JPH06314886A - Multilayer board and manufacture thereof - Google Patents

Multilayer board and manufacture thereof

Info

Publication number
JPH06314886A
JPH06314886A JP10401193A JP10401193A JPH06314886A JP H06314886 A JPH06314886 A JP H06314886A JP 10401193 A JP10401193 A JP 10401193A JP 10401193 A JP10401193 A JP 10401193A JP H06314886 A JPH06314886 A JP H06314886A
Authority
JP
Japan
Prior art keywords
cavity
dielectric constant
printed wiring
epoxy resin
inorganic filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10401193A
Other languages
Japanese (ja)
Other versions
JP3335707B2 (en
Inventor
Hiroyuki Kuritani
弘之 栗谷
Shinsuke Hagiwara
伸介 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP10401193A priority Critical patent/JP3335707B2/en
Publication of JPH06314886A publication Critical patent/JPH06314886A/en
Application granted granted Critical
Publication of JP3335707B2 publication Critical patent/JP3335707B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PURPOSE:To obtain a low-cost multilayer board which provides an insulation layer with high permittivity, and what is more, excels in heat resistance and reliability by injecting and curing epoxy resin to which an inorganic filler of high permittivity and a curing agent are combined into a cavity formed between printed wiring boards laid out as opposed so that they may not come into contact with each other. CONSTITUTION:A forming die comprises a top force 1 and a bottom tool 2 and forms a cavity 3. A printed wiring board 4 is laid out in this cavity in such a fashion that its single side may come into contact with the inner surface of the cavity while the other side may not come into contact with each other, forming a cavity 5. A chemical compound, such as titanium dioxide and barium titanate as high permittivity of inorganic filler and epoxy resin to which phenol compound or the like is combined as a curing agent are heated and pressed so that they may fill up the cavity 5 from a spool 6 and cured. After cured, the forming die is opened so that it may be possible to obtain a multilayer foundation 8 having a high permittivity insulation layer 7. Then, they are drilled and a through hole 9 is made where through hole plating is performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子機器に用いられる
多層基板及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer substrate used in electronic equipment and a method for manufacturing the same.

【0002】[0002]

【従来の技術】電子機器の高速化および高密度化に伴
い、誤動作の原因となる外部ノイズや電子部品自体が発
生するノイズが問題となっている。これらのノイズを吸
収、除去する為のバイパスコンデンサを基板内部に形成
した構造の基板がある(特開昭53−68870号公
報、特開昭58−158996号公報、特開平3−20
1593号公報参照)。このような構造の基板では、コ
ンデンサの電極間には、誘電率が高い絶縁体が用いられ
る。
2. Description of the Related Art With the increase in speed and density of electronic equipment, external noise that causes malfunctions and noise generated by electronic components themselves have become a problem. There is a substrate having a structure in which a bypass capacitor for absorbing and removing these noises is formed inside the substrate (JP-A-53-68870, JP-A-58-158996, JP-A-3-20).
1593 gazette). In the substrate having such a structure, an insulator having a high dielectric constant is used between the electrodes of the capacitor.

【0003】このように、絶縁層の誘電率が高い多層基
板を製造する方法として、次の二つの方法が知られてい
る。
As described above, the following two methods are known as methods for manufacturing a multilayer substrate having a high dielectric constant of the insulating layer.

【0004】第一は、高誘電体粒子を含む樹脂ワニスを
繊維基材に含浸し、乾燥して得られた高誘電率プリプレ
グ10と銅はく11とを積層し、プレス成形して高誘電
率基板を得(図2(a))、この基板の銅はくを加工し
て内層回路12を形成して内層板13とし(図2
(b))、得られた内層板13と銅はく11とを、通常
のプリプレグ14を介して重ね、プレス成形して多層化
し(図2(c))、最後にドリル加工、表層の回路加工
及び外形加工を施して高誘電率絶縁層15を有する多層
基板16(図2(d))を得る方法である(特開昭61
−136281号公報参照)。
First, a resin varnish containing high-dielectric particles is impregnated into a fiber base material and dried to obtain a high dielectric constant prepreg 10 and a copper foil 11 which are laminated and press-molded to obtain a high dielectric constant. 2A is obtained (FIG. 2A), and the copper foil of this substrate is processed to form the inner layer circuit 12 to form the inner layer plate 13 (FIG. 2).
(B)), the inner layer plate 13 and the copper foil 11 thus obtained are stacked via a normal prepreg 14 and press-molded to form a multilayer (Fig. 2 (c)), and finally drilling and surface circuit This is a method in which a multilayer substrate 16 (FIG. 2 (d)) having a high dielectric constant insulating layer 15 is obtained by processing and outer shape processing (JP-A-61).
-136281).

【0005】絶縁層の誘電率が高い多層基板を製造する
第二の方法は、誘電率の高い充填剤を含有した熱可塑性
樹脂をシート状にし、積層、成形する方法である(特開
平3−201593号公報参照)。
A second method for producing a multi-layer substrate having a high dielectric constant of an insulating layer is a method of forming a thermoplastic resin containing a filler having a high dielectric constant into a sheet, laminating and molding the same (JP-A-3- See Japanese Patent Publication No. 201593).

【0006】[0006]

【発明が解決しようとする課題】第一の製造方法では、
ガラス布などの繊維基材が基板中で占める割合が20〜
50体積%と大きく、繊維基材が基板の誘電特性に与え
る影響が大きい。すなわち、基材の誘電率を高くできな
いため、絶縁層の誘電率が低くなり、残りの樹脂中に高
誘電体粒子を配合しても絶縁層全体の誘電率を増大させ
る効果が少ない。また、高誘電体粒子を多量に配合した
場合、ワニスの流動性が低下してプリプレグを作製でき
なかったり、金属はくとの接着性がよくない。
In the first manufacturing method,
The ratio of the fiber base material such as glass cloth in the substrate is 20 to
It is as large as 50% by volume, and the influence of the fiber base material on the dielectric properties of the substrate is large. That is, since the dielectric constant of the base material cannot be increased, the dielectric constant of the insulating layer becomes low, and even if high dielectric particles are mixed in the remaining resin, the effect of increasing the dielectric constant of the entire insulating layer is small. Further, when a large amount of high-dielectric particles are blended, the fluidity of the varnish is lowered and a prepreg cannot be produced, or the adhesiveness to metal foil is poor.

【0007】第二の製造方法では、成形温度での溶融樹
脂粘度が高くなるため、誘電率の高い充填剤を多量に配
合できず、絶縁層の誘電率を大きくできない。また、熱
可塑性樹脂は耐熱性が不十分なものが多く、耐熱性の良
好な樹脂は価格が高かったり成形温度が高いなどコスト
面で不利である。
In the second manufacturing method, since the viscosity of the molten resin at the molding temperature becomes high, a large amount of filler having a high dielectric constant cannot be blended, and the dielectric constant of the insulating layer cannot be increased. In addition, many thermoplastic resins have insufficient heat resistance, and resins having good heat resistance are disadvantageous in terms of cost such as high price and high molding temperature.

【0008】本発明は、かかる状況に鑑みなされたもの
で、誘電率が高い絶縁層を有し、かつ耐熱性、信頼性に
優れる多層基板を安価に提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide at low cost a multilayer substrate having an insulating layer having a high dielectric constant and excellent in heat resistance and reliability.

【0009】[0009]

【課題を解決するための手段】本発明は、互いに接しな
いように対向配置されたプリント配線板の間に形成され
た空隙に、高誘電率の無機充填剤及び硬化剤を配合した
エポキシ樹脂を注入硬化させてなる多層基板である。
According to the present invention, an epoxy resin containing a high dielectric constant inorganic filler and a curing agent is injected and cured into a void formed between printed wiring boards which are arranged so as not to contact each other. This is a multi-layer substrate.

【0010】本発明の多層基板は、成形型により形成さ
れたキャビティ内に、片面がキャビティ内面に接し、他
面が互いに接しないようにプリント配線板を対向配置
し、該プリント配線板間に形成された空隙に、高誘電率
の無機充填剤及び硬化剤を配合したエポキシ樹脂を注入
硬化させることによって製造される。以下、本発明を詳
細に説明する。
In the multi-layer substrate of the present invention, printed wiring boards are arranged facing each other in a cavity formed by a molding die so that one surface is in contact with the inner surface of the cavity and the other surfaces are not in contact with each other, and the printed wiring boards are formed between the printed wiring boards. It is manufactured by injecting and curing an epoxy resin in which a high-dielectric-constant inorganic filler and a curing agent are mixed into the formed voids. Hereinafter, the present invention will be described in detail.

【0011】本発明において用いられるエポキシ樹脂と
しては、電気、電子用絶縁樹脂として一般に使用されて
いるものが使用できる。特にオルソクレゾールノボラツ
ク型エポキシ樹脂やアルキル置換ビフェノールジグリシ
ジルエーテルが、耐湿性、耐熱性、成形性、接着性など
の点で好適である。
As the epoxy resin used in the present invention, those generally used as electrical and electronic insulating resins can be used. In particular, orthocresol novolak type epoxy resin and alkyl-substituted biphenol diglycidyl ether are preferable in terms of moisture resistance, heat resistance, moldability, adhesiveness, and the like.

【0012】エポキシ樹脂の粘度は、ICIコーンプレ
ート型粘度計を用いた150℃での溶融粘度が1Pa・
s以下であることが好ましく、0.3Pa・s以下であ
ることがより好ましい。エポキシ樹脂の溶融粘度が高い
と、高誘電率の無機充填剤の配合量が制限され、多量の
無機充填剤を配合すると、成形時の流動性が低下し、成
形できなかったり、回路パターンの段差部にボイドを発
生するからである。溶融粘度の低いエポキシ樹脂を用い
れば、成形時の流動性を確保しながら多量の無機充填剤
を配合することができ、絶縁層の誘電率を大きくでき
る。上記条件での粘度が1Pa・sを超えると充分な量
の無機充填剤を配合することができず、絶縁層の誘電率
を大きくできない。溶融粘度の低い樹脂を用いることに
より、有機溶剤や可塑剤、希釈剤など樹脂の粘度を低く
するための添加剤が不要となる。特に有機溶剤を用いた
場合、その乾燥工程に於ける設備の防爆対策や回収装
置、排気処理装置などのコストが不要となる。
The epoxy resin has a melt viscosity of 1 Pa at 150 ° C. using an ICI cone plate type viscometer.
It is preferably s or less, and more preferably 0.3 Pa · s or less. If the melt viscosity of the epoxy resin is high, the compounding amount of the high dielectric constant inorganic filler will be limited, and if a large amount of the inorganic filler is compounded, the fluidity at the time of molding will decrease, molding will not be possible, or the step of the circuit pattern This is because a void is generated in the part. If an epoxy resin having a low melt viscosity is used, a large amount of inorganic filler can be blended while ensuring fluidity during molding, and the dielectric constant of the insulating layer can be increased. If the viscosity under the above conditions exceeds 1 Pa · s, a sufficient amount of the inorganic filler cannot be blended, and the dielectric constant of the insulating layer cannot be increased. By using a resin having a low melt viscosity, additives such as an organic solvent, a plasticizer, and a diluent for reducing the viscosity of the resin are unnecessary. In particular, when an organic solvent is used, costs for equipment such as explosion-proof measures, recovery equipment, and exhaust treatment equipment in the drying process become unnecessary.

【0013】エポキシ樹脂の硬化剤としては、電気電子
用エポキシ樹脂の硬化剤として一般に使用されているも
のが使用できる。例えば、フェノール化合物、酸無水
物、グアニジン誘導体、イミダゾール類、ポリアミン類
が挙げられる。特に、耐湿性及び電気特性の良好な点か
らノボラック型フェノール樹脂またはフェノールアラル
キル樹脂が好ましい。
As the curing agent for the epoxy resin, those generally used as the curing agent for the epoxy resin for electric and electronic purposes can be used. Examples thereof include phenol compounds, acid anhydrides, guanidine derivatives, imidazoles, and polyamines. Particularly, novolac type phenol resin or phenol aralkyl resin is preferable from the viewpoint of good moisture resistance and electric characteristics.

【0014】高誘電率の無機充填剤としては、二酸化チ
タン、チタン酸バリウム、チタン酸ストロンチウムなど
化合物単体及び一般のセラミックコンデンサに用いられ
ている高誘電セラミツクスが使用できる。無機充填剤の
誘電率が高いほど、絶縁層の誘電率も高くなるが、誘電
率の高い無機化合物は概して温度特性、即ち誘電率の温
度係数が大きいため必要に応じて選択する。これらの無
機充填剤のうち、特にセラミックコンデンサの原料とし
て市販されている配合粉末を焼成、粉砕したものは、温
度特性を制御する添加剤などがあらかじめ配合されてお
り、好適である。無機充填剤の配合量は、成形材料中で
50〜90体積%の範囲であることが好ましく、さらに
好ましくは、60〜80体積%の範囲である。無機充填
剤が50体積%未満であると絶縁層の誘電率を増大する
効果が低く、また絶縁層の熱膨張係数が大きくなるた
め、プリント配線板との接着性が低下したり、寸法安定
性が悪くなる。一方無機充填剤が90体積%を超える
と、成形中の成形材料の流動性が低く、成形性が悪くな
る。
As the high dielectric constant inorganic filler, compounds such as titanium dioxide, barium titanate, and strontium titanate can be used, and high dielectric ceramics used in general ceramic capacitors can be used. The higher the dielectric constant of the inorganic filler, the higher the dielectric constant of the insulating layer. However, an inorganic compound having a high dielectric constant is generally selected according to need because it has a large temperature characteristic, that is, a large temperature coefficient of the dielectric constant. Among these inorganic fillers, in particular, the one obtained by firing and crushing a compounded powder which is commercially available as a raw material of a ceramic capacitor is preferable because an additive or the like for controlling the temperature characteristic is previously compounded. The content of the inorganic filler in the molding material is preferably 50 to 90% by volume, more preferably 60 to 80% by volume. When the content of the inorganic filler is less than 50% by volume, the effect of increasing the dielectric constant of the insulating layer is low, and the thermal expansion coefficient of the insulating layer is large, so that the adhesiveness to the printed wiring board is reduced and the dimensional stability is improved. Becomes worse. On the other hand, when the content of the inorganic filler exceeds 90% by volume, the flowability of the molding material during molding is low and the moldability is deteriorated.

【0015】無機充填剤は粉末状で成形材料中に配合す
るが、その粒径は、絶縁層の厚さや成形型内での成形材
料の流動性などを考慮し適宜選択する。例えば、一般の
成形材料で使用されている充填剤と同様の平均粒径が5
〜50μmの範囲のものが成形しやすく好適である。ま
た、その形状は破砕状、球状、繊維状などどのようなも
のでもよい。ただし、球状の充填剤を用いると、成形時
の成形材料の流動性がよく、破砕状、繊維状の充填剤を
用いると絶縁層の機械的強度が高くなる。
The inorganic filler is mixed in the molding material in powder form, and the particle size thereof is appropriately selected in consideration of the thickness of the insulating layer and the fluidity of the molding material in the molding die. For example, the same average particle size as the filler used in general molding materials is 5
Those having a range of up to 50 μm are preferable because they are easy to mold. Further, the shape thereof may be any shape such as a crushed shape, a spherical shape, or a fibrous shape. However, when a spherical filler is used, the flowability of the molding material at the time of molding is good, and when a crushed or fibrous filler is used, the mechanical strength of the insulating layer is increased.

【0016】必要に応じて、硬化反応を促進するアミン
系、リン系の硬化促進剤を使用してもよい。また、高級
脂肪酸、高級脂肪酸金属塩、エステル系ワックス、ポリ
エチレン系ワックスなどの離型剤、カーボンブラックや
有機染料などの着色剤、エポキシシラン、アミノシラ
ン、有機チタネート、アルミニウムアルコレートなどの
カップリング剤を使用してもよい。
If necessary, an amine-based or phosphorus-based curing accelerator that accelerates the curing reaction may be used. In addition, release agents such as higher fatty acids, higher fatty acid metal salts, ester waxes, polyethylene waxes, colorants such as carbon black and organic dyes, coupling agents such as epoxysilane, aminosilane, organic titanates, and aluminum alcoholates. May be used.

【0017】以上のような原材料を用いて成形材料を作
製する方法は、一般的に用いられている方法がそのまま
使用できる。例えば、所定の配合量の原材料をミキサー
などによって充分混合した後、熱ロール、押出機などに
よって混練し、冷却、粉砕する方法が挙げられる。ま
た、常温で液状の樹脂を用いる場合は、らいかい器、ニ
ーダー、ロールなどで混練してもよい。
As a method for producing a molding material using the above raw materials, a generally used method can be used as it is. For example, a method may be mentioned in which a predetermined amount of raw materials are sufficiently mixed with a mixer or the like, and then kneaded with a hot roll, an extruder, or the like, cooled, and pulverized. When a resin that is liquid at room temperature is used, it may be kneaded with a kneader, a kneader, a roll or the like.

【0018】プリント配線板は、特に限定されず、通常
の電子機器で用いられているフェノール樹脂、エポキシ
樹脂、ビスマレイミドトリアジン樹脂、ポリイミド樹脂
系の両面または多層基板を用いることができる。特に、
価格や信頼性の点からガラスエポキシプリント配線板が
好適である。もちろん本発明方法で得られた多層基板で
もよい。プリント配線板の厚み及び外形は用途に応じて
適宜選択、設定でき、貫通孔やザグリなどの穴加工が施
されてもよい。また、複数枚のプリント配線板を組み合
わせて一つの面を構成してもよい。
The printed wiring board is not particularly limited, and a phenol resin, an epoxy resin, a bismaleimide triazine resin, a polyimide resin-based double-sided or multi-layered substrate which is commonly used in electronic equipment can be used. In particular,
A glass epoxy printed wiring board is preferable in terms of price and reliability. Of course, it may be a multilayer substrate obtained by the method of the present invention. The thickness and outer shape of the printed wiring board can be appropriately selected and set according to the application, and holes such as through holes and counterbore may be formed. Also, one surface may be formed by combining a plurality of printed wiring boards.

【0019】本発明の多層基板を製造する方法は、移送
成形法、圧縮成形法、射出成形法、注型法などの一般的
な方法を用いることができる。特に成形装置が小形であ
り、成形時のボイドの発生を低く抑えることができ、充
填性が良好な点から移送成形法が好ましい。成形型は上
記成形法で一般に用いられるものでよく、基板の外形と
なるキャビティの形状は成形可能であればどのようなも
のでもよい。例えば平板状、凹凸を有する形状、曲面状
などが挙げられる。
As a method for producing the multilayer substrate of the present invention, a general method such as a transfer molding method, a compression molding method, an injection molding method or a casting method can be used. In particular, the transfer molding method is preferable because the molding apparatus is small, the generation of voids during molding can be suppressed to a low level, and the filling property is good. The molding die may be one generally used in the above-mentioned molding method, and the shape of the cavity serving as the outer shape of the substrate may be any shape as long as it can be molded. Examples thereof include a flat plate shape, a shape having irregularities, and a curved surface shape.

【0020】以上の部材及び移送成形法を用いて多層基
板を製造する手順を図1を用いて説明するが、本発明方
法はこれに限定されるものではない。
The procedure for manufacturing a multilayer substrate using the above members and the transfer molding method will be described with reference to FIG. 1, but the method of the present invention is not limited to this.

【0021】(a)に断面図を示すように、成形型は上
型1と下型2からなりキャビティ3を形成する。このキ
ャビティ内にプリント配線板4を、その片面がキャビテ
ィ内面に接し、他面が互いに接しないで空隙5を形成す
るように配置する。この時のプリント配線板の固定の方
法は、真空吸着や静電吸着、固定ピンやスペーサを用い
る方法など公知の方法を使用することができる。次に、
粉末状、フレーク状、シート状またはタブレット状の成
形材料を必要に応じて加熱、加圧してスプルー6から空
隙5に充填し、硬化させる。硬化後、成形型を開いて
(b)に示すような高誘電率絶縁層7を有する多層基板
8が得られる。さらに、必要に応じ、(c)に示すよう
に、ドリル加工してスルーホール9を設け、スルーホー
ルメッキを施す。
As shown in the sectional view of (a), the mold comprises an upper mold 1 and a lower mold 2 to form a cavity 3. The printed wiring board 4 is arranged in this cavity so that one surface of the printed wiring board 4 is in contact with the inner surface of the cavity and the other surface is not in contact with each other to form the void 5. As a method for fixing the printed wiring board at this time, a known method such as vacuum suction, electrostatic suction, or a method using a fixing pin or a spacer can be used. next,
A powdery, flake-shaped, sheet-shaped or tablet-shaped molding material is heated and pressed as needed to fill the voids 5 from the sprue 6 and cure. After curing, the mold is opened to obtain the multilayer substrate 8 having the high dielectric constant insulating layer 7 as shown in (b). Further, if necessary, as shown in (c), drilling is performed to provide through holes 9, and through hole plating is performed.

【0022】[0022]

【作用】成形型を用いて、高誘電率無機充填剤を含有す
るエポキシ樹脂成形材料で2枚以上のプリント配線板を
一体成形することにより、誘電率が高い絶縁層を有し、
耐熱性、信頼性に優れた多層基板を安価に製造すること
ができる。すなわち、ガラス布などの基材を含まないた
め、高誘電率無機充填剤を多量に配合することができ、
絶縁層の誘電率を大きくできる。
By using a molding die to integrally mold two or more printed wiring boards with an epoxy resin molding material containing a high dielectric constant inorganic filler, an insulating layer having a high dielectric constant can be obtained.
It is possible to inexpensively manufacture a multilayer substrate having excellent heat resistance and reliability. That is, since it does not contain a base material such as glass cloth, a large amount of high dielectric constant inorganic filler can be blended,
The dielectric constant of the insulating layer can be increased.

【0023】また、ガラス布などの基材による誘電特性
への影響がないため、絶縁層の誘電率を効果的に増大す
ることができる。さらに、熱硬化性樹脂を用いた成形材
料で成形するため、優れた耐熱性と信頼性をもった多層
基板が安価に得られた。得られた多層基板は成形型によ
り成形時に外形を賦与されるため、パンチプレスやルー
タなどによる外形加工工程を必要としない。
Further, since the base material such as glass cloth does not affect the dielectric characteristics, the dielectric constant of the insulating layer can be effectively increased. Furthermore, since the molding is performed using a molding material that uses a thermosetting resin, a multilayer substrate having excellent heat resistance and reliability can be obtained at low cost. Since the outer shape of the obtained multi-layer substrate is given by the molding die at the time of molding, the outer shape processing step using a punch press or a router is not required.

【0024】[0024]

【実施例】以下、実施例に基づき本発明を説明するが、
本発明はこの実施例に限定されるものではない。
EXAMPLES The present invention will be described below based on examples.
The invention is not limited to this example.

【0025】実施例1 成形材料の調製 150℃におけるICI粘度が0.3Pa・sのオルソ
クレゾールボラック型エポキシ樹脂(住友化学工業株式
会社、ESCN−195−3)100部(重量部、以下
同じ)、フェノールノボラック樹脂(日立化成工業株式
会社、HP−800N)50部、1,8ジアザビシクロ
−(5,4,0)−ウンデセン−7(DBU)1部、1
kHz、25℃での誘電率が1100のセラミックコン
デンサ用配合粉末焼成粉(富士チタン工業株式会社製の
セラミックコンデンサ用配合粉末N3300−Mを12
50℃で3時間焼成し、ボールミルで粉砕した粉末)1
065部(60体積%に相当する)を配合し、80℃の
2本ロールで15分間混練した。
Example 1 Preparation of molding material 100 parts by weight of ortho-cresol-volac type epoxy resin (ESCN-195-3, Sumitomo Chemical Co., Ltd.) having an ICI viscosity of 0.3 Pa · s at 150 ° C. ), Phenol novolac resin (Hitachi Chemical Co., Ltd., HP-800N) 50 parts, 1,8 diazabicyclo- (5,4,0) -undecene-7 (DBU) 1 part, 1
Ceramic powder mixed powder for ceramic capacitors having a dielectric constant of 1100 at 25 kHz at 25 kHz (combined powder N3300-M for ceramic capacitors manufactured by Fuji Titanium Industry Co., Ltd.
Powder that is calcined at 50 ° C for 3 hours and ground by a ball mill) 1
065 parts (corresponding to 60% by volume) were mixed and kneaded for 15 minutes by a two-roll machine at 80 ° C.

【0026】多層基板の製造 次に図1(a)に示すように、上下とも深さ0.8mm
のキャビティを有する低圧移送成形金型に、厚さ0.4
mmのガラスエポキシ両面プリント配線板2枚をそれぞ
れ上型及び下型のキャビティ内面に接するように配置し
た。このプリント配線板間に上記成形材料を低圧移送プ
レスで175℃、7MPa、90秒で移送成形し、5時
間、175℃で後硬化して、厚さ1.6mm、100m
m角の多層基板を得た。
Manufacture of Multilayer Substrate Next, as shown in FIG. 1A, the depth is 0.8 mm in both upper and lower sides.
Low pressure transfer mold with cavity of 0.4, thickness 0.4
Two glass epoxy double-sided printed wiring boards having a size of 2 mm were arranged so as to contact the inner surfaces of the upper and lower mold cavities, respectively. The molding material was transferred and molded between the printed wiring boards by a low-pressure transfer press at 175 ° C., 7 MPa, 90 seconds, and post-cured at 175 ° C. for 5 hours to give a thickness of 1.6 mm and 100 m.
An m-square multilayer substrate was obtained.

【0027】実施例2 成形材料の調製 150℃におけるICI粘度が0.01Pa・sのビフ
ェノール型エポキシ樹脂(油化シェルエポキシ株式会
社、YX−4000H)100部、フェノールノボラッ
ク樹脂(実施例1で用いたものと同じ)50部、1,8
ジアザビシクロ−(5,4,0)−ウンデセン−7(D
BU)3部、実施例1で用いたセラミックコンデンサ用
配合粉末焼成粉1080部(60体積%に相当する)を
配合し、80℃の2本ロールで15分間混練した。以
下、実施例1と同様にして多層基板を製造した。
Example 2 Preparation of Molding Material 100 parts of biphenol type epoxy resin (Yuka-Shell Epoxy Co., Ltd., YX-4000H) having an ICI viscosity of 0.01 Pa · s at 150 ° C., phenol novolac resin (used in Example 1) (Same as I had) 50 copies, 1,8
Diazabicyclo- (5,4,0) -undecene-7 (D
BU) 3 parts, and 1080 parts (corresponding to 60% by volume) of the compounded powder for ceramic capacitor used in Example 1 (corresponding to 60% by volume) were mixed and kneaded for 15 minutes by a two-roll machine at 80 ° C. Hereinafter, a multilayer substrate was manufactured in the same manner as in Example 1.

【0028】実施例3 成形材料の調製 ビフェノール型エポキシ樹脂(実施例2で用いたものと
同じ)100部、フェノールノボラック樹脂(実施例1
で用いたものと同じ)50部、1,8ジアザビシクロ−
(5,4,0)−ウンデセン−7(DBU)3部、実施
例1で用いたセラミックコンデンサ用配合粉末焼成粉1
680部(70体積%に相当する)を配合し、80℃の
2本ロールで15分間混練した。以下、実施例1と同様
にして多層基板を製造した。
Example 3 Preparation of molding material 100 parts of biphenol type epoxy resin (same as used in Example 2), phenol novolac resin (Example 1)
50 parts, 1,8 diazabicyclo-
3 parts of (5,4,0) -undecene-7 (DBU), mixed powder fired powder 1 for ceramic capacitor used in Example 1
680 parts (corresponding to 70% by volume) were mixed and kneaded for 15 minutes with a two-roll machine at 80 ° C. Hereinafter, a multilayer substrate was manufactured in the same manner as in Example 1.

【0029】比較例1 ジシアンジアミド硬化系エポキシ樹脂ワニスに、ワニス
の固形分に対し67体積%の実施例1で用いたセラミッ
クコンデンサ用配合粉末焼成粉を、3本ロールで混合
し、厚さ0.2mmのガラス布に含浸し、乾燥してプリ
プレグを得た。図2(a)に示すように、このプリプレ
グ4枚と銅はく2枚を積層し、プレスにより170℃、
90分加熱加圧して銅張積層板を得た。これに図(b)
に示すように内層回路を形成し、内層板を得た。
COMPARATIVE EXAMPLE 1 A dicyandiamide-curing epoxy resin varnish was mixed with 67 vol% of the compound powder fired powder for ceramic capacitors used in Example 1 relative to the solid content of the varnish on a three-roll mill to give a thickness of 0. A 2 mm glass cloth was impregnated and dried to obtain a prepreg. As shown in FIG. 2 (a), four prepregs and two copper foils are laminated and pressed at 170 ° C.
It was heated and pressed for 90 minutes to obtain a copper clad laminate. Figure (b)
An inner layer circuit was formed as shown in to obtain an inner layer plate.

【0030】さらに図2(c)に示すように、内層板の
両面に高誘電体粒子を含まない通常のプリプレグ2枚と
銅はく1枚をそれぞれ配置し、プレスにより170℃、
90分加熱加圧して、多層基板を得た。基板の高誘電率
絶縁層中の、樹脂/ガラス布/セラミックコンデンサ用
配合粉末焼成粉の比率は、体積%比で、45/25/3
0であった。
Further, as shown in FIG. 2 (c), two ordinary prepregs containing no high-dielectric particles and one copper foil are placed on both sides of the inner layer plate, and pressed at 170 ° C.,
It was heated and pressed for 90 minutes to obtain a multilayer substrate. The ratio of the resin / glass cloth / calcined powder for ceramic capacitors in the high dielectric constant insulating layer of the substrate is 45/25/3 in volume%.
It was 0.

【0031】比較例2 ワニスの固形分に対し114体積%のセラミックコンデ
ンサ用配合粉末焼成粉を用いたこと以外は比較例1と同
様にして多層基板を得た。基板の高誘電率絶縁層中の樹
脂/ガラス布/セラミックコンデンサ用配合粉末焼成粉
の比率は、体積%比で、30/25/40であった。
Comparative Example 2 A multilayer substrate was obtained in the same manner as Comparative Example 1 except that 114% by volume of the compounded powder for ceramic capacitors was used with respect to the solid content of the varnish. The ratio of resin / glass cloth / calcined powder for ceramic capacitor in the high dielectric constant insulating layer of the substrate was 30/25/40 in volume%.

【0032】比較例3 ポリエーテルサルホン樹脂(住友化学工業株式会社、4
100G)100部、実施例1用いたセラミックコンデ
ンサ用配合粉末焼成粉170部(30体積%)を330
℃で混練して成形材料を得た。射出成形金型に実施例で
用いたプリント配線板2枚を実施例と同様に配置して上
記成形材料を射出成形し、厚さ1.6mmの多層基板を
得た。
Comparative Example 3 Polyethersulfone resin (Sumitomo Chemical Co., Ltd., 4
100 G) 100 parts, 170 parts (30% by volume) of the compounded powder fired powder for ceramic capacitor used in Example 1 330
Kneading was carried out at a temperature to obtain a molding material. Two printed wiring boards used in the examples were placed in an injection molding die in the same manner as in the examples, and the above molding material was injection-molded to obtain a multilayer substrate having a thickness of 1.6 mm.

【0033】以上のようにして得られた多層基板を用い
て、1kHz、25℃における比誘電率、基板内のボイ
ドの有無およびはんだ耐熱性を評価した。比誘電率は、
第2層と第3層の間の静電容量をLCRメータ(ヒュー
レットパッカード製、モデル4274A)を用いて測定
し、計算により求めた。基板内のボイド評価は、表層の
銅はくを除去し軟エックス線装置(株式会社日立製作
所、BR−1505型)を用いて行った。はんだ耐熱性
の評価は、JISC6481に準拠し常態の基板を用い
て260℃、20秒後の膨れ、はがれを観察した。結果
を表1に示す。
Using the thus obtained multilayer substrate, the relative dielectric constant at 1 kHz and 25 ° C., the presence or absence of voids in the substrate, and the solder heat resistance were evaluated. The relative permittivity is
The capacitance between the second layer and the third layer was measured using an LCR meter (manufactured by Hewlett Packard, model 4274A) and calculated. The evaluation of voids in the substrate was performed by removing the copper foil on the surface layer and using a soft X-ray device (BR-1505 type, Hitachi, Ltd.). The solder heat resistance was evaluated by observing swelling and peeling after 20 seconds at 260 ° C. using a normal substrate according to JIS C6481. The results are shown in Table 1.

【0034】[0034]

【表1】 [Table 1]

【0035】誘電率は、実施例1及び2の多層基板が比
較例1の5倍、実施例3の多層基板が比較例1の7倍以
上となっている。無機充填剤の配合量を多くした比較例
2では、樹脂の流動性が悪く、ボイドを多量に含み、成
形できなかった。比較例3の多層基板は、材質が熱可塑
性樹脂であるので、はんだ耐熱性が劣っていることがわ
かる。
The dielectric constants of the multilayer substrates of Examples 1 and 2 are 5 times those of Comparative Example 1, and the multilayer substrates of Example 3 are 7 times or more that of Comparative Example 1. In Comparative Example 2 in which the blending amount of the inorganic filler was large, the fluidity of the resin was poor, and the resin contained a large amount of voids and could not be molded. It can be seen that the multilayer substrate of Comparative Example 3 is inferior in solder heat resistance because the material is a thermoplastic resin.

【0036】[0036]

【発明の効果】本発明の多層基板は、絶縁層となる成形
材料中に多量の高誘電率充填剤を配合することができる
ため、著しく誘電率が高絶縁層を有する多層基板を効率
よく得ることができる。また、熱硬化性のエポキシ樹脂
を用いて成形するため、はんだ耐熱性などの信頼性に優
れた基板を安価に得ることができる。
EFFECTS OF THE INVENTION Since the multilayer substrate of the present invention can contain a large amount of a high dielectric constant filler in a molding material to be an insulating layer, a multilayer substrate having an insulating layer having a significantly high dielectric constant can be efficiently obtained. be able to. Further, since the thermosetting epoxy resin is used for molding, it is possible to inexpensively obtain a substrate having excellent reliability such as solder heat resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明方法における成形型にプリント
配線板を配置した例の断面図、(b)は得られた多層基
板の断面図、(c)はこれにめっきスルーホールを施し
たものの断面図である。
FIG. 1 (a) is a cross-sectional view of an example in which a printed wiring board is placed in a molding die in the method of the present invention, (b) is a cross-sectional view of the obtained multilayer substrate, and (c) is a plated through-hole formed on it. It is sectional drawing of what was done.

【図2】従来の方法による多層基板の製造手順を断面図
で示したものである。
FIG. 2 is a cross-sectional view showing a procedure for manufacturing a multilayer substrate by a conventional method.

【符号の説明】[Explanation of symbols]

1 上型 2 下型 3 キャビティ 4 プリント配線板 5 空隙 6 スプルー 7 高誘電率絶縁層 8 多層基板 9 スルーホール 10 高誘電率プリプレグ 11 銅はく 12 内層回路 13 内層板 14 通常のプリプレグ 15 高誘電率絶縁層 16 多層基板 1 Upper mold 2 Lower mold 3 Cavity 4 Printed wiring board 5 Air gap 6 Sprue 7 High dielectric constant insulating layer 8 Multilayer substrate 9 Through hole 10 High dielectric constant prepreg 11 Copper foil 12 Inner layer circuit 13 Inner layer 14 Normal prepreg 15 High dielectric Insulating layer 16 Multilayer substrate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 互いに接しないように対向配置されたプ
リント配線板の間に形成された空隙に、高誘電率の無機
充填剤及び硬化剤を配合したエポキシ樹脂を注入硬化さ
せてなる多層基板。
1. A multi-layer substrate obtained by injecting and curing an epoxy resin containing a high dielectric constant inorganic filler and a curing agent in a void formed between printed wiring boards arranged so as not to contact each other.
【請求項2】 成形型により形成されたキャビティ内
に、片面がキャビティ内面に接し、他面が互いに接しな
いようにプリント配線板を対向配置し、該プリント配線
板間に形成された空隙に、高誘電率の無機充填剤及び硬
化剤を配合したエポキシ樹脂を注入硬化させることを特
徴とする多層基板の製造方法。
2. A printed wiring board is arranged in a cavity formed by a molding die so that one surface is in contact with the inner surface of the cavity and the other surface is not in contact with each other, and a space formed between the printed wiring boards is arranged in the cavity. A method for producing a multilayer substrate, which comprises injecting and curing an epoxy resin containing an inorganic filler having a high dielectric constant and a curing agent.
JP10401193A 1993-04-30 1993-04-30 Method for manufacturing multilayer substrate Expired - Lifetime JP3335707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10401193A JP3335707B2 (en) 1993-04-30 1993-04-30 Method for manufacturing multilayer substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10401193A JP3335707B2 (en) 1993-04-30 1993-04-30 Method for manufacturing multilayer substrate

Publications (2)

Publication Number Publication Date
JPH06314886A true JPH06314886A (en) 1994-11-08
JP3335707B2 JP3335707B2 (en) 2002-10-21

Family

ID=14369333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10401193A Expired - Lifetime JP3335707B2 (en) 1993-04-30 1993-04-30 Method for manufacturing multilayer substrate

Country Status (1)

Country Link
JP (1) JP3335707B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101522787B1 (en) * 2013-11-21 2015-05-26 삼성전기주식회사 A printed circuit board comprising embeded electronic component within
US9386701B2 (en) 2012-11-30 2016-07-05 Samsung Electro-Mechanics Co., Ltd. Electronic component embedded printed circuit board

Also Published As

Publication number Publication date
JP3335707B2 (en) 2002-10-21

Similar Documents

Publication Publication Date Title
US5449480A (en) Method of producing boards for printed wiring
CN101720165B (en) Component built-in wiring substrate and manufacturing method thereof
US7700185B2 (en) Insulation material, film, circuit board and method of producing them
KR20140031136A (en) Thermosetting epoxy resin composition, adhesive film for forming insulating layer and multilayer printed wiring board
WO2010070890A1 (en) Prepreg, process for production thereof, and printed wiring board using same
JPH0621593A (en) Manufacture of printed circuit board
JP2005072328A (en) Multilayer wiring board
US20140174792A1 (en) Insulating film for printed circuit board having improved thermal conductivity, manufacturing method thereof, and printed circuit board using the same
US6565977B2 (en) Insulating film having improved adhesive strength and board having the insulating film
JP2001233669A (en) High-permittivity composite material and printed circuit board and multilayer printed circuit board using the same
JP3335707B2 (en) Method for manufacturing multilayer substrate
CN101056500A (en) Application of epoxy resin-aluminium nitride composite material preparing high density printed circuit board
JP4200802B2 (en) Device-embedded substrate and manufacturing method thereof
JP3167503B2 (en) Manufacturing method of memory module
JP2002309200A (en) Adhesive film
JP3820668B2 (en) Metal base substrate and manufacturing method thereof
JP3876679B2 (en) Resin composition and use thereof
JP2003055565A (en) Resin composition for laminate
JPH10190241A (en) Multi-layer interconnection board
JP2004315653A (en) Resin composition and its use
JP2005048036A (en) Prepreg and metal foil-clad laminate board using the same
JP2006191145A (en) Multilayer wiring board
JP3783682B2 (en) Prepreg and method for manufacturing printed wiring board using this prepreg
JP6915639B2 (en) Thermosetting epoxy resin composition, adhesive film for forming an insulating layer and multilayer printed wiring board
JP6763788B2 (en) Thermosetting epoxy resin composition, adhesive film for forming an insulating layer and multilayer printed wiring board

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20070802

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090802

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090802

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100802

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120802

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120802

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20130802

EXPY Cancellation because of completion of term