JPS6041454B2 - Multilayer epitaxial growth method including thick films - Google Patents

Multilayer epitaxial growth method including thick films

Info

Publication number
JPS6041454B2
JPS6041454B2 JP51158650A JP15865076A JPS6041454B2 JP S6041454 B2 JPS6041454 B2 JP S6041454B2 JP 51158650 A JP51158650 A JP 51158650A JP 15865076 A JP15865076 A JP 15865076A JP S6041454 B2 JPS6041454 B2 JP S6041454B2
Authority
JP
Japan
Prior art keywords
layer
epitaxial growth
composition
growth
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51158650A
Other languages
Japanese (ja)
Other versions
JPS5383460A (en
Inventor
祥二 五十棲
二郎 岡崎
安雄 三谷
保昭 小松
健 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP51158650A priority Critical patent/JPS6041454B2/en
Publication of JPS5383460A publication Critical patent/JPS5383460A/en
Publication of JPS6041454B2 publication Critical patent/JPS6041454B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 本発明は、化合物半導体結晶層をェピタキシャル成長さ
せるに際し、その組成が常に均質であるようにする為の
厚膜多層ェピタキシャル成長法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thick film multilayer epitaxial growth method for epitaxially growing a compound semiconductor crystal layer so that its composition is always homogeneous.

従釆、化合物半導体、特にm−V族化合物半導体の結晶
は半導体レーザ、発光ダイオード(LED)等の光電素
子材料として広く実用化されている。
BACKGROUND OF THE INVENTION Compound semiconductors, particularly crystals of m-V group compound semiconductors, are widely used as materials for photoelectric devices such as semiconductor lasers and light emitting diodes (LEDs).

前記結晶は、大別して二種類の技法、即ち、液相ェピタ
キシャル成長法、気相ェピタキシャル成長法に依って作
られている。
The crystals are produced using two types of techniques: liquid phase epitaxial growth and vapor phase epitaxial growth.

このうち、液相ェピタキシャル成長法は、例えば、Ga
As−AI船濠晶等を用いた半導体レーザやLEDに代
表される如く、良質の多層構造を有するェピタキシャル
成長層を比較的容易に実現できる点で気相ェピタキシヤ
ル成長法よりも優っていると考えられている。しかしな
がら、前記の如き混晶を通常の液相ェピタキシャル成長
法で成長させる場合、その膜内で成長方向に組成変動が
生ずることは避けられない。これは、例えば、厚さが数
〔ムの〕以内の薄膜であれば、膜内での組成変動の絶対
値が小さいので無視できるが、厚膜の場合には問題であ
る。従来、厚膜のェピタキシャル成長時に発生する組成
変動を抑制する方法として温度差法と呼ばれる技術が開
発され、これに依り形成された厚膜を用いたLEDも発
表されている。ところが、この温度差法には次のような
欠点がある。
Among these, the liquid phase epitaxial growth method is, for example, Ga
It is said to be superior to the vapor phase epitaxial growth method in that it is relatively easy to realize epitaxial growth layers with a high-quality multilayer structure, as typified by semiconductor lasers and LEDs using As-AI ship moat crystals. It is considered. However, when such a mixed crystal as described above is grown by a normal liquid phase epitaxial growth method, it is inevitable that compositional fluctuations occur in the growth direction within the film. For example, if the film is a thin film with a thickness of several micrometers or less, this can be ignored because the absolute value of the composition variation within the film is small, but it becomes a problem in the case of a thick film. Conventionally, a technique called a temperature difference method has been developed as a method for suppressing compositional fluctuations that occur during epitaxial growth of thick films, and LEDs using thick films formed using this method have also been announced. However, this temperature difference method has the following drawbacks.

即ち、1 成長速度が極めて遅いため、必要な膜厚を得
るまでに長時間を要する。
Namely, 1. Since the growth rate is extremely slow, it takes a long time to obtain the required film thickness.

2 再現性に乏しく、特に厚みの制御が困難である。2 Poor reproducibility, especially difficult to control thickness.

3 多層構造にすることが困難である。3. It is difficult to create a multilayer structure.

等である。etc.

一般に、前記光電素子、例えば、LEDについて見ても
、多届構造にすることは、性能向上の点から不可欠であ
り、前記3の欠点は重大である。この欠点を解消しよう
として、一且、温度差法で厚膜を成長させた後、成長炉
から取り出し、表面処理をしてから、その上に、通常の
方法で、結晶層を必要層数成長させて多層構造にするこ
とも考えられているが、この方法は、工程が多くなり、
コストも高くなり、しかも、温度差法本来の前記2の欠
点も重なって、歩溜りも悪化する。本発明は、温度差法
を用いることなく、通常の液相ヱピタキシャル成長法を
利用して、厚膜多層構造の化合物半導体ウェハを得られ
るようにするもので、以下これを詳細に説明する。
In general, when looking at the photoelectric elements, such as LEDs, it is essential to have a multi-channel structure from the viewpoint of performance improvement, and the above-mentioned drawback 3 is serious. In an attempt to overcome this drawback, we first grew a thick film using the temperature difference method, then removed it from the growth furnace, subjected it to surface treatment, and then grew the required number of crystal layers on top of it using the usual method. It is also being considered to create a multilayer structure by adding layers, but this method requires many steps and
The cost becomes high, and furthermore, the above-mentioned two disadvantages inherent to the temperature difference method are also compounded, and the yield is also deteriorated. The present invention makes it possible to obtain a compound semiconductor wafer with a thick film multilayer structure by using a normal liquid phase epitaxial growth method without using a temperature difference method, and will be described in detail below.

さて、一般に、例えばm−V族化合物の混晶を液相ヱピ
タキシャル成長法で成長する場合の溶液組成とェピタキ
シャル成長層組成の関係、及び、成長中に於ける組成変
動については、正則溶液理論に基づいた理論計算、及び
、成長中に於ける熱平衡を仮定した数値計算に依って、
正確に予測することが可能である。
Now, in general, for example, the relationship between the solution composition and the epitaxial growth layer composition when growing a mixed crystal of an m-V group compound by the liquid phase epitaxial growth method, and the composition fluctuation during growth, can be explained using a regular solution. Based on theoretical calculations based on theory and numerical calculations assuming thermal equilibrium during growth,
It is possible to predict accurately.

第1図は渡晶を900〔〇C〕から成長開始した場合、
その後徐冷を行なって成長を継続して行くと、ェピタキ
シャル成長層の組成がどのように変動するかを数値計算
で求め、それをグラフにしたものである。
Figure 1 shows the case where the growth starts at 900 [〇C].
The figure shows how the composition of the epitaxial growth layer changes when the epitaxial growth layer is gradually cooled and the growth continues, using numerical calculations and graphing the results.

例えば、温度900〔℃〕、ェピタキシャル成長層中の
AlASのモル比x=0.3を女台点として成長を行な
う場合、降溢して成長を進行させるにつれてモル比xは
減少し、840〔℃〕ではx=0.09800〔〇C〕
ではxto.0(GaAs)になることが明らかである
For example, when growing at a temperature of 900 [°C] and a molar ratio x = 0.3 of AlAS in the epitaxial growth layer, the molar ratio x decreases as the growth progresses due to precipitation, and the molar ratio x decreases to 840 [°C]. In [℃], x = 0.09800 [〇C]
So xto. 0 (GaAs).

従って、成長温度の下げ幅△Tが決まれば、成長開始温
度でのェピタキシャル成長層の組成?。
Therefore, once the reduction width ΔT of the growth temperature is determined, what is the composition of the epitaxial growth layer at the growth start temperature? .

と成長終了時の温度To−△Tにおけるェピタキシャル
成長層の組成3Aとの差△x=xo−x,を数値計算で
求めることができる。そこで、逆に、成長終了時(温度
To−△T)における組成がx,となる厚膜を得るため
には、前記の如くして求めた△xだけ大きな組成もから
成長を開始すれば良いことが判る。このような考えを更
に発展させると、例えば、一層目が厚膜で且つ表面側組
成がx,、二眉目以降は例えば数〔仏の〕の薄膜で且つ
表面側組成が均、為・・・・・・なる多層構造を有する
ゥェハを得るには、一層温度下げ幅に対する各層の組成
変動量△均、△も……を数値計算に依り求め、一層目成
長開始温度Toでのェピタキシャル成長層組成がそれぞ
れ均十△&、x3十△×3・・・・・・となるように、
各層に対応する溶液の組成を設定すれば、数度に亘る成
長を行なわなくとも、一度の工程で厚膜を多層成長させ
ることができる。このような知見を基にして、光通信用
発光ダイオードに用いられる二層の厚膜を有するゥヱハ
をスライディング法と呼ばれる液相ェピタキシャル成長
法で製造する場合について説明する。
The difference Δx=xo-x between the composition 3A of the epitaxially grown layer at the temperature To-ΔT at the end of growth can be determined by numerical calculation. Therefore, conversely, in order to obtain a thick film whose composition at the end of growth (temperature To - △T) is x, growth should be started from a composition larger by △x determined as described above. I understand that. Further developing this idea, for example, the first layer is a thick film and the composition on the surface side is x, and the layer after the second eyebrow is, for example, several thin films and the composition on the surface side is uniform, so... In order to obtain a wafer having a multilayer structure, the amount of compositional variation △average, △... of each layer with respect to the width of further temperature reduction is determined by numerical calculation, and the epitaxial growth layer at the first layer growth start temperature To is determined by numerical calculation. So that the composition is uniformly 10△&, x30△x3...
By setting the composition of the solution corresponding to each layer, a multilayer thick film can be grown in one step without having to perform multiple growths. Based on such knowledge, a case will be described in which a double-layer thick film substrate used for light emitting diodes for optical communication is manufactured by a liquid phase epitaxial growth method called a sliding method.

一般に(Ga、AI)Asを用いた、例えば、高出力の
光通信用近赤外発光ダィオード‘こついては、その発光
部分の輝度を大きくすることが重要であり、その為、ヘ
テロ接合構造を採り、且つ、熱抵抗を極力小さくするこ
とが必要である。
In general, for example, near-infrared light-emitting diodes for high-output optical communication using (Ga, AI)As, it is important to increase the brightness of the light-emitting part, and for this purpose, a heterojunction structure is adopted. , and it is necessary to minimize the thermal resistance.

従って、そのようなLEDでは、通常、アップ・サイド
・ダウン型と呼ばれる構造を探っているM即ち、発光部
分を出釆る限り表面近傍に置き、且つ、表面側がヒート
・シンクに近くなるようボンテイングし、表面から光を
取り出す構造を探る。しかしながら、(Ga、AI)A
sのエピタキシヤル成長層を形成する為の基板としては
、(Ga、N)偽のバンドギャップEgより小さなバン
ドキャップを有するGa船を使用するので、そのGaA
s基板が存在したままでは(Ga、AI)船ヱピタキシ
ャル成長層である発光部分からの光を効率良く取り出す
ことはできない。
Therefore, for such LEDs, we usually seek a structure called an up-side-down type, in which the light-emitting part is placed as close to the surface as possible, and bonded so that the surface side is close to the heat sink. and explore structures that extract light from the surface. However, (Ga, AI)A
As a substrate for forming the epitaxial growth layer of s, a Ga carrier having a smaller band gap than the (Ga, N) pseudo band gap Eg is used, so that the GaA
If the s-substrate (Ga, AI) remains present, it is not possible to efficiently extract light from the light-emitting portion, which is the epitaxial growth layer.

そこで、CanAsェピタキシャル成長層を形成した後
、Ga*基板を除去する必要があり、その為にはェピタ
キシャル成長層のみで充分な機械的強度を有するよう厚
くしなければならない。通常、その厚さは、40〜50
〔Aの〕であるとされている。第2図イは、前記の点を
配慮して構成された二層シングル・ヘテロ構造のLED
用ウェハの説明図である。
Therefore, after forming the CanAs epitaxial growth layer, it is necessary to remove the Ga* substrate, and for this purpose, the epitaxial growth layer alone must be thick enough to have sufficient mechanical strength. Usually its thickness is 40-50
It is said to be [A's]. Figure 2A shows a two-layer single heterostructure LED constructed with the above points in mind.
FIG.

即ち、図示のゥヱハは、例えば〔100〕面を有するG
aAs基板1に厚さ50〔rm〕以上、組成の最終値x
,が0.09であるn(Te)−Ga(,へ)NX瓜の
第一層ェピタキシャル成長層2を成長させ、その上に、
厚さ1.8〔山肌〕、組成の最終値x2が0.34であ
るGa,‐xA1xAsの第二層ェピタキシャル成長層
(ヘテロ層)3を成長させた構造になっていて、p・n
接合は、表面から亜鉛(Zn)を拡散してp型領域4を
形成することに依って得ている。
That is, the illustrated waveform is, for example, a G having a [100] plane.
aAs substrate 1 with a thickness of 50 [rm] or more, final value of composition x
, is 0.09, the first epitaxial growth layer 2 of n(Te)-Ga(,)NX melon is grown, and on top of that,
It has a structure in which a second layer epitaxially grown layer (hetero layer) 3 of Ga, -xA1xAs is grown with a thickness of 1.8 [mountain surface] and a final composition value x2 of 0.34, p.n.
The junction is obtained by diffusing zinc (Zn) from the surface to form a p-type region 4.

尚、第2図口は、イに示したウェハに於ける組成分布を
表わす糠図である。第2図イに見られる如き構造のゥェ
ハで、成長開始温度To=900〔OC〕の条件を満足
させる為には、まず、第一層ェピタキシャル成長層2の
成長開始組成柿及び温度の下げ幅4Tを決定しなければ
ならない。
The opening in FIG. 2 is a bran diagram showing the composition distribution in the wafer shown in FIG. In order to satisfy the condition of the growth starting temperature To=900 [OC] in a wafer having the structure as shown in FIG. Width 4T must be determined.

そこで「降温速度0.2〔OC/mjn〕、x=0.0
9丘僕での成長速度を実験値で求めると0.8〜0.9
〔 um/qC〕となり。」従って、4T=60〔℃〕
で第一層ヱピタキシャル成長層5は50〔山m〕以上と
なることが判つた。更に、△T=60〔OC〕でx,:
0.09となる900〔℃〕での組成海を前記した数値
計算で求めると、xo=0.32となった。また、第二
層ェピタキシャル成長層3に関しても同様、△T=60
〔℃〕で均=0.34となるには、900〔℃〕で0.
50の組成にすれば良いことが判った。このような解析
結果を基にして、第3図に見られる液相ヱピタキシャル
成長装置で前記ウェハを製造した。
Therefore, "Cooling rate 0.2 [OC/mjn], x = 0.0
The experimental growth rate for 9 hills is 0.8 to 0.9.
[um/qC]. ” Therefore, 4T=60 [℃]
It was found that the first epitaxially grown layer 5 had a thickness of 50 m or more. Furthermore, x at △T=60 [OC]:
When the composition sea at 900 [° C.], which is 0.09, was determined by the numerical calculation described above, xo = 0.32. Similarly, regarding the second epitaxial growth layer 3, ΔT=60
To obtain an average of 0.34 at [°C], 0.34 at 900 [°C].
It was found that a composition of 50 was sufficient. Based on such analysis results, the wafer was manufactured using a liquid phase epitaxial growth apparatus shown in FIG.

第3図に於いて、11はカーボン製スラィダ、12はカ
ーボン製基台、13は第一層用溶液、14は第二層用溶
液、15はダミーのGaAs板、16は基台12に形成
された凹所に配設されたoa船基板、17,18は溶液
溜めをそれぞれ示す。
In FIG. 3, 11 is a carbon slider, 12 is a carbon base, 13 is a first layer solution, 14 is a second layer solution, 15 is a dummy GaAs plate, and 16 is formed on the base 12. 17 and 18 indicate solution reservoirs, respectively.

第一層用溶液13及び第二層用溶液14の組成は、前記
解析結果及びGa−AI−As三元系平衡状態図を使っ
て求めると次のようである。
The compositions of the first layer solution 13 and the second layer solution 14 are determined as follows using the above analysis results and the Ga-AI-As ternary system equilibrium phase diagram.

即ち、溶液13Ga:10.6〔 夕〕、AI:13.
0〔奴〕、Ga船:1.0〔 夕〕溶液14Ga:10
.6〔 の 、AI:26.5〔のり〕、Ga$:0.
77〔 夕〕また、溶液13中には第一層ェピタキシャ
ル成長層に於けるn型不純物濃度が2〜3×1び7〔原
子数/塊〕になるよう、テルル(Te)が300〔リタ
〕入っている。
That is, solution 13Ga: 10.6 [evening], AI: 13.
0 [guy], Ga ship: 1.0 [evening] solution 14Ga: 10
.. 6 [no], AI: 26.5 [glue], Ga$: 0.
77 [Evening] Also, in the solution 13, 300% tellurium (Te) was added so that the n-type impurity concentration in the first epitaxial growth layer would be 2 to 3 × 1 and 7 [number of atoms/clump]. Rita] It's in.

ダミーのGa松基板15は、第一層のェピタキシヤル成
長層を成長させている間に溶液14が常に平衡を保つよ
うに溶液14上に置かれる。
A dummy Ga pine substrate 15 is placed on top of the solution 14 so that the solution 14 always remains in equilibrium while growing the first epitaxial growth layer.

さて、第3図aに見られるような状態に在る装置を水素
或いは不活性ガス雰囲気になっている反応管中にセット
し、電気炉中に挿入し、温度を900〔℃〕まで上昇せ
しめ約40〔分〕間定温を維持し、溶液13,14を充
分に飽和させる。次に、0.2〔〇C/min〕の降温
速度で温度を下げ始めると同時に第3図bに見られる如
く、第一層用溶液13力ミGaAs基板16上に接触す
るようスラィダ11を移動し、第一層ェピタキシャル成
長層の成長を開始する。この状態のまま840〔OC〕
まで(△T=60〔℃〕)温度を下げてゆくと、Ga$
基板16上に組成の初期値がxo=0.30で最終値が
x,=0.09の第一層厚膜が成長する。840〔℃〕
になったところで第3図cのように第2層溶液14が基
板16上に接触するようにスラィダ11を移動し、第2
層ェピタキシャル成長層の成長を開始する。
Now, the apparatus in the state shown in Figure 3a was set in a reaction tube containing a hydrogen or inert gas atmosphere, inserted into an electric furnace, and the temperature was raised to 900 [°C]. A constant temperature is maintained for about 40 [minutes] to fully saturate solutions 13 and 14. Next, as soon as the temperature begins to decrease at a rate of 0.2 C/min, the slider 11 is moved so that the first layer solution 13 comes into contact with the GaAs substrate 16, as shown in FIG. and start growing the first epitaxial growth layer. 840 [OC] in this state
As the temperature is lowered to (△T=60 [℃]), Ga$
A first layer thick film is grown on the substrate 16 with an initial composition value of xo=0.30 and a final composition value of x,=0.09. 840 [℃]
When the second layer solution 14 reaches the surface of the substrate 16, move the slider 11 so that the second layer solution 14 comes into contact with the substrate 16 as shown in FIG.
Start growing the layer epitaxially.

厚膜ェピタキシャル成長層の上には、引き続き杉=0.
34の第2層ェピタキシャル成長層の成長が始まる。こ
の状態のまま8370まで温度を下げてゆき、837〔
OC〕になったところで、第3図dに見られる如くスラ
ィダを移動させて基板16上から溶液14を除去して成
長を終了する。前記の如くして得られたゥェハの厚さを
実測したところ、第一層ェピタキシャル成長層の厚さは
52〔りm〕、第二層ェピタキシャル成長層の厚さは1
.8〔〆m〕であり、ウヱハ各部の組成をホト・ルミネ
ツセンスで測定すると、x。
On top of the thick epitaxial growth layer, Cedar=0.
Growth of 34 second epitaxial growth layers begins. In this state, the temperature was lowered to 8370, and the temperature reached 837 [
OC], the slider is moved as shown in FIG. 3d to remove the solution 14 from the substrate 16 and terminate the growth. When the thickness of the wafer obtained as described above was actually measured, the thickness of the first epitaxially grown layer was 52 m, and the thickness of the second epitaxially grown layer was 1 m.
.. 8 [〆m], and when the composition of each part of the wafer is measured by photoluminescence, it is x.

=0.30、x,=0.09×2=0.34が得られ、
厚さ、組成ともに設計どおりであった。このウェハに、
表面から2.3〔仏肌〕の板16上にはxo=0.32
〜x,=0.09まで組成が連続的に変化するn型(G
a、AI)Asのヱピタキシャル成長層が形成される。
= 0.30, x, = 0.09 x 2 = 0.34 are obtained,
Both the thickness and composition were as designed. On this wafer,
On the board 16 2.3 [Buddha skin] from the surface, xo = 0.32
n-type (G
a, AI) An epitaxially grown layer of As is formed.

「そして、この第一層ェピタキシャル成長層を成長させ
ている間、ダミーのGa$板15にはxo=0.50〜
均=0.34まで組成が連続的に変化するGaAIAs
のェピタキシャル成長層が形成され、従って、溶液14
は常に平衡を保った状態になっている。」次に、840
〔℃〕で第3図cに見られる如く、スラィダ11を更に
移動し、溶液14を基板16に接触させると、第一層ェ
ピタキシャル成長層の成長がx,=0.09で終ると同
深さ、直径35〔一肌〕にZnの選択拡散を行ない、G
a母基板を除去した後、ゥヱハの各面にn及びp電極を
つけ、チップの切り出し、ポンテイングを行なってLE
Dを完成させた。該LEDは発光させると、電流100
〔mA〕で発光波長8300〔A〕、出力5〜10〔m
w〕の性能を得た。前記説明では、50〔 ムの〕の厚
膜(Ga、A】)船ェピタキシャル成長層を有する二層
ゥェハを成長させる例について説明したが、本発明は、
更に多層のウェハであっても、その最終層以外の一つの
層が厚膜、例えば40〔りの〕以上であって、他の層が
例えば数〔ムの〕程度の薄膜であれば、どのような組成
のものについても、そのまま適用することができる。ま
た、GaAIふ以外のm−V族化合物半導体或いは他の
化合物半導体の混晶をェピタキシャル成長させる場合に
も適用することができる。更にまた、成長開始温度も9
00〔℃〕に限定されるものではなく、本発明を適用す
る系に対応して適宜選定される。更にまた、ダミーのG
a兆板は、その形状、配置場所を限定されるものではな
く、要は、厚勝成長中に所定溶液と接していれば良い。
尚、ェピタキシヤル成長中に生ずる組成変化は、厳密に
は数〔一肌〕のェピタキシャル成長であっても存在する
筈であるが、それは実用上で影響する程ではなく、通常
は無視できる。以上の説明で判るように、本発明に依れ
ば厚膜を有する多層構造の化合物半導体ウェハを容易に
再現性良く製造することができる。
``While growing this first epitaxial growth layer, the dummy Ga$ plate 15 has xo=0.50 ~
GaAIAs whose composition changes continuously up to average = 0.34
An epitaxially grown layer of 14 is formed, thus the solution 14
is always in a state of equilibrium. "Then, 840
When the slider 11 is further moved to bring the solution 14 into contact with the substrate 16 as shown in FIG. Selective diffusion of Zn was carried out to a depth of 35 [one skin] in diameter, and G
After removing the motherboard a, attach n and p electrodes to each side of the wafer, cut out the chip, and perform ponting to form the LE.
Completed D. When the LED emits light, the current is 100
[mA], emission wavelength 8300 [A], output 5-10 [m
w] performance was obtained. In the above description, an example of growing a two-layer wafer having a 50 [mu] thick film (Ga, A) epitaxially grown layer has been described.
Furthermore, even if the wafer has multiple layers, if one layer other than the final layer is a thick film, e.g. 40 mm or more, and the other layer is a thin film, e.g. The composition can also be applied as is. Further, the present invention can also be applied to epitaxial growth of m-V group compound semiconductors other than GaAI or mixed crystals of other compound semiconductors. Furthermore, the growth starting temperature is also 9
The temperature is not limited to 0.00°C, and may be appropriately selected depending on the system to which the present invention is applied. Furthermore, the dummy G
There are no restrictions on the shape or location of the a-trillion plates, as long as they are in contact with a predetermined solution during thick growth.
Strictly speaking, compositional changes that occur during epitaxial growth should exist even if there are only a few (single skin) epitaxial growths, but this does not have a practical effect and can usually be ignored. As can be seen from the above description, according to the present invention, a compound semiconductor wafer having a multilayer structure having a thick film can be easily manufactured with good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は温度と組成変動の関係を表わす線図、第2図イ
は本発明−実施例に依り製造されるウェハの説明図、第
2図口はイに於ける組成分布を表わす線図、第3図a〜
dは本発明一実施例の工程説明図である。 図において、11はスライダ、12は基台、13,14
は溶液、15はダミーのGa笹板、16は基板、17,
18は溶液溜めをそれぞれ示す。 第1図第2図 第2図 第3図
Fig. 1 is a diagram showing the relationship between temperature and composition variation, Fig. 2 (a) is an explanatory diagram of a wafer manufactured according to the present invention-embodiment, and Fig. 2 (a) is a diagram showing the composition distribution in (b). , Figure 3 a~
d is a process explanatory diagram of an embodiment of the present invention. In the figure, 11 is a slider, 12 is a base, 13, 14
is a solution, 15 is a dummy Ga bamboo plate, 16 is a substrate, 17,
Reference numeral 18 indicates a solution reservoir. Figure 1 Figure 2 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 表面に最も近い最終層以外の層に、初晶のXが0.
56を越えない範囲にあり、その層の厚さが40μm以
上であるGa_1_−_XAl_XAsの厚膜層を含む
多層構造のエピタキシヤル法を温度を降下させる徐冷式
液相エピタキシヤル法で成長させる場合において、該厚
膜層をエピタキシヤル成長した後、該厚膜層の上に引続
いて成長させるエピタキシヤル成長層の形成に用いる各
溶液に、組成の熱平衡状態を維持するダミーの結晶を独
立して接触させておき、かつ各溶液の組成を該厚膜層の
成長中の温度降下に対応して生ずる組成変動分だけ成長
開始時に設定さるべき組成から予めずらして設定してお
くことを特徴とする厚膜を含む多層エピタキシヤル成長
法。
1. In layers other than the final layer closest to the surface, the primary crystal X is 0.
When growing a multilayer structure epitaxially including a thick layer of Ga_1__XAl_XAs with a thickness not exceeding 56 μm and a layer thickness of 40 μm or more using a slow cooling liquid phase epitaxial method that lowers the temperature. After the thick film layer is epitaxially grown, a dummy crystal is separately added to each solution used to form an epitaxial growth layer that is subsequently grown on the thick film layer to maintain a thermal equilibrium state of the composition. and the composition of each solution is set in advance so as to deviate from the composition that should be set at the start of growth by the composition variation that occurs in response to the temperature drop during the growth of the thick film layer. Multilayer epitaxial growth method including thick films.
JP51158650A 1976-12-28 1976-12-28 Multilayer epitaxial growth method including thick films Expired JPS6041454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51158650A JPS6041454B2 (en) 1976-12-28 1976-12-28 Multilayer epitaxial growth method including thick films

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51158650A JPS6041454B2 (en) 1976-12-28 1976-12-28 Multilayer epitaxial growth method including thick films

Publications (2)

Publication Number Publication Date
JPS5383460A JPS5383460A (en) 1978-07-22
JPS6041454B2 true JPS6041454B2 (en) 1985-09-17

Family

ID=15676335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51158650A Expired JPS6041454B2 (en) 1976-12-28 1976-12-28 Multilayer epitaxial growth method including thick films

Country Status (1)

Country Link
JP (1) JPS6041454B2 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. CRYSTAL GROWTH#V15=1972 *

Also Published As

Publication number Publication date
JPS5383460A (en) 1978-07-22

Similar Documents

Publication Publication Date Title
USRE29845E (en) GaAs1-x Px electroluminescent device doped with isoelectronic impurities
US7255742B2 (en) Method of manufacturing Group III nitride crystals, method of manufacturing semiconductor substrate, Group III nitride crystals, semiconductor substrate, and electronic device
JP3356041B2 (en) Gallium phosphide green light emitting device
JP4554287B2 (en) Group III nitride crystal manufacturing method and semiconductor substrate manufacturing method
JP3143040B2 (en) Epitaxial wafer and method for manufacturing the same
JPS61183977A (en) Light emitting element and manufacture thereof
JPS6041454B2 (en) Multilayer epitaxial growth method including thick films
JP2001274454A (en) Light emitting diode and its manufacturing method
JP3104218B2 (en) Method for growing nitrogen-doped GaP epitaxial layer
JPS5816535A (en) Semiconductor device and its manufacture
JPH08139358A (en) Epitaxial wafer
JPH08335555A (en) Fabrication of epitaxial wafer
US4609411A (en) Liquid-phase epitaxial growth method of a IIIb-Vb group compound
JPH06342935A (en) Gap pure green light-emitting device substrate
JPH1065211A (en) Light-emitting diode
JP2534945B2 (en) Method for manufacturing semiconductor device
JP4211897B2 (en) Liquid phase epitaxial growth method
JP2005536896A (en) Manufacturing method of semiconductor chip emitting electromagnetic radiation and semiconductor chip emitting electromagnetic radiation
JP2000058904A (en) Epitaxial wafer and its manufacture as well as light emitting diode
JP4156873B2 (en) Epitaxial wafer manufacturing method
JP2783580B2 (en) Double hetero-type infrared light emitting device
JP2883338B2 (en) Manufacturing method of light emitting diode
JPS5856250B2 (en) Method for manufacturing GaAlAs semiconductor device
USRE29648E (en) Process for the preparation of electroluminescent III-V materials containing isoelectronic impurities
JPH03161981A (en) Manufacture of semiconductor device and ii-vi compound semiconductor crystal layer