング等のシール部材が配置される。したがって、隣接するブロックの境界から液体が漏れることはない。 Each of the plurality of blocks described above is detachably connected to an adjacent block by appropriate connection means. In addition, each of the plurality of blocks described above has an appropriate seal formed between adjacent blocks. For example, the base block contact surface of the container block 110 or the container contact surface of the base block 120 is formed with an annular groove (not shown) surrounding the vertical hole 122 and the liquid recovery channel 155, and a sealing member such as an O-ring is formed there. Is placed. Similarly, a tubular groove surrounding the liquid supply channel 152 is formed on the channel block contact surface of the base block 120 or the base block contact surface of the channel block 150, and a seal member such as an O-ring is disposed there. . Accordingly, liquid does not leak from the boundary between adjacent blocks.
[ポンプユニット]
 ポンプユニット160はポンプ161を有する。ポンプ161は、非容積式ポンプ、容積式ポンプ、特殊型ポンプのいずれであってもよい。非容積式ポンプはまた、遠心ポンプ(渦巻きポンプ、ディフューザポンプ)、斜流ポンプ(渦巻きポンプ、ディフューザポンプ)、軸流ポンプのいずれであってもよい。
[Pumping unit]
The pump unit 160 has a pump 161. The pump 161 may be any of a non-positive displacement pump, a positive displacement pump, and a special type pump. The non-displacement pump may be any of a centrifugal pump (a vortex pump and a diffuser pump), a mixed flow pump (a vortex pump and a diffuser pump), and an axial flow pump.
 ポンプ161はポンプケーシング162を有する。ポンプケーシング162は、吸入口163と、吐出口164と、これら吸入口163と吐出口164を接続するポンプ流路165を備えている。ポンプ流路165は、吸入口163から液体を吸引するとともに吐出口164から液体を排出する駆動部166を備えている。例えば、渦巻きポンプの場合、駆動部は羽根車(インペラ)で、この羽根車はポンプケーシングの外部に設けられたモータ167に駆動連結されている。 The pump 161 has a pump casing 162. The pump casing 162 includes a suction port 163, a discharge port 164, and a pump flow path 165 that connects the suction port 163 and the discharge port 164. The pump flow path 165 includes a drive unit 166 that sucks liquid from the suction port 163 and discharges liquid from the discharge port 164. For example, in the case of a centrifugal pump, the drive unit is an impeller, and this impeller is drivingly connected to a motor 167 provided outside the pump casing.
 実施形態において、ポンプ流路165の最下位置に、液体抽出口168が設けてある。 In the embodiment, a liquid extraction port 168 is provided at the lowest position of the pump flow path 165.
[液体移送ユニット]
 液体移送ユニット170は、液体供給管171と液体回収管172を有する。一端と他端を有する液体供給管171は、ポンプ吐出口164と液体供給流路152とを接続し、前記ポンプ吐出口164に接続された他端から液体供給流路152に接続された一端に向かって水平であるか、または0度を超える上り勾配を有する。一端と他端を有する液体回収管172は、ポンプ吸入口163に接続された他端から液体回収流路155に接続された一端に向かって水平であるか、または0度を超える上り勾配を有する。
[Liquid transfer unit]
The liquid transfer unit 170 has a liquid supply pipe 171 and a liquid recovery pipe 172. The liquid supply pipe 171 having one end and the other end connects the pump discharge port 164 and the liquid supply channel 152, and connects the other end connected to the pump discharge port 164 to one end connected to the liquid supply channel 152. It is horizontal towards or has an upslope greater than 0 degrees. The liquid recovery pipe 172 having one end and the other end is horizontal from the other end connected to the pump suction port 163 toward one end connected to the liquid recovery flow path 155 or has an upward gradient exceeding 0 degree. .
[気体吸入ユニット]
 気体吸入ユニット180は気体吸入管181を有する。気体吸入管181は、一端がベンチュリブロック131の気体供給孔124に接続されており、他端の気体吸込口182が大気に開放され、または、適当な気体ボンベ(図示せず)に接続されている。気体吸入管181は、他端(気体吸入口182)から一端に向かって順番に、流量調整弁183、流量センサ184、逆止弁185を備えている。
[Gas intake unit]
The gas suction unit 180 has a gas suction pipe 181. One end of the gas suction pipe 181 is connected to the gas supply hole 124 of the venturi block 131, and the gas suction port 182 at the other end is opened to the atmosphere or connected to an appropriate gas cylinder (not shown). Yes. The gas suction pipe 181 includes a flow rate adjustment valve 183, a flow rate sensor 184, and a check valve 185 in order from the other end (the gas suction port 182) toward one end.
[動作]
 以上の構成を備えた液体混合装置10を使い、水性液体(分散媒)中に疎水性液体(分散質)を分散してエマルジョンを得る乳化処理について説明する。
[motion]
An emulsification process for obtaining an emulsion by dispersing a hydrophobic liquid (dispersoid) in an aqueous liquid (dispersion medium) using the liquid mixing apparatus 10 having the above configuration will be described.
 乳化処理では、水性液体と疎水性液体を所定の割合で混合した混合液190を混合室111に収容し、ポンプ161を駆動する。これにより、混合室111内の混合液190は、容器ブロック110の傾斜底面116に形成された排出口(出口)117(すなわち、容器底部内を貫通する上段垂直流路部分156の上端開口)から、液体回収流路155及び液体回収管172を通り、ポンプ吸入口163に到達するまでの液体回収路192を経て、ポンプ流路165に吸い込まれる。 In the emulsification process, a liquid mixture 190 in which an aqueous liquid and a hydrophobic liquid are mixed at a predetermined ratio is accommodated in the mixing chamber 111 and the pump 161 is driven. Thereby, the mixed liquid 190 in the mixing chamber 111 is discharged from the discharge port (exit) 117 formed on the inclined bottom surface 116 of the container block 110 (that is, the upper end opening of the upper vertical channel portion 156 passing through the container bottom). Then, the liquid is sucked into the pump flow path 165 through the liquid recovery path 155 and the liquid recovery pipe 172, and then through the liquid recovery path 192 until reaching the pump suction port 163.
 ポンプ161の内部に吸引された混合液190は、ポンプ流路165を通り、吐出口164から吐出される。 The mixed liquid 190 sucked into the pump 161 passes through the pump flow path 165 and is discharged from the discharge port 164.
 ポンプ吐出口164から吐出した混合液は、ポンプ吐出口164から、液体供給管171と液体供給流路152を通り、ベンチュリブロック131の流路132に送られる。ベンチュリブロック131に達した混合液190は、大きな断面の下段流路部分133から小さな断面の中段流路部分134を通り大きな断面の上段流路部分135に入る。このとき、中段流路部分134を通る混合液の流速が増加することによって、該中段流路部分134に開口した吸気孔136に負圧が発生する。その結果、気体吸入管181を通じて吸引された気体が吸気孔136から中段流路部分134を流れる混合液190に混合される。 The liquid mixture discharged from the pump discharge port 164 is sent from the pump discharge port 164 to the flow channel 132 of the venturi block 131 through the liquid supply pipe 171 and the liquid supply flow channel 152. The mixed liquid 190 that has reached the venturi block 131 passes from the lower flow path portion 133 having a large cross section through the middle flow path portion 134 having a small cross section and enters the upper flow path portion 135 having a large cross section. At this time, when the flow rate of the mixed liquid passing through the middle flow path portion 134 increases, a negative pressure is generated in the intake hole 136 opened to the middle flow path portion 134. As a result, the gas sucked through the gas suction pipe 181 is mixed with the mixed liquid 190 flowing through the middle flow path portion 134 from the suction hole 136.
 気体吸入管181から吸引される気体の量は、流量センサ184の出力を見ながら、流量調整弁183で調整できる The amount of gas sucked from the gas suction pipe 181 can be adjusted by the flow rate adjustment valve 183 while watching the output of the flow rate sensor 184.
 混合液190に混合された気体は、上段流路部分135に入ると渦を発生し、強い剪断場を形成する。その結果、吸引された気体が微細化され、マイクロバブル又はウルトラファインバブル(両者を含めて「ファインバブル」という。)を大量に含む混合液が生成される。同時に、ファインバブルの存在下で混合液は強い剪断作用を受け、疎水性液体が水性液体中に分散する。 When the gas mixed in the liquid mixture 190 enters the upper flow path portion 135, a vortex is generated to form a strong shear field. As a result, the sucked gas is refined, and a mixed liquid containing a large amount of microbubbles or ultrafine bubbles (including both of them is referred to as “fine bubbles”) is generated. At the same time, the liquid mixture is subjected to a strong shearing action in the presence of fine bubbles, and the hydrophobic liquid is dispersed in the aqueous liquid.
 大量のファインバブルを含む混合液は、ベンチュリブロック131からノズルブロック140の流路141に送られると、ノズルブロック140の内周面に形成された螺旋溝145に沿って上昇する液体の影響を受けて螺旋上昇流(すなわち、剪断場)を形成し、ノズルブロック140の上端噴射口146(入口)(図3参照)から混合室111に噴射される。このように、ポンプ161の吐出口164からノズルブロック140の上端噴射口146までの液体供給路191を移送された混合液とファインバルブは、該上端噴射口146から噴射されて混合室111内に螺旋噴射流を形成する。したがって、混合室111に噴射された混合液は、ファインバブルの存在下で再び剪断作用を受ける。その結果、疎水性液体が水性液体中に均一に更に分散される。 When the liquid mixture containing a large amount of fine bubbles is sent from the venturi block 131 to the flow path 141 of the nozzle block 140, it is affected by the liquid rising along the spiral groove 145 formed on the inner peripheral surface of the nozzle block 140. Thus, a spiral upward flow (that is, a shearing field) is formed, and is injected into the mixing chamber 111 from the upper end injection port 146 (inlet) of the nozzle block 140 (see FIG. 3). As described above, the liquid mixture and the fine valve transferred through the liquid supply path 191 from the discharge port 164 of the pump 161 to the upper end injection port 146 of the nozzle block 140 are injected from the upper end injection port 146 into the mixing chamber 111. A spiral jet is formed. Therefore, the liquid mixture injected into the mixing chamber 111 is subjected to a shearing action again in the presence of fine bubbles. As a result, the hydrophobic liquid is further uniformly dispersed in the aqueous liquid.
 ノズルブロック140から混合室111に噴射された混合液190は、ノズルブロック140の上端噴射口146から上方に向かって紡錘状に広がる噴射領域193を上昇する。このとき、比較的大きなバブルは、浮力の影響を受けて混合室111を上方に移動して水面に達する。一方、混合液に含まれるファインバブルは、混合室111内に形成される混合液の下降流(旋回流)に乗って下降し、容器底部の傾斜底面116に形成された排出口117から液体回収流路155に取り出される。 The mixed liquid 190 injected from the nozzle block 140 into the mixing chamber 111 rises from the upper end injection port 146 of the nozzle block 140 upward in the injection region 193 that spreads in a spindle shape. At this time, the relatively large bubble is moved upward in the mixing chamber 111 under the influence of buoyancy and reaches the water surface. On the other hand, the fine bubbles contained in the mixed liquid descend on the downward flow (swirl flow) of the mixed liquid formed in the mixing chamber 111 and recover the liquid from the discharge port 117 formed on the inclined bottom surface 116 at the bottom of the container. It is taken out to the flow path 155.
 その後、液体回収流路155から液体回収管172を通り、吸入口163からポンプ161内の流路165に送られた混合液190は、ポンプ161内で回転する羽根車166等によって再び強い剪断作用を受け、疎水性液体が更に水性液体中に分散する。 Thereafter, the liquid mixture 190 sent from the liquid recovery flow path 155 through the liquid recovery pipe 172 and sent from the suction port 163 to the flow path 165 in the pump 161 is again subjected to a strong shearing action by the impeller 166 rotating in the pump 161. The hydrophobic liquid is further dispersed in the aqueous liquid.
 このように、上述した実施形態の液体混合装置によれば、ファインバブルの存在下で、疎水性液体が水性液体中に均一に分散される。特に、上述した実施形態では、混合室111から混合液を吸い出す排出口117が噴射領域193の外側に配置されているため、噴射口146から混合室111に噴射された混合液190に含まれる大きなバブルが排出口117を通じてポンプ161に送られることがない。そのため、ポンプ161内に強い剪断場が形成され、疎水液体の分散が格段に良くなる。 Thus, according to the liquid mixing apparatus of the above-described embodiment, the hydrophobic liquid is uniformly dispersed in the aqueous liquid in the presence of the fine bubbles. In particular, in the above-described embodiment, since the discharge port 117 for sucking out the mixed liquid from the mixing chamber 111 is disposed outside the injection region 193, the large size contained in the mixed liquid 190 injected into the mixing chamber 111 from the injection port 146. Bubbles are not sent to the pump 161 through the outlet 117. Therefore, a strong shear field is formed in the pump 161, and the dispersion of the hydrophobic liquid is remarkably improved.
 以上のようにして水性液体中に疎水性液体が均一に分散された混合液は、ポンプ161の液体抽出口168から抽出される。このとき、図1に示すように、液体抽出口168は、液体混合装置10の最下位置に設けてあるので、液体抽出口168を開くと、液体混合装置10の各部に存在する混合液がすべて液体抽出口168に集まる。したがって、その後の分解洗浄が容易に行える。 The mixed liquid in which the hydrophobic liquid is uniformly dispersed in the aqueous liquid as described above is extracted from the liquid extraction port 168 of the pump 161. At this time, as shown in FIG. 1, since the liquid extraction port 168 is provided at the lowest position of the liquid mixing device 10, when the liquid extraction port 168 is opened, the liquid mixture present in each part of the liquid mixing device 10 is All gather at the liquid extraction port 168. Therefore, the subsequent disassembly and cleaning can be easily performed.
 なお、乳化した混合液に不純物が含まれないように、少なくとも液体混合装置において混合液と接触する部分はステンレス材料で構成することが好ましい。 In addition, it is preferable that at least a portion in contact with the liquid mixture in the liquid mixing apparatus is made of a stainless material so that the emulsified liquid mixture does not contain impurities.
 上述した液体混合装置は、種々改変可能である。 The liquid mixing apparatus described above can be variously modified.
 例えば、上述の実施形態では、ノズルブロック140に円錐台形状の流路を形成するとともにその流路内面に螺旋溝を形成することによって混合液の螺旋流を形成したが、他の構造によって螺旋流を形成することができる。例えば、図3(B)に示すノズルブロック240は、所定のピッチ円錐角と歯数を有する内歯形のはすば傘歯車(ヘリカルベベルギヤ)241又はまがりば傘歯車(スパイラルベベルギヤ)と、これらの傘歯車と同じ歯数とピッチ円錐角を有する外歯形のはすば傘歯車(ヘリカルベベルギヤ)242又はまがりば傘歯車(スパイラルベベルギヤ)をかみ合わせて構成されており、これら2つの歯車の歯の隙間から混合液を噴射させて螺旋流を形成するものである。また、図3(C)は、ノズルブロックを螺旋ノズル340で構成した例である。 For example, in the above-described embodiment, a spiral flow of the mixed liquid is formed by forming a truncated cone-shaped flow path in the nozzle block 140 and forming a spiral groove on the inner surface of the flow path. Can be formed. For example, the nozzle block 240 shown in FIG. 3B includes an internal helical helical gear (helical bevel gear) 241 or a spiral bevel gear (spiral bevel gear) having a predetermined pitch cone angle and the number of teeth. An externally toothed helical bevel gear (helical bevel gear) 242 or spiral bevel gear (spiral bevel gear) having the same number of teeth and pitch cone angle as the bevel gear is configured, and the gap between the teeth of these two gears The mixed liquid is jetted from to form a spiral flow. FIG. 3C shows an example in which the nozzle block is constituted by a spiral nozzle 340.
 上述した実施形態では、ファインバブルを生成するためにベンチュリ方式を採用したが、その他の方式、例えば、加圧溶解法、キャビテーション法、エジェクタ方式、旋回流方式、スタティックミキサー方式のいずれを採用してもよい。 In the above-described embodiment, the venturi method is used to generate fine bubbles, but other methods such as a pressure dissolution method, a cavitation method, an ejector method, a swirl flow method, and a static mixer method are adopted. Also good.
 上述の実施形態では、混合室の底部から上方に向けて混合液を噴射したが、混合室の側壁に噴射口を配置し、この噴射口から混合室に対して水平方向又は斜め上方に向けて混合液を噴射してもよい。 In the above-described embodiment, the mixed liquid is jetted upward from the bottom of the mixing chamber. However, the jet port is disposed on the side wall of the mixing chamber, and the jet port is directed horizontally or obliquely upward with respect to the mixing chamber. You may inject a liquid mixture.
2.本発明に係る液体混合装置における気体導入の影響
 本発明者は、サイズが幅320 mm×奥行250 mm×高さ250 mmのサイズおよび約15kgの重量を有する卓上型の気液せん断方式の流体混合装置を作製した。その内部構造は、図1に示す液体混合装置10と同等であるが、気体の導入方式を調べるために、気体供給ユニット180と同様の気体供給ユニットを、ポンプ吸入口163の直前、かつ、液体回収管172上に取り付けた(図示せず)。
2. Effect of gas introduction in the liquid mixing apparatus according to the present invention The inventor of the present invention is a table-type gas-liquid shearing type fluid mixing having a size of width 320 mm × depth 250 mm × height 250 mm and a weight of about 15 kg. A device was made. The internal structure is the same as that of the liquid mixing apparatus 10 shown in FIG. 1, but in order to investigate the gas introduction method, a gas supply unit similar to the gas supply unit 180 is provided immediately before the pump inlet 163 and liquid. Mounted on the collection tube 172 (not shown).
 上記した流体混合装置において、気体導入の場所によるポンプ性能への影響を調べた。実施例および比較例では、導入する気体として空気を用いるため「エア導入」という。流量を測定するための流量計をポンプ吐出口164と流体供給流路152との間、すなわち、液体供給管171上に設置し、混合室111に十分量の水を投入し、ポンプモーター4,000 rpmで水を循環させた。本発明の液体混合装置の使用において、「十分量」とは、ノズルブロックから混合室に噴射された混合液がノズルブロックの上端噴射口から上方に向かって紡錘状に広がる噴射領域を形成できる量をいう。投入する液体の量に応じて、混合室内部の断面積を変更することによって、容器ブロックの傾斜底面に形成された排出口の上端から水面までの距離が50 mm以上、好ましくは100 mm以上となるようにする。 In the above fluid mixing device, the influence on the pump performance by the place of gas introduction was investigated. In Examples and Comparative Examples, since air is used as the gas to be introduced, it is referred to as “air introduction”. A flow meter for measuring the flow rate is installed between the pump discharge port 164 and the fluid supply flow path 152, that is, on the liquid supply pipe 171, and a sufficient amount of water is introduced into the mixing chamber 111, and the pump motor is 4,000 rpm. The water was circulated. In the use of the liquid mixing apparatus of the present invention, the “sufficient amount” means an amount capable of forming an injection region in which the liquid mixture injected from the nozzle block into the mixing chamber forms a spindle shape upward from the upper end injection port of the nozzle block. Say. The distance from the upper end of the discharge port formed on the inclined bottom surface of the container block to the water surface is changed to 50 mm or more, preferably 100 mm or more by changing the cross-sectional area inside the mixing chamber according to the amount of liquid to be charged. To be.
比較例1:ポンプの上流からのエア導入
 比較のため、ポンプ吸入口163の直前に取り付けた気体供給ユニット(供給ユニットA)にてポンプ上流からエア導入した時のポンプ吐出量の変動を調べた結果を表1に示し、エア導入量の関数でポンプ吐出量低下率をプロットしたグラフを図4に示す。
Comparative Example 1: Air introduction from the upstream side of the pump For comparison, the fluctuation of the pump discharge amount when the air was introduced from the upstream side of the pump by the gas supply unit (supply unit A) attached immediately before the pump suction port 163 was examined. A result is shown in Table 1, and the graph which plotted the pump discharge amount decreasing rate as a function of the air introduction amount is shown in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
実施例1:ポンプの下流からのエア導入
 本発明に従い、気体供給ユニット180(気体供給ユニットB)にてポンプ下流からエア導入した時のポンプ吐出量の変動を調べた結果を表2に示し、エア導入量の関数でポンプ吐出量低下率をプロットしたグラフを図4に示す。
Example 1: Air introduction from downstream of pump According to the present invention, Table 2 shows the results of examining the variation in pump discharge when air is introduced from downstream of the pump by gas supply unit 180 (gas supply unit B). FIG. 4 shows a graph in which the pump discharge rate reduction rate is plotted as a function of the air introduction amount.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1および2ならびに図4のグラフから分かるように、本発明に従い、ポンプ下流からエア導入すれば、ポンプ吐出量を低下させるような悪影響を及ぼす現象は発生しないことが確認できた。 As can be seen from Tables 1 and 2 and the graph of FIG. 4, it was confirmed that when air was introduced from the downstream side of the pump according to the present invention, a phenomenon that adversely affected the pump discharge rate did not occur.
3.本発明に係る液体混合装置を用いたエマルジョンの調製
 本発明に係るエマルジョンの調製方法は、少なくとも、入口と出口を備えた混合室と、吸入口と吐出口を有するポンプとを備え、前記出口と前記吸入口とが流体的に接続され、前記吐出口と前記入口とが流体的に接続され、前記ポンプの駆動に基づいて、前記混合室に貯蔵されている混合液体を前記出口から吸引し、前記ポンプを介して、前記吐出口から吐出し、前記吐出される混合液体にファインバブルを供給した後、ファインバブルが供給された混合液体を前記混合室に噴射し、前記混合室に噴射される混合液の噴射領域の外側に前記出口が配置されていることを特徴とする液体混合装置を用いてエマルジョンを調製する方法であって、
  前記混合液体は、水性液体および前記水性液体と非相溶性の疎水性液体を含み、かつ、水性液体と疎水性液体との界面における界面張力を低下させる機能を有する界面活性剤ならびにエマルジョンに添加しても界面張力を低下させる作用を有しないもののうち、塩、水素結合性分子、およびアルコール類のいずれか一種類から選択される添加剤を含まない。
3. Preparation of emulsion using liquid mixing apparatus according to the present invention A method for preparing an emulsion according to the present invention comprises at least a mixing chamber having an inlet and an outlet, and a pump having an inlet and an outlet, The suction port is fluidly connected, the discharge port and the inlet are fluidly connected, and based on the driving of the pump, the mixed liquid stored in the mixing chamber is sucked from the outlet, After the fine bubbles are discharged from the discharge port via the pump and supplied to the discharged mixed liquid, the mixed liquid supplied with the fine bubbles is injected into the mixing chamber and then injected into the mixing chamber. A method of preparing an emulsion using a liquid mixing apparatus, characterized in that the outlet is arranged outside a jetting region of a mixed liquid,
The mixed liquid includes an aqueous liquid and a hydrophobic liquid that is incompatible with the aqueous liquid, and is added to a surfactant and an emulsion having a function of reducing interfacial tension at the interface between the aqueous liquid and the hydrophobic liquid. However, it does not contain an additive selected from any one of salts, hydrogen-bonding molecules, and alcohols among those that do not have an effect of reducing the interfacial tension.
 本発明に係るエマルジョンの調製は、限定されないが、本発明に係る液体混合装置10を用いる。本発明に係る流体混合装置を用いて、水とオレイン酸1.0体積%のエマルジョンを調製した。タンク1に水を990 mL投入し、オレイン酸10 mLを投入した。その後、ポンプモーター4,000 rpmで10分間液体を循環させた。 Preparation of the emulsion according to the present invention is not limited, but the liquid mixing apparatus 10 according to the present invention is used. An emulsion of 1.0% by volume of water and oleic acid was prepared using the fluid mixing apparatus according to the present invention. Tank 1 was charged with 990 L of water and oleic acid 10 L. Thereafter, the liquid was circulated for 10 minutes at a pump motor of 4,000 rpm.
比較例2:エア導入なしのエマルジョン調製
 比較のため、エア導入なしで、液体を循環させた。10分後、液体抽出口168を開放して、エマルジョンを取り出した。
 取り出してから2日後および1ヵ月後に、マイクロスコープ(KEYENCE社製 VHX-6000)を用いて、得られた溶液を観察したところ(図5-A1,A2)、非常に不均質なエマルジョンしか得られないことが確認された。なお、マイクロスコープでは気泡は観察されなかった。
 目視観察によれば、取り出し直後、全体が均一に乳濁したエマルジョン溶液であった(図6-A1)。このエマルジョンを試薬ビンに入れて密封し、室温(約25℃)にて3日間静置したところ、白濁相と透明相(真の意味で透明ではないが、白濁相に対して、濁度が極端に低い相を意味する。)の分離が観察され(図6-A2)、さらに2か月間静置後には水とオレイン酸との完全相分離が観察され(図6-A3)、非常に不安定なエマルジョンであることが分かった。
Comparative Example 2: Preparation of emulsion without air introduction For comparison, liquid was circulated without air introduction. After 10 minutes, the liquid extraction port 168 was opened and the emulsion was taken out.
Two days and one month after removal, when the obtained solution was observed using a microscope (VHX-6000 manufactured by KEYENCE) (FIG. 5-A1, A2), only a very heterogeneous emulsion was obtained. Not confirmed. Note that no bubbles were observed with the microscope.
According to visual observation, it was an emulsion solution in which the whole was uniformly emulsified immediately after removal (FIG. 6-A1). This emulsion was put in a reagent bottle, sealed, and allowed to stand at room temperature (about 25 ° C.) for 3 days. As a result, a white turbid phase and a transparent phase (not transparent in the true sense, (Representing an extremely low phase) was observed (Fig. 6-A2), and after standing for 2 months, complete phase separation between water and oleic acid was observed (Fig. 6-A3). It was found to be an unstable emulsion.
実施例2:エア導入ありのエマルジョン調製
 本発明に従い、ファインバブル供給部130にてポンプ下流から100 cc/分にてエア導入しながら液体を循環させた。10分後、液体抽出口168を開放して、エマルジョンを取り出した。
 取り出してから2日後および1ヵ月後に、マイクロスコープ(KEYENCE社製 VHX-6000)を用いて、得られた溶液を観察したところ(図5-B1,B2)、オレイン酸がミクロンオーダーで均質に水に微分散されたエマルジョンが得られたことが確認された。画像解析により、エマルジョンの平均径は0.73 μmであった。なお、マイクロスコープでは気泡は観察されなかった。
 目視観察によれば、取り出し直後、全体が均一に乳濁したエマルジョン溶液であった(図6-B1)。このエマルジョンを試薬ビンに入れて密封し、室温(約25℃)にて3日間静置したが、白濁相と透明相との分離は観察されず(図6-B2)、さらに2か月間静置後も、上記の分離も水とオレイン酸との相分離も観察されず(図6-B3)、非常に安定なエマルジョンであることが分かった。
Example 2 Preparation of Emulsion with Air Introduction According to the present invention, the liquid was circulated while introducing air at 100 cc / min from the downstream of the pump in the fine bubble supply unit 130. After 10 minutes, the liquid extraction port 168 was opened and the emulsion was taken out.
Two days and one month after removal, the obtained solution was observed using a microscope (VHX-6000 manufactured by KEYENCE) (FIG. 5-B1, B2). It was confirmed that a finely dispersed emulsion was obtained. By image analysis, the average diameter of the emulsion was 0.73 μm. Note that no bubbles were observed with the microscope.
According to visual observation, immediately after removal, the emulsion solution was uniformly emulsified (FIG. 6-B1). The emulsion was sealed in a reagent bottle and allowed to stand at room temperature (about 25 ° C.) for 3 days, but no separation between the cloudy phase and the transparent phase was observed (FIG. 6-B2), and the emulsion was allowed to stand for 2 months. After installation, neither the above-mentioned separation nor the phase separation of water and oleic acid was observed (FIG. 6-B3), and it was found that the emulsion was very stable.
 本発明に係る流体混合装置は複雑な機構を持たないため小型軽量化することが可能であり、いかなる添加剤も使用することなく、必要な水性液体および疎水性液体のみからなる安定なエマルジョンを簡便かつ迅速に調製することができる。すなわち、多品種少量のエマルジョンを作成することができるので、研究開発に適している。製品開発においても、消費者の要望に即座に応えて、その場で提供することができるので、例えば、化粧品に保存料などが不要となるため、化学物質に過敏な消費者に対して最良の製品を提供することができる。さらには、消費者が自ら希望の成分のみを含む化粧品などを作成することもできる。
 また、地球の温暖化や家屋の気密化にともなって、衛生害虫対策への需要が増している。従来、有力な手法であった化学薬剤を用いる害虫駆除は人にとっても有害なため、近年、その使用料は減少しており、人に優しい製品開発が求められているからである。本発明の技術を用いれば、小型装置を現場に持ち込み、その場で、天然有効成分と水のみからなる防虫作用を有するエマルジョンを作成して防除作業を行うことができる。例えば、マラリアの流行地域において、現地の人々が現場で調製したエマルジョン防虫剤を蚊帳に塗布して使用すれば、病気の撲滅を促進することが期待される。
Since the fluid mixing apparatus according to the present invention does not have a complicated mechanism, it can be reduced in size and weight, and a stable emulsion composed only of necessary aqueous liquid and hydrophobic liquid can be easily obtained without using any additive. And can be prepared quickly. That is, it is suitable for research and development because it is possible to produce a large variety of small amounts of emulsion. In product development, it is possible to respond immediately to consumer demand and provide it on the spot. For example, since preservatives are not required for cosmetics, it is best for consumers who are sensitive to chemical substances. Products can be provided. Furthermore, the cosmetics etc. which a consumer contains only the component which a consumer desires can also be created.
In addition, with the global warming and airtightness of houses, demand for sanitary pest control is increasing. This is because pest control using a chemical agent, which has been a powerful technique in the past, is harmful to humans, and in recent years, the usage fee has decreased, and human-friendly product development is required. By using the technology of the present invention, a small apparatus can be brought into the field, and an insecticidal action emulsion composed of only natural active ingredients and water can be prepared on the spot to carry out the control work. For example, in the endemic areas of malaria, the use of emulsion insect repellents prepared by local people on mosquito nets is expected to promote the eradication of diseases.
10:液体混合装置
100:混合ユニット
110:容器ブロック
111:混合室
112:中心軸
113:蓋
114:圧力調整弁
115:円形穴
116:傾斜底面
117:排出口(出口)
120:ベースブロック
121:円形穴
122:縦穴
123:流路
124:気体供給孔
130:ファインバブル供給部
131:ベンチュリブロック
132:流路
133:下段流路部分
134:中段流路部分
135:上段流路部分
136:吸気孔
137:マニホールド
140:ノズルブロック
141:流路
142:下段流路部分
143:中段流路部分
144:上段流路部分
145:溝(螺旋流形成部)
146:上端噴射口(入口)
150:流路ブロック
151:流路
152:液体供給流路
153:垂直流路部分
154:水平流路部分
155:液体回収流路
156:上段垂直流路部分
157:下段垂直流路部分
158:水平流路部分
160:ポンプユニット
161:ポンプ
162:ポンプケーシング
163:吸入口
164:吐出口
165:ポンプ流路
166:駆動部
167:モータ
168:液体抽出口
170:液体移送ユニット
171:液体供給管
172:液体回収管
180:気体吸入ユニット
181:気体吸入管
182:気体吸込口
183:流量調整弁
184:流量センサ
185:逆止弁
190:混合液
191:液体供給路
192:液体回収路
193:噴射領域
10: Liquid mixing device 100: Mixing unit 110: Container block 111: Mixing chamber 112: Center shaft 113: Lid 114: Pressure adjusting valve 115: Circular hole 116: Inclined bottom surface 117: Discharge port (exit)
120: base block 121: circular hole 122: vertical hole 123: flow path 124: gas supply hole 130: fine bubble supply part 131: venturi block 132: flow path 133: lower flow path part 134: middle flow path part 135: upper flow Road portion 136: Intake hole 137: Manifold 140: Nozzle block 141: Channel 142: Lower channel portion 143: Middle channel portion 144: Upper channel portion 145: Groove (spiral flow forming portion)
146: Upper end injection port (inlet)
150: Channel block 151: Channel 152: Liquid supply channel 153: Vertical channel portion 154: Horizontal channel portion 155: Liquid recovery channel 156: Upper vertical channel portion 157: Lower vertical channel portion 158: Horizontal Channel portion 160: Pump unit 161: Pump 162: Pump casing 163: Suction port 164: Discharge port 165: Pump channel 166: Drive unit 167: Motor 168: Liquid extraction port 170: Liquid transfer unit 171: Liquid supply pipe 172 : Liquid recovery pipe 180: Gas suction unit 181: Gas suction pipe 182: Gas suction port 183: Flow rate adjustment valve 184: Flow rate sensor 185: Check valve 190: Liquid mixture 191: Liquid supply path 192: Liquid recovery path 193: Injection region

Claims (7)

  1.  入口(146)と出口(117)を備えた混合室(111)と、
     液体供給路(191)であって、前記液体供給路(191)は一端と他端を有し、前記液体供給路(191)の前記一端が前記入口(146)に接続された液体供給路(191)と、
     液体回収路(192)であって、前記液体回収路(192)は一端と他端を有し、前記液体回収路(192)の前記一端が前記出口(117)に接続された液体回収路(192)と、
     吸入口(163)と吐出口(164)を有し、前記吸入口(163)に前記液体回収路(192)の他端が接続され、前記吐出口(164)に前記液体供給路(191)の他端が接続されたポンプ(161)とを備え、
     前記ポンプ(161)の駆動に基づいて、前記混合室(111)に貯蔵されている2つの液体の混合液(190)を前記出口(117)から吸引し、前記液体回収路(192)、前記ポンプ(161)、及び前記液体供給路(191)を介して、前記入口(146)から前記混合室(111)に噴射する液体混合装置(10)であって、
     前記液体混合装置(10)は、前記液体供給路(191)を流れる前記混合液(190)にファインバブルを供給する、ベンチュリブロック(131)を備えるファインバブル供給部(130)を備えており、
     前記液体混合装置(10)は、さらに、気体吸入管(181)を有する気体吸入ユニットを備えており、前記気体吸入管(181)は、一端が前記ベンチュリブロック(131)の気体供給孔(124)に接続されており、他端の気体吸込口(182)が大気に開放され、または、気体ボンベに接続されており、
     前記混合室(111)の入口(146)から前記混合室(111)に噴射される前記混合液(190)の噴射領域(193)の外側に前記混合室(111)の出口(117)が配置されており、
     前記ファインバブル供給路(130)は、前記入口(146)に向かって流れる混合液(190)に、前記入口(146)の中心軸(112)を中心とする螺旋運動を与える螺旋流形成部を備えており、
     前記螺旋流形成部は、
    (a)前記入口(146)に向かって次第に内径が小さくなる円錐台形状の流路の内面に螺旋溝を形成した螺旋流形成部、
    (b)所定の歯数と所定のピッチ円錐角を有するはすば傘歯車又はまがりば傘歯車からなる内歯形傘歯車と前記内歯型傘歯車と同じ歯数と同じピッチ円錐角を有する外歯形傘歯車を、前記内歯形傘歯車の上に前記外歯形傘歯車を載せるとともに前記内歯形傘歯車の歯と前記外歯形傘歯車の歯をかみ合わせて前記内歯型傘歯車の歯と前記外歯形傘歯車の歯の間に螺旋状の隙間を形成した螺旋流形成部、または
    (c)螺旋ノズル(340)からなる螺旋流形成部のいずれかであることを特徴とする液体混合装置。
    A mixing chamber (111) with an inlet (146) and an outlet (117);
    A liquid supply path (191), wherein the liquid supply path (191) has one end and the other end, and the one end of the liquid supply path (191) is connected to the inlet (146) ( 191),
    A liquid recovery path (192), wherein the liquid recovery path (192) has one end and the other end, and the one end of the liquid recovery path (192) is connected to the outlet (117) ( 192),
    It has a suction port (163) and a discharge port (164), the other end of the liquid recovery path (192) is connected to the suction port (163), and the liquid supply path (191) is connected to the discharge port (164). A pump (161) connected to the other end of
    Based on the driving of the pump (161), a mixed liquid (190) of two liquids stored in the mixing chamber (111) is sucked from the outlet (117), and the liquid recovery path (192), A liquid mixing device (10) for injecting from the inlet (146) to the mixing chamber (111) via a pump (161) and the liquid supply path (191);
    The liquid mixing device (10) includes a fine bubble supply unit (130) including a venturi block (131) for supplying fine bubbles to the mixed liquid (190) flowing through the liquid supply path (191).
    The liquid mixing device (10) further includes a gas suction unit having a gas suction pipe (181). One end of the gas suction pipe (181) has a gas supply hole (124) of the venturi block (131). ), The gas inlet (182) at the other end is opened to the atmosphere, or connected to a gas cylinder,
    An outlet (117) of the mixing chamber (111) is disposed outside an injection region (193) of the mixed liquid (190) injected from the inlet (146) of the mixing chamber (111) into the mixing chamber (111). Has been
    The fine bubble supply channel (130) includes a spiral flow forming unit that imparts a spiral motion around the central axis (112) of the inlet (146) to the mixed liquid (190) flowing toward the inlet (146). Has
    The spiral flow forming part is
    (A) a spiral flow forming portion in which a spiral groove is formed on the inner surface of a truncated cone-shaped channel whose inner diameter gradually decreases toward the inlet (146);
    (B) An internal bevel gear comprising a helical bevel gear or a spiral bevel gear having a predetermined number of teeth and a predetermined pitch cone angle, and an outer having the same number of teeth and the same pitch cone angle as the internal gear bevel gear. The tooth-shaped bevel gear is placed on the inner-tooth bevel gear and the teeth of the inner-tooth bevel gear are engaged with the teeth of the inner-tooth bevel gear and the teeth of the outer-tooth bevel gear. A liquid mixing apparatus, wherein the liquid mixing device is either a spiral flow forming portion in which a spiral gap is formed between teeth of a tooth bevel gear, or (c) a spiral flow forming portion including a spiral nozzle (340).
  2.  前記螺旋流形成部は、
    (b)所定の歯数と所定のピッチ円錐角を有するはすば傘歯車又はまがりば傘歯車からなる内歯形傘歯車と前記内歯型傘歯車と同じ歯数と同じピッチ円錐角を有する外歯形傘歯車を、前記内歯形傘歯車の上に前記外歯形傘歯車を載せるとともに前記内歯形傘歯車の歯と前記外歯形傘歯車の歯をかみ合わせて前記内歯型傘歯車の歯と前記外歯形傘歯車の歯の間に螺旋状の隙間を形成した螺旋流形成部、または
    (c)螺旋ノズル(340)からなる螺旋流形成部のいずれかであることを特徴とする、請求項1に記載の液体混合装置。
    The spiral flow forming part is
    (B) An internal bevel gear comprising a helical bevel gear or a spiral bevel gear having a predetermined number of teeth and a predetermined pitch cone angle, and an outer having the same number of teeth and the same pitch cone angle as the internal gear bevel gear. The tooth-shaped bevel gear is placed on the inner-tooth bevel gear and the teeth of the inner-tooth bevel gear are engaged with the teeth of the inner-tooth bevel gear and the teeth of the outer-tooth bevel gear. It is either a spiral flow formation part which formed the helical clearance gap between the teeth of the tooth bevel gear, or (c) the spiral flow formation part which consists of a spiral nozzle (340), It is characterized by the above-mentioned. The liquid mixing apparatus as described.
  3.  前記ファインバブル供給部(130)は前記液体供給路(191)に設けられていることを特徴とする請求項1又は2に記載の液体混合装置。 The liquid mixing apparatus according to claim 1 or 2, wherein the fine bubble supply unit (130) is provided in the liquid supply path (191).
  4.  前記液体供給路(191)は、液体供給流路(152)と、一端と他端を有する液体供給管(171)とを含み、前記液体供給管(171)は、前記ポンプ吐出口(164)に接続された他端から液体供給流路(152)に接続された一端に向かって水平であるか、または0度を超える上り勾配を有し、前記液体回収路(192)は、液体回収流路(155)と、一端と他端を有する液体回収管(172)とを含み、前記液体回収管(172)は、前記ポンプ吸入口(163)に接続された他端から液体回収流路(155)に接続された一端に向かって水平であるか、または0度を超える上り勾配を有することを特徴とする請求項1~3いずれかに記載の液体混合装置。 The liquid supply path (191) includes a liquid supply flow path (152) and a liquid supply pipe (171) having one end and the other end, and the liquid supply pipe (171) is connected to the pump discharge port (164). From the other end connected to the liquid supply flow path (152) to the one end connected to the liquid supply flow path (152) or having an upward slope exceeding 0 degrees, the liquid recovery path (192) A liquid recovery pipe (172) having a path (155) and one end and the other end, and the liquid recovery pipe (172) is connected to the pump suction port (163) from the other end. The liquid mixing apparatus according to any one of claims 1 to 3, wherein the liquid mixing apparatus is horizontal toward one end connected to 155) or has an upward gradient exceeding 0 degree.
  5.  前記ポンプ(161)は、
     ポンプ吸入口(163)と、ポンプ吐出口(164)と、前記ポンプ吸入口(163)と前記ポンプ吐出口(164)を接続するポンプ流路(165)と備えたポンプケーシング(162)と、
     前記ポンプ流路(165)に配置され、前記ポンプ吸入口(163)から前記ポンプ吐出口(164)に向けて混合液を移送する駆動部(166)と、
     前記ポンプ流路(165)の混合液を抽出する液体抽出口(168)と
    を備えており、
     前記液体抽出口(168)は前記ポンプ流路(165)の最下位置に設けられていることを特徴とする請求項4に記載の液体混合装置。
    The pump (161)
    A pump casing (162) comprising a pump suction port (163), a pump discharge port (164), a pump flow path (165) connecting the pump suction port (163) and the pump discharge port (164),
    A drive unit (166) disposed in the pump flow path (165) and configured to transfer a mixed liquid from the pump suction port (163) toward the pump discharge port (164);
    A liquid extraction port (168) for extracting the mixed liquid of the pump flow path (165),
    The liquid mixing apparatus according to claim 4, wherein the liquid extraction port (168) is provided at a lowermost position of the pump flow path (165).
  6.  少なくとも、入口と出口を備えた混合室と、吸入口と吐出口を有するポンプと、ファインバブル供給部と、気体吸入管とを備え、前記出口と前記吸入口とが流体的に接続され、前記吐出口と前記入口とが流体的に接続され、前記ポンプの駆動に基づいて、前記混合室に貯蔵されている混合液体を前記出口から吸引し、前記ポンプを介して、前記吐出口から吐出し、前記ファインバブル供給部はベンチュリブロックを備え、前記気体吸入管は、一端が前記ベンチュリブロックの気体供給孔に接続されており、他端の気体吸込口が大気に開放され、または、気体ボンベに接続されており、前記気体吸入管を通じて前記気体供給孔から吸入された気体が、前記吐出された混合液体に混合されることによってファインバブルを供給した後、ファインバブルが供給された混合液体を前記混合室に噴射して、螺旋噴射流を形成し、前記混合室に噴射される混合液の噴射領域の外側に前記出口が配置されていることを特徴とする液体混合装置を用いてエマルジョンを調製する方法であって、
      前記混合液体は、水性液体および前記水性液体と非相溶性の疎水性液体からなる、エマルジョンの調製方法。
    At least a mixing chamber having an inlet and an outlet, a pump having a suction port and a discharge port, a fine bubble supply unit, and a gas suction pipe, wherein the outlet and the suction port are fluidly connected, and The discharge port and the inlet are fluidly connected, and based on the driving of the pump, the mixed liquid stored in the mixing chamber is sucked from the outlet and discharged from the discharge port through the pump. The fine bubble supply unit includes a venturi block, and one end of the gas suction pipe is connected to the gas supply hole of the venturi block, and the gas suction port at the other end is opened to the atmosphere, or a gas cylinder is provided. After the fine bubbles are supplied by the gas sucked from the gas supply holes through the gas suction pipe being mixed with the discharged mixed liquid, The mixed liquid supplied with the liquid is injected into the mixing chamber to form a spiral injection flow, and the outlet is disposed outside the injection region of the mixed liquid injected into the mixing chamber. A method of preparing an emulsion using a liquid mixing device, comprising:
    The method for preparing an emulsion, wherein the mixed liquid comprises an aqueous liquid and a hydrophobic liquid that is incompatible with the aqueous liquid.
  7.  請求項1~5いずれかに記載の液体混合装置を用いる、請求項6に記載のエマルジョンの調製方法。 The method for preparing an emulsion according to claim 6, wherein the liquid mixing apparatus according to any one of claims 1 to 5 is used.
PCT/JP2019/020385 2018-06-12 2019-05-23 Fluid-mixing apparatus and emulsion preparation method WO2019239833A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-111866 2018-06-12
JP2018111866A JP6557871B1 (en) 2018-06-12 2018-06-12 Fluid mixing apparatus and emulsion preparation method

Publications (1)

Publication Number Publication Date
WO2019239833A1 true WO2019239833A1 (en) 2019-12-19

Family

ID=67614792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020385 WO2019239833A1 (en) 2018-06-12 2019-05-23 Fluid-mixing apparatus and emulsion preparation method

Country Status (2)

Country Link
JP (1) JP6557871B1 (en)
WO (1) WO2019239833A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7125181B1 (en) * 2022-01-17 2022-08-24 株式会社Okutec Liquid mixing device
JP7177557B1 (en) * 2022-01-17 2022-11-24 株式会社Okutec Liquid mixing method and emulsion preparation method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7012399B1 (en) 2021-06-03 2022-02-14 トーフレ株式会社 Fine bubble generation unit and water supply system
JP7546921B2 (en) 2021-12-10 2024-09-09 株式会社サイエンス Bubble generating device and bubble generator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1094722A (en) * 1996-07-31 1998-04-14 Idec Izumi Corp Fine bubble feeder
JP2008019359A (en) * 2006-07-13 2008-01-31 Shinkawa Yoshiro Manufacturing method of emulsion composition and apparatus for emulsification
JP2009509978A (en) * 2005-09-28 2009-03-12 マードック ユニバーシティ Natural oil and / or synthetic essential oil dispersion in water
JP2011020096A (en) * 2009-07-17 2011-02-03 Sakura Color Products Corp Bubble generator
JP2011120974A (en) * 2009-12-08 2011-06-23 Osamu Shiraishi Equipment and method for reduction of carbon dioxide
JP2011206689A (en) * 2010-03-30 2011-10-20 Mie Univ Microbubble forming apparatus
JP2013000626A (en) * 2011-06-14 2013-01-07 Makoto Yamaguchi Fine air bubble generator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115443A (en) * 1987-10-28 1989-05-08 Mitsubishi Heavy Ind Ltd Emulsifying method with shock wave by electric discharge
JPH0767926A (en) * 1993-09-01 1995-03-14 Toto Ltd Fine bubble producer
JP3855203B2 (en) * 2004-04-05 2006-12-06 学校法人神奈川大学 Emulsifying dispersant, emulsifying dispersion method using the same, and emulsion
WO2011016529A1 (en) * 2009-08-06 2011-02-10 株式会社協和機設 Composition and process for production thereof
KR102166059B1 (en) * 2014-07-08 2020-10-15 다이또 가세이 고교 가부시끼가이샤 Oil-in-water emulsion composition and cosmetic substance
JP6548265B2 (en) * 2015-03-06 2019-07-24 国立大学法人信州大学 Emulsion
JP6869650B2 (en) * 2016-06-27 2021-05-12 三菱電機株式会社 Cleaning equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1094722A (en) * 1996-07-31 1998-04-14 Idec Izumi Corp Fine bubble feeder
JP2009509978A (en) * 2005-09-28 2009-03-12 マードック ユニバーシティ Natural oil and / or synthetic essential oil dispersion in water
JP2008019359A (en) * 2006-07-13 2008-01-31 Shinkawa Yoshiro Manufacturing method of emulsion composition and apparatus for emulsification
JP2011020096A (en) * 2009-07-17 2011-02-03 Sakura Color Products Corp Bubble generator
JP2011120974A (en) * 2009-12-08 2011-06-23 Osamu Shiraishi Equipment and method for reduction of carbon dioxide
JP2011206689A (en) * 2010-03-30 2011-10-20 Mie Univ Microbubble forming apparatus
JP2013000626A (en) * 2011-06-14 2013-01-07 Makoto Yamaguchi Fine air bubble generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7125181B1 (en) * 2022-01-17 2022-08-24 株式会社Okutec Liquid mixing device
JP7177557B1 (en) * 2022-01-17 2022-11-24 株式会社Okutec Liquid mixing method and emulsion preparation method

Also Published As

Publication number Publication date
JP6557871B1 (en) 2019-08-14
JP2019214012A (en) 2019-12-19

Similar Documents

Publication Publication Date Title
WO2019239833A1 (en) Fluid-mixing apparatus and emulsion preparation method
AU706995B2 (en) Pharmaceutical compositions
EP2463022B1 (en) Composition and process for production thereof
US8784848B2 (en) Method for preparing a stable oil-in-water emulsion
DE69015642T2 (en) PAUCILAMELLAR LIPID VESICLES USING SINGLE CHAIN NON-PHOSPHOLIPIDSIDE WITH LOCALIZED CHARGE.
US20070003497A1 (en) Device and method for mixing liquids and oils or particulate solids and mixtures generated therefrom
Tang et al. Design and evaluation of aspirin‐loaded water‐in‐oil‐in‐water submicron multiple emulsions generated using two‐stage ultrasonic cavitational emulsification technique
Wang et al. Preparation and characterization of micro/nano-emulsions containing functional food components
US3499606A (en) Invert emulsion spray apparatus and method
EP2377505B1 (en) Method for producing liposomal drugs and a device for producing a liposome
DE60301330T2 (en) PROCESS FOR PREPARING BILIQUID FOAM COMPOSITIONS
JP2020081986A (en) Liquid mixer
JP2009183809A (en) Method for preparing emulsified or dispersed material, and food, skin external preparation and medicine containing the material
JP2008296095A (en) Method and apparatus for generating nanobubble comprising useful substance
DE2045603B2 (en) DEVICE FOR MIXING A GAS IN A LIQUID
JP7193826B2 (en) Fine bubble generator
JP5143942B2 (en) Refinement mixing equipment
JP2011115674A (en) Micronization mixer
Nasiri et al. Food-grade nanoemulsions and their fabrication methods to increase shelf life
JP4879232B2 (en) Refinement mixing equipment
JP7125181B1 (en) Liquid mixing device
JP5611387B2 (en) Refinement mixing equipment
JP2010149089A (en) Method and apparatus for producing emulsion oil continuously
WO2006133273A2 (en) Device and method for mixing liquids and oils or particulate solids and mixtures generated therefrom
JP7177557B1 (en) Liquid mixing method and emulsion preparation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19819559

Country of ref document: EP

Kind code of ref document: A1