JPH06314818A - Manufacture of gaalas semiconductor light emitting element - Google Patents

Manufacture of gaalas semiconductor light emitting element

Info

Publication number
JPH06314818A
JPH06314818A JP10480593A JP10480593A JPH06314818A JP H06314818 A JPH06314818 A JP H06314818A JP 10480593 A JP10480593 A JP 10480593A JP 10480593 A JP10480593 A JP 10480593A JP H06314818 A JPH06314818 A JP H06314818A
Authority
JP
Japan
Prior art keywords
gaalas
layer
mixed crystal
clad
crystal ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10480593A
Other languages
Japanese (ja)
Inventor
Takahiro Hashimoto
隆宏 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP10480593A priority Critical patent/JPH06314818A/en
Publication of JPH06314818A publication Critical patent/JPH06314818A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a GaAlAs semiconductor light emitting element of high humidity resistance wherein high output can be acquired even if AlAs mixed crystal ratio is restricted in both sides of an element. CONSTITUTION:After growth melt solution 9 of a lower layer is brought into contact with a GaAs substrate 13 by partitioning a first bath 1a for forming a first clad layer in an epitaxial boat by a partition 4 up and down, a temperature is lowered by melt back and a GaAlAs first clad (a) layer of low AlAs mixed crystal ratio is formed in a growth starting surface of the GaAs substrate 13. Thereafter, the partition 4 is removed and growth melt solution 10 is brought into contact with the GaAs substrate 13 to form a conventional GaAlAs first clad layer (b) layer. Humidity resistance and high output are ensured regardless of AlAs mixed crystal ratio in both sides of an element after removal of the GaAs substrate 13 by forming the first clad layer to the two layers of the first clad (a) layer of low AlAs mixed crystal ratio and the first clad (b) layer of high AlAs mixed crystal ratio in this way.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高出力,高信頼性を
有する基板除去型ダブルヘテロGaAlAs半導体発光素
子を製造できるGaAlAs半導体素子の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a GaAlAs semiconductor element capable of manufacturing a substrate-removable double hetero GaAlAs semiconductor light emitting element having high output and high reliability.

【0002】[0002]

【従来の技術】徐冷法を利用してGaAlAs半導体発光
素子を形成する場合には、図3(イ)に示すように、Ga
As基板上にGaAlAs第1クラッド層,活性層およびGa
AlAs第2クラッド層を順次連続的に液相エピタキシャ
ル成長してダブルヘテロ構造を形成する。こうして、禁
止帯巾の差を利用して活性層領域内での有効なキャリア
閉じ込めを行うことによって、所望の波長光をより効果
的に得ることができるのである。次に、図3(ロ)に示す
ように、成長終了後のウエハにおけるGaAs基板を除去
する。こうすることによって、GaAlAs半導体発光素
子の裏面(GaAlAs第1クラッド層成長開始面)からも
光を取り出すことができる。
2. Description of the Related Art In the case of forming a GaAlAs semiconductor light emitting device by using a slow cooling method, as shown in FIG.
On the As substrate, a GaAlAs first cladding layer, an active layer and a Ga
A second heterostructure is formed by sequentially and continuously performing liquid phase epitaxial growth of the AlAs second cladding layer. In this way, by effectively confining the carriers in the active layer region by utilizing the difference in the forbidden band, it is possible to more effectively obtain the desired wavelength light. Next, as shown in FIG. 3B, the GaAs substrate on the wafer after the growth is removed. By doing so, light can be extracted also from the back surface of the GaAsAlAs semiconductor light emitting element (the GaAsAs first cladding layer growth start surface).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記G
aAs基板除去型ダブルヘテロGaAlAs半導体発光素子
の作成方法には、次のような問題がある。すなわち、上
述のようにしてGaAs基板除去型ダブルヘテロGaAlA
s半導体発光素子を作成するに際して、活性層領域での
キャリアの十分な閉じ込め効果を得るためには、活性層
両界面(図3においてA,Bで表示)でのAlAs混晶比を
高くして一定以上の禁止帯巾を有するクラッド層を上記
活性層の両側に形成する必要がある。ところが、あまり
AlAs混晶比を高くするとAl酸化が助長されて上記ク
ラッド層の耐湿性に不利な条件となる。
[Problems to be Solved by the Invention] However, the above G
The method for producing the aAs substrate-removed double hetero GaAlAs semiconductor light emitting device has the following problems. That is, as described above, the GaAs substrate-removable double hetero GaAlA
s When manufacturing a semiconductor light emitting device, in order to obtain a sufficient effect of confining carriers in the active layer region, increase the AlAs mixed crystal ratio at both interfaces of the active layer (indicated by A and B in FIG. 3). It is necessary to form a clad layer having a bandgap of a certain value or more on both sides of the active layer. However, if the AlAs mixed crystal ratio is too high, Al oxidation is promoted, which is a disadvantageous condition for the moisture resistance of the cladding layer.

【0004】したがって、上記GaAs基板除去型のGa
AlAs半導体発光素子では、アセンブリされた後にダイ
ボンド用接着剤およびモールド樹脂によって保護される
ものの、室外等の環境変化の激しい使用条件下では、ダ
イボンド用接着剤およびモールド樹脂の種類によっては
若干の吸湿が起こるという問題がある。そこで、耐湿性
と高出力との兼合いから上記クラッド層のAlAs混晶比
の最適値を設定する必要がある。
Therefore, the above-mentioned GaAs substrate removal type Ga
Although the AlAs semiconductor light-emitting device is protected by the die-bonding adhesive and the mold resin after being assembled, it may absorb a little moisture depending on the type of the die-bonding adhesive and the mold resin under a use condition where the environment changes drastically such as outdoors. There is a problem that will happen. Therefore, it is necessary to set the optimum value of the AlAs mixed crystal ratio of the clad layer in consideration of the balance between humidity resistance and high output.

【0005】また、上述のような液相エピタキシャル徐
冷法によってGaAlAs半導体発光素子を形成する場合
には、成長融液の原料仕込み量及びエピタキシャル温度
等の成長条件によっては、固相として取り込まれるAl
Asの割合(AlAs混晶比)が成長方向に向かって低くな
る偏析現象が生ずる。そのために、図3に示すように、
上記GaAlAs第1クラッド層のAlAs混晶比がGaAs
基板−GaAlAs第1クラッド層の界面Cでは高く、Ga
AlAs第1クラッド層−活性層の界面Aでは低くなる。
したがって、上記GaAs基板を除去した後にダイボンド
用接着剤との接触面となるGaAlAs第1クラッド層成
長開始面CのAlAs混晶比に制約がある場合には、Ga
AlAs第1クラッド層成長終了面である活性層界面Aで
のAlAs混晶比が更に低くなって充分なキャリア閉じ込
め効果が得られない場合があるという問題もある。
Further, when a GaAlAs semiconductor light emitting device is formed by the liquid phase epitaxial slow cooling method as described above, Al which is taken in as a solid phase may be formed depending on the growth raw material charge amount and the growth conditions such as the epitaxial temperature.
A segregation phenomenon occurs in which the ratio of As (AlAs mixed crystal ratio) decreases toward the growth direction. Therefore, as shown in FIG.
The AlAs mixed crystal ratio of the GaAs first cladding layer is GaAs
High at the interface C of the substrate-GaAlAs first cladding layer,
It becomes lower at the interface A of the AlAs first cladding layer-active layer.
Therefore, when the AlAs mixed crystal ratio of the GaAlAs first clad layer growth start surface C, which becomes the contact surface with the die bonding adhesive after removing the GaAs substrate, is restricted,
There is also a problem that the AlAs mixed crystal ratio at the interface A of the active layer, which is the growth end surface of the AlAs first cladding layer, may be further lowered, and a sufficient carrier confinement effect may not be obtained.

【0006】そこで、この発明の目的は、素子の表裏両
面にAlAs混晶比の制約があっても充分なキャリア閉じ
込め効果を有して高出力が得られる耐湿性の高いGaAl
As半導体発光素子を製造できるGaAlAs半導体発光素
子の製造方法を提供することにある。
Therefore, the object of the present invention is to provide a high moisture-proof GaAl which has a sufficient carrier confinement effect even if there are restrictions on the AlAs mixed crystal ratio on both the front and back surfaces of the device.
An object of the present invention is to provide a method for manufacturing a GaAlAs semiconductor light emitting device capable of manufacturing an As semiconductor light emitting device.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、この発明は、GaAs基板上にGaAlAs第1クラッ
ド層を形成し、さらに活性層およびGaAlAs第2クラ
ッド層を順次形成するGaAlAs半導体発光素子の製造
方法において、上記GaAlAs第1クラッド層を形成す
るに際して、上記GaAlAs第1クラッド層を成長させ
るための成長融液を上下2層に分割し、上記分割された
成長融液のうち下層の成長融液をGaAs基板表面に接触
させて、上記GaAs基板のメルトバックを利用してAl
As混晶比の低い第1のGaAlAs第1クラッド層を成長
させ、続いて上記成長融液の分割を解除して、上記第1
のGaAlAs第1クラッド層のAlAs混晶比よりも高い
AlAs混晶比を呈する第2のGaAlAs第1クラッド層
を成長させることを特徴としている。
In order to achieve the above object, the present invention is a GaAlAs semiconductor light emitting device in which a GaAlAs first cladding layer is formed on a GaAs substrate, and an active layer and a GaAlAs second cladding layer are sequentially formed. In the method of manufacturing, the growth melt for growing the GaAlAs first cladding layer is divided into upper and lower two layers when the GaAlAs first cladding layer is formed, and a lower layer of the divided growth melt is grown. The melt is brought into contact with the surface of the GaAs substrate and the melt back of the GaAs substrate is used to
A first GaAlAs first clad layer having a low As mixed crystal ratio is grown, and subsequently, the division of the growth melt is released to remove the first
Is characterized in that a second GaAlAs first clad layer exhibiting an AlAs mixed crystal ratio higher than that of the GaAlAs first clad layer is grown.

【0008】[0008]

【実施例】以下、この発明を図示の実施例により詳細に
説明する。図1は本実施例におけるGaAlAs半導体発
光素子の製造方法に係る説明図である。また、図2は本
実施例におけるGaAlAs半導体発光素子の製造方法に
よって形成されるGaAlAs半導体発光素子の断面図お
よび各層のAlAs混晶比を示す。以下、図1および図2
に従って、本実施例におけるGaAlAs半導体発光素子
の製造方法について説明する。
The present invention will be described in detail below with reference to the embodiments shown in the drawings. FIG. 1 is an explanatory diagram related to a method of manufacturing a GaAlAs semiconductor light emitting device in this embodiment. FIG. 2 shows a cross-sectional view of a GaAlAs semiconductor light emitting device formed by the method for manufacturing a GaAlAs semiconductor light emitting device according to this embodiment and the AlAs mixed crystal ratio of each layer. Hereinafter, FIG. 1 and FIG.
A method of manufacturing the GaAsAs semiconductor light emitting device in this embodiment will be described below.

【0009】先ず、図1(a)に示すように、メルト溜1
の各槽内に材料(Ga,GaAs多結晶,Al,ドーパント等)
を入れたエピタキシャルボートを水素雰囲気中において
900℃〜1000℃まで昇温させて、上記各槽内の材
料が溶けて夫々均一な液組成の成長融液になるまで一定
時間保持する。尚、3は上記エピタキシャルボートの基
台である。
First, as shown in FIG. 1 (a), the melt reservoir 1
Material in each tank (Ga, GaAs polycrystal, Al, dopant, etc.)
The epitaxial boat containing is heated to 900 ° C. to 1000 ° C. in a hydrogen atmosphere and held for a certain period of time until the materials in the respective tanks are melted to form a growth melt having a uniform liquid composition. In addition, 3 is a base of the above-mentioned epitaxial boat.

【0010】次に、図1(b)に示すように、操作棒11
を操作して仕切り板4で第1槽1a内の成長融液5を成
長融液8と成長融液9とに分離する。その後、図1(c)
に示すように、操作棒12を操作してスライダ2を移動
させて、スライダ2に搭載されたGaAs基板13に第1
槽1a内の成長融液9を接触させ、雰囲気温度をΔt℃昇
温する。
Next, as shown in FIG. 1 (b), the operating rod 11
Is operated to separate the growth melt 5 in the first tank 1a into the growth melt 8 and the growth melt 9 by the partition plate 4. After that, Fig. 1 (c)
As shown in FIG. 1, the operating rod 12 is operated to move the slider 2, and the GaAs substrate 13 mounted on the slider 2 is moved to the first position.
The growth melt 9 in the tank 1a is brought into contact, and the atmospheric temperature is raised by Δt ° C.

【0011】そうすると、GaAs基板13からは、上記
温度差(Δt℃)と成長融液9の絶対量とから求められる
量のメルトバックが生じ、成長融液9は最初に比べてA
lAs混晶比が低くなった液組成となる。ここで、成長融
液9におけるメルトバック量を少なくするために、成長
融液9の量は成長融液8の量に比較して十分少なくして
おく必要がある。
Then, the GaAs substrate 13 is melted back in an amount obtained from the temperature difference (Δt ° C.) and the absolute amount of the growth melt 9, and the growth melt 9 is A
The liquid composition is such that the lAs mixed crystal ratio is low. Here, in order to reduce the meltback amount in the growth melt 9, the amount of the growth melt 9 needs to be sufficiently smaller than the amount of the growth melt 8.

【0012】続いて、上述の状態で降温し、エピタキシ
ャル成長を行って上記第1のGaAlAs第1クラッド層
であるGaAlAs第1クラッドa層14を形成する。こ
のGaAlAs第1クラッドa層14は、図2に示すよう
にAlAs混晶比が低く耐湿を目的とした保護層の役割を
果す層である。したがって、数μmの膜厚を有していれ
ば十分である。
Subsequently, the temperature is lowered in the above-mentioned state, and epitaxial growth is performed to form the first GaAlAs first clad layer 14 which is the first GaAlAs first clad layer 14. As shown in FIG. 2, the GaAlAs first clad a layer 14 has a low AlAs mixed crystal ratio and serves as a protective layer for the purpose of moisture resistance. Therefore, it is sufficient to have a film thickness of several μm.

【0013】その後、図1(d)に示すように、上記操作
棒11を操作して仕切り板4を第1槽1aから引き抜
く。そして、上述のGaAlAs第1クラッドa層14が
成長した後のGaAs基板13上に成長融液10(成長融
液8と成長融液9との混合融液)を被せて降温して、上
記第2のGaAlAs第1クラッド層であるGaAlAs第1
クラッドb層15を形成して行く。その際に、上述のよ
うに、成長融液9の量は成長融液8の量に比較して十分
少ないので、第1槽1aから仕切り板4を抜いても成長
融液10と成長融液8との間における液組成は殆ど変わ
らない。したがって、GaAlAs第1クラッドb層15
を形成する際に成長融液9の影響は余り受けない。
Thereafter, as shown in FIG. 1 (d), the operating rod 11 is operated to pull out the partition plate 4 from the first tank 1a. Then, the growth melt 10 (mixed melt of the growth melt 8 and the growth melt 9) is coated on the GaAs substrate 13 after the growth of the above-described GaAsAlAs first clad a layer 14, and the temperature is lowered. 2 GaAlAs first cladding layer, which is GaAlAs first
The clad b layer 15 is formed. At that time, since the amount of the growth melt 9 is sufficiently smaller than the amount of the growth melt 8 as described above, even if the partition plate 4 is removed from the first tank 1a, the growth melt 10 and the growth melt The liquid composition between No. 8 and 8 is almost unchanged. Therefore, the GaAlAs first clad b layer 15
There is little influence of the growth melt 9 when forming

【0014】以後は、従来のエピタキシャル成長と同様
に、操作棒12を操作してスライダ2を移動し、GaAl
As第1クラッドa層14及びGaAlAs第1クラッドb
層15が形成されたGaAs基板13を順次成長融液6お
よび成長融液7に接触させ、併せて降温することによっ
て、活性層16およびGaAlAs第2クラッド17を順
次成長させる。
Thereafter, as in the case of the conventional epitaxial growth, the operating rod 12 is operated to move the slider 2 to move the GaAl.
As first clad a layer 14 and GaAlAs first clad b
The GaAs substrate 13 on which the layer 15 is formed is sequentially brought into contact with the growth melt 6 and the growth melt 7, and the temperature is also lowered, thereby sequentially growing the active layer 16 and the GaAsAs second cladding 17.

【0015】こうして、図2(A)に示すような、GaAs
基板13上にGaAlAs第1クラッドa層14,GaAlA
s第1クラッドb層15,活性層16,GaAlAs第2クラ
ッド層17が順次連続的に液相エピタキシャル成長した
ダブルヘテロ構造のGaAlAs半導体発光素子が得られ
る。そうした後に、図2(B)に示すように、GaAlAs
半導体発光素子における裏面(GaAlAs第1クラッドa
層14の成長開始面C)からも光を取り出すことができ
るようにGaAs基板13を除去する。
Thus, as shown in FIG. 2 (A), GaAs
On the substrate 13, a GaAlAs first clad a layer 14, GaAlA
A double heterostructure GaAlAs semiconductor light emitting device in which the s first clad b layer 15, the active layer 16, and the GaAlAs second clad layer 17 are successively and successively grown by liquid phase epitaxial growth is obtained. After that, as shown in FIG. 2 (B), GaAlAs
Back surface of semiconductor light emitting device (GaAlAs first cladding a
The GaAs substrate 13 is removed so that light can be extracted also from the growth initiation surface C) of the layer 14.

【0016】上述のようにして形成されたGaAs基板除
去型ダブルヘテロGaAlAs半導体発光素子は、図2
(B)に示すように、最外側のGaAlAs第1クラッドa
層成長開始面CのAlAs混晶比は低いのでAl酸化が助
長されずに耐湿性を向上でき、高信頼性を図ることがで
きるのである。
The GaAs substrate removal type double hetero GaAs semiconductor light emitting device formed as described above is shown in FIG.
As shown in (B), the outermost GaAlAs first cladding a
Since the AlAs mixed crystal ratio of the layer growth start surface C is low, Al oxidation is not promoted, moisture resistance can be improved, and high reliability can be achieved.

【0017】また、上記活性層16にキャリアを有効に
閉じ込めるために活性層16のGaAs基板13側に形成
されるGaAlAs第1クラッドb層15はGaAlAs第1
クラッドa層14の内側に形成されるので、その成長開
始面のAlAs混晶比は特に制約を受けない。したがっ
て、GaAlAs第1クラッドb層成長開始面のAlAs混
晶比を充分高くしておけば、偏析現象が生じても活性層
界面AのAlAs混晶比を高く保つことができる。つま
り、上記GaAs基板13を除去した後におけるダイボン
ド用接着剤との接触面となるGaAlAs第1クラッドa
層成長開始面CのAlAs混晶比に制約があっても、Ga
AlAs第1クラッドb層15に一定以上の禁止帯巾を持
たせて活性層16の領域内にキャリアを充分閉じ込める
ことができ、高出力を得ることができるのである。
The GaAlAs first clad b layer 15 formed on the GaAs substrate 13 side of the active layer 16 for effectively confining carriers in the active layer 16 is a GaAlAs first layer.
Since it is formed inside the clad a layer 14, the AlAs mixed crystal ratio of the growth start surface is not particularly limited. Therefore, if the AlAs mixed crystal ratio on the growth initiation surface of the GaAlAs first clad b layer is sufficiently high, the AlAs mixed crystal ratio at the active layer interface A can be kept high even if the segregation phenomenon occurs. That is, the GaAsAs first clad a which becomes the contact surface with the die bonding adhesive after the GaAs substrate 13 is removed.
Even if the AlAs mixed crystal ratio of the layer growth start surface C is limited, Ga
The AlAs first clad b layer 15 has a bandgap of a certain level or more, so that carriers can be sufficiently confined in the region of the active layer 16, and a high output can be obtained.

【0018】また、上記従来のGaAs基板除去型GaAl
As半導体発光素子では、その表裏両面にAlAs混晶比
の制約がある場合には、1つの組成の成長融液でGaAl
As第1クラッド層を形成すると必然的に活性層界面A
のAlAs混晶比が偏析現象によって大略定まってしま
う。ところが、本実施例によれば、1つの組成の成長融
液によって組成の異なる2つのGaAlAs第1クラッド
層をGaAs基板上に形成することができるので、GaAs
基板除去型GaAlAs半導体発光素子の表裏両面にAlA
s混晶比の制約があっても活性層界面AのAlAs混晶比
を高くできる。したがって、その分だけ素子設計の自由
度が広がるのである。
The conventional GaAs substrate removal type GaAs
In the case of an As semiconductor light-emitting device, if there is a restriction on the AlAs mixed crystal ratio on both the front and back sides, a GaAl
As the first cladding layer is formed, the active layer interface A is inevitably formed.
The AlAs mixed crystal ratio is substantially determined by the segregation phenomenon. However, according to this embodiment, two GaAlAs first clad layers having different compositions can be formed on the GaAs substrate by the growth melt of one composition.
Substrate removal type GaAs AlAs on both front and back surfaces of semiconductor light emitting device
Even if the s mixed crystal ratio is restricted, the AlAs mixed crystal ratio at the active layer interface A can be increased. Therefore, the degree of freedom in the element design is expanded accordingly.

【0019】この発明を実施するためのエピタキシャル
ボートの具体的な構成は、上記実施例におけるエピタキ
シャルボートの構成に限定されるものではない。要は、
第1槽1aが一時的に上下2段に仕切られる構造になっ
ていれば良いのである。
The specific construction of the epitaxial boat for carrying out the present invention is not limited to the construction of the epitaxial boat in the above-mentioned embodiment. In short,
It is only necessary that the first tank 1a has a structure in which it is temporarily divided into upper and lower parts.

【0020】[0020]

【発明の効果】以上より明らかなように、この発明に係
るGaAlAs半導体発光素子の製造方法は、GaAs基板
上にGaAlAs第1クラッド層を形成する際に、上記Ga
AlAs第1クラッド層を成長させるための成長融液を上
下2層に分割して下層の成長融液をGaAs基板表面に接
触させ、上記GaAs基板のメルトバックを利用してAl
As混晶比の低い第1のGaAlAs第1クラッド層を成長
させた後、上記成長融液の分割を解除して、上記第1の
GaAlAs第1クラッド層よりも高いAlAs混晶比を呈
する第2のGaAlAs第1クラッド層を成長させ、さら
に活性層およびGaAlAs第2クラッド層を順次成長させ
るようにしたので、得られるGaAlAs半導体発光素子
における上記GaAlAs第1クラッド層は上記GaAs基
板に接触して低いAlAs混晶比を有する上記第1のGa
AlAs第1クラッド層と上記活性層に接触して高いAl
As混晶比を有する上記第2のGaAlAs第1クラッド層
との2層で構成される。
As is apparent from the above, the method of manufacturing a GaAlAs semiconductor light emitting device according to the present invention is characterized in that when the GaAlAs first cladding layer is formed on the GaAs substrate, the Ga
The growth melt for growing the AlAs first clad layer is divided into upper and lower layers, and the growth melt of the lower layer is brought into contact with the surface of the GaAs substrate, and the melt back of the GaAs substrate is used to make Al.
After growing the first GaAlAs first clad layer having a low As mixed crystal ratio, the division of the growth melt is released to exhibit a higher AlAs mixed crystal ratio than the first GaAlAs first clad layer. The second GaAlAs first clad layer is grown, and the active layer and the GaAlAs second clad layer are sequentially grown. Therefore, the GaAlAs first clad layer in the obtained GaAlAs semiconductor light emitting device is in contact with the GaAs substrate. The first Ga having a low AlAs mixed crystal ratio
AlAs a high Al in contact with the first cladding layer and the active layer
It is composed of two layers, that is, the second GaAlAs first cladding layer having an As mixed crystal ratio.

【0021】したがって、この発明によれば、素子の表
裏両面から光を取り出すためにGaAs基板を除去しても
AlAs混晶性の低い上記第1のGaAlAs第1クラッド
層側が最外側となって優れた耐湿性を呈する信頼性の高
いGaAlAs半導体発光素子を製造できる。
Therefore, according to the present invention, even if the GaAs substrate is removed to extract light from both the front and back surfaces of the device, the first GaAsAlAs first cladding layer side, which has a low AlAs mixed crystallinity, is the outermost side, which is excellent. Further, it is possible to manufacture a highly reliable GaAsAs semiconductor light emitting device exhibiting moisture resistance.

【0022】また、この発明によれば、上記活性層に接
触する上記第2のGaAlAs第1クラッド層のAlAs混
晶比が高いので上記GaAs基板の成長開始面にAlAs混
晶比の制約があっても上記第2のGaAlAs第1クラッ
ド層に一定以上の禁止帯巾を持たせて上記活性層領域に
キャリアを充分閉じ込めることが可能な高出力のGaAl
As半導体発光素子を製造できる。
Further, according to the present invention, since the AlAs mixed crystal ratio of the second GaAlAs first cladding layer in contact with the active layer is high, there is a restriction of the AlAs mixed crystal ratio on the growth starting surface of the GaAs substrate. Even if the second GaAlAs first clad layer has a bandgap of a certain level or more, carriers can be sufficiently confined in the active layer region.
An As semiconductor light emitting device can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明のGaAlAs半導体発光素子の製造方
法におけるエピタキシャルボートの動作を示す図であ
る。
FIG. 1 is a diagram showing an operation of an epitaxial boat in the method of manufacturing a GaAsAs semiconductor light emitting device of the present invention.

【図2】この発明のGaAlAs半導体発光素子の製造方
法によって形成されるGaAlAs半導体発光素子の断面
図および各層のAlAs混晶比を示す図である。
FIG. 2 is a cross-sectional view of a GaAlAs semiconductor light emitting device formed by the method for manufacturing a GaAlAs semiconductor light emitting device according to the present invention and a diagram showing AlAs mixed crystal ratios of respective layers.

【図3】従来のGaAlAs半導体発光素子の製造方法に
よって形成されるGaAlAs半導体発光素子の断面図お
よび各層のAlAs混晶比を示す図である。
FIG. 3 is a cross-sectional view of a GaAlAs semiconductor light emitting device formed by a conventional method for manufacturing a GaAlAs semiconductor light emitting device and a diagram showing AlAs mixed crystal ratios of respective layers.

【符号の説明】[Explanation of symbols]

1…メルト溜、 2…スライダ、
4…仕切り板、 5,6,7,8,
9,10…成長融液、11,12…操作棒、
13…GaAs基板、14…GaAlAs第1クラッド
a層、15…GaAlAs第1クラッドb層、16…活性
層、 17…GaAlAs第2クラ
ッド層。
1 ... Melt reservoir, 2 ... Slider,
4 ... Partition board, 5, 6, 7, 8,
9, 10 ... Growth melt, 11, 12 ... Operation rod,
13 ... GaAs substrate, 14 ... GaAlAs first clad a layer, 15 ... GaAlAs first clad b layer, 16 ... Active layer, 17 ... GaAlAs second clad layer.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 GaAs基板上にGaAlAs第1クラッド
層を形成し、さらに活性層およびGaAlAs第2クラッ
ド層を順次形成するGaAlAs半導体発光素子の製造方
法において、 上記GaAlAs第1クラッド層を形成するに際して、上
記GaAlAs第1クラッド層を成長させるための成長融
液を上下2層に分割し、 上記分割された成長融液のうち下層の成長融液をGaAs
基板表面に接触させ、上記GaAs基板のメルトバックを
利用してAlAs混晶比の低い第1のGaAlAs第1クラ
ッド層を成長させ、 続いて、上記成長融液の分割を解除して、上記第1のG
aAlAs第1クラッド層のAlAs混晶比よりも高いAlA
s混晶比を呈する第2のGaAlAs第1クラッド層を成長
させることを特徴とするGaAlAs半導体発光素子の製
造方法。
1. A method of manufacturing a GaAlAs semiconductor light-emitting device, comprising: forming a GaAlAs first clad layer on a GaAs substrate; and sequentially forming an active layer and a GaAlAs second clad layer, wherein the GaAlAs first clad layer is formed. , The growth melt for growing the first GaAlAs clad layer is divided into upper and lower layers, and the lower growth melt of the divided growth melt is GaAs.
The first GaAlAs first clad layer having a low AlAs mixed crystal ratio is grown by contacting with the substrate surface and utilizing the melt back of the GaAs substrate. 1 G
aAlAs AlA higher than the AlAs mixed crystal ratio of the first cladding layer
A method of manufacturing a GaAlAs semiconductor light-emitting device, which comprises growing a second GaAlAs first cladding layer exhibiting an s mixed crystal ratio.
JP10480593A 1993-04-30 1993-04-30 Manufacture of gaalas semiconductor light emitting element Pending JPH06314818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10480593A JPH06314818A (en) 1993-04-30 1993-04-30 Manufacture of gaalas semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10480593A JPH06314818A (en) 1993-04-30 1993-04-30 Manufacture of gaalas semiconductor light emitting element

Publications (1)

Publication Number Publication Date
JPH06314818A true JPH06314818A (en) 1994-11-08

Family

ID=14390647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10480593A Pending JPH06314818A (en) 1993-04-30 1993-04-30 Manufacture of gaalas semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JPH06314818A (en)

Similar Documents

Publication Publication Date Title
US4769341A (en) Method of fabricating non-silicon materials on silicon substrate using an alloy of Sb and Group IV semiconductors
US4142924A (en) Fast-sweep growth method for growing layers using liquid phase epitaxy
US4944811A (en) Material for light emitting element and method for crystal growth thereof
US5323027A (en) Light emitting device with double heterostructure
JP2579326B2 (en) Epitaxial wafer and light emitting diode
JPH06314818A (en) Manufacture of gaalas semiconductor light emitting element
JPH0897466A (en) Light emitting device
JP2534945B2 (en) Method for manufacturing semiconductor device
US4179317A (en) Method for producing compound semiconductor crystals
US4609411A (en) Liquid-phase epitaxial growth method of a IIIb-Vb group compound
US5585305A (en) Method for fabricating a semiconductor device
US4498937A (en) Liquid phase epitaxial growth method
JP2543791B2 (en) Liquid phase epitaxial growth method
US4629519A (en) Forming magnesium-doped Group III-V semiconductor layers by liquid phase epitaxy
JPH04254321A (en) Liquid phase epitaxial growth method
JP2538009B2 (en) Liquid phase epitaxial growth method
JP3609840B2 (en) Manufacturing method of semiconductor light emitting device
JPH0242771A (en) Light-emitting semiconductor element substrate and manufacture thereof
JP4010439B2 (en) Semiconductor growth method
JP4402217B2 (en) Epitaxial substrate for infrared light emitting device and light emitting device produced using the same
JPH03222374A (en) Manufacture and manufacturing device for compound semiconductor light emitting element
JPS6037192A (en) Semiconductor light emitting element
JPH05206517A (en) Light-emitting element
JPS6041454B2 (en) Multilayer epitaxial growth method including thick films
JPS5783072A (en) Light emitting diode