JP2000058904A - Epitaxial wafer and its manufacture as well as light emitting diode - Google Patents

Epitaxial wafer and its manufacture as well as light emitting diode

Info

Publication number
JP2000058904A
JP2000058904A JP22174198A JP22174198A JP2000058904A JP 2000058904 A JP2000058904 A JP 2000058904A JP 22174198 A JP22174198 A JP 22174198A JP 22174198 A JP22174198 A JP 22174198A JP 2000058904 A JP2000058904 A JP 2000058904A
Authority
JP
Japan
Prior art keywords
type
cladding layer
epitaxial wafer
layer
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22174198A
Other languages
Japanese (ja)
Inventor
Yukiya Shibata
幸弥 柴田
Yukio Kikuchi
幸夫 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP22174198A priority Critical patent/JP2000058904A/en
Publication of JP2000058904A publication Critical patent/JP2000058904A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an epitaxial wafer in which a p-type inversion is not generated in a part near the bonding part of a substrate to an n-type clad layer, in which a light fetching face is a p-type layer and whose yield is high and to provide its manufacturing method as well as to provide a light emitting diode. SOLUTION: An n-type GaAlAs clad layer 2, a p-type GaAlAs active layer 3 and a p-type GaAlAs clad layer 4 are formed sequentially on an n-type GaAs substrate 1 by a liquid-phase epitaxial method. At this time, the concentration of C in the n-type GaAlAs clad layer 2 is set at 1.0×1018 cm-3 or lower, and an epitaxial wafer is manufactured sequentially. As a result, the peak concentration of C becomes lower than the concentration of Te near the bonding part of the n-type GaAlAs clad layer 2 to the n-type GaAs substrate 1, and a p-type inversion is not generated near the bonding part. When the epitaxial wafer is used, it is possible to obtain a light emitting diode in which a light fetching face is the p-type GaAlAs layer 3 and whose yield is high.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エピタキシャルウ
ェハ及びその製造方法並びに発光ダイオードに関する。
The present invention relates to an epitaxial wafer, a method for manufacturing the same, and a light emitting diode.

【0002】[0002]

【従来の技術】液相エピタキシャル法により製造される
GaAlAs系赤色発光ダイオード(LED)用のエピ
タキシャルウェハの構造は、光取出し面がn型層である
タイプが主流である。
2. Description of the Related Art The structure of an epitaxial wafer for a GaAlAs-based red light emitting diode (LED) manufactured by a liquid phase epitaxial method is mainly of a type in which a light extraction surface is an n-type layer.

【0003】図2は従来のエピタキシャルウェハの断面
図である。
FIG. 2 is a sectional view of a conventional epitaxial wafer.

【0004】このエピタキシャルウェハは、p型GaA
s基板5の上に、p型GaAlAsクラッド層6、p型
GaAlAs活性層7及びn型GaAlAsクラッド層
8が順次形成されたものである。
[0004] This epitaxial wafer is made of p-type GaAs.
A p-type GaAlAs cladding layer 6, a p-type GaAlAs active layer 7, and an n-type GaAlAs cladding layer 8 are sequentially formed on an s substrate 5.

【0005】この種のエピタキシャルウェハを多色発光
ディスプレイに用いる場合、赤色以外の他のLEDの光
取出し面がp型層であり導電型が異なることから、光取
出し面がp型層であるタイプの需要も多い。
When this type of epitaxial wafer is used for a multicolor light-emitting display, the light extraction surface of the LED other than red is a p-type layer and has a different conductivity type, so that the light extraction surface is a p-type layer. There is also a lot of demand.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、光取出
し面がp型層であるタイプ(n型GaAs基板の上に、
n型GaAlAsクラッド層、p型GaAlAs活性層
及びp型GaAlAsクラッド層を順次形成したもの)
は、n型GaAs基板とn型GaAlAsクラッド層と
の接合部のn型制御が難しいため、製造上の歩留りが低
い。また、p型ドーパントとして用いられるZnは、エ
ピタキシャル成長を行う温度(700〜900℃)にお
いて非常に拡散しやすい性質を有している。
However, a type in which the light extraction surface is a p-type layer (on an n-type GaAs substrate,
An n-type GaAlAs cladding layer, a p-type GaAlAs active layer, and a p-type GaAlAs cladding layer sequentially formed)
Is difficult to control the junction of the n-type GaAs substrate and the n-type GaAlAs cladding layer with n-type, so that the production yield is low. Further, Zn used as a p-type dopant has a property of being very easily diffused at a temperature (700 to 900 ° C.) at which epitaxial growth is performed.

【0007】そのため、p型活性層及びp型クラッド層
溶液中のZnがn型基板及びn型クラッド層に拡散する
ためn型制御が難しくなっている。
For this reason, Zn in the solution of the p-type active layer and the p-type cladding layer diffuses into the n-type substrate and the n-type cladding layer, which makes it difficult to control the n-type.

【0008】対策としては、n型クラッド層のドーパン
トTe量を増加することやp型活性層及びp型クラッド
層のZn量を減少させることが検討されているが不十分
である。
As countermeasures, increasing the amount of dopant Te in the n-type cladding layer and decreasing the amount of Zn in the p-type active layer and the p-type cladding layer have been studied but are insufficient.

【0009】そこで、本発明の目的は、上記課題を解決
し、基板とn型クラッド層との接合部付近でのp型反転
がなく、光取出し面がp型層であり、しかも歩留りが高
いエピタキシャルウェハ及びその製造方法並びに発光ダ
イオードを提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned problems, there is no p-type inversion near the junction between the substrate and the n-type cladding layer, the light extraction surface is a p-type layer, and the yield is high. An object of the present invention is to provide an epitaxial wafer, a method for manufacturing the same, and a light emitting diode.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に本発明のエピタキシャルウェハの製造方法は、n型G
aAs基板上に、n型GaAlAsクラッド層、所望す
る発光波長に必要なAl混晶比のp型GaAlAs活性
層、p型GaAlAsクラッド層を液相エピタキシャル
法により順次形成するダブルヘテロ構造のエピタキシャ
ルウェハの製造方法において、n型GaAlAsクラッ
ド層中のC濃度を1.0×1018cm-3以下にして各層
を順次形成するものである。
In order to achieve the above object, a method of manufacturing an epitaxial wafer according to the present invention comprises the steps of:
An epitaxial wafer having a double hetero structure in which an n-type GaAlAs cladding layer, a p-type GaAlAs active layer having an Al mixed crystal ratio required for a desired emission wavelength, and a p-type GaAlAs cladding layer are sequentially formed on an aAs substrate by a liquid phase epitaxial method. In the manufacturing method, each layer is sequentially formed with the C concentration in the n-type GaAlAs cladding layer being 1.0 × 10 18 cm −3 or less.

【0011】本発明のエピタキシャルウェハは、n型G
aAs基板上に、n型GaAlAsクラッド層、所望す
る発光波長に必要なAl混晶比のp型GaAlAs活性
層、p型GaAlAsクラッド層を液相エピタキシャル
法により順次形成したダブルヘテロ構造のエピタキシャ
ルウェハにおいて、n型GaAlAsクラッド層中のC
濃度が1.0×1018cm-3以下にしたものである。
The epitaxial wafer of the present invention has an n-type G
An epitaxial wafer having a double hetero structure in which an n-type GaAlAs cladding layer, a p-type GaAlAs active layer having an Al composition ratio required for a desired emission wavelength, and a p-type GaAlAs cladding layer are sequentially formed on a aAs substrate by a liquid phase epitaxial method. In the n-type GaAlAs cladding layer
The concentration is 1.0 × 10 18 cm −3 or less.

【0012】本発明の発光ダイオードは、n型GaAs
基板上に、n型GaAlAsクラッド層、所望する発光
波長に必要なAl混晶比のp型GaAlAs活性層、p
型GaAlAsクラッド層が液相エピタキシャル法によ
り順次形成したダブルヘテロ構造のエピタキシャルウェ
ハにアノード電極及びカソード電極を設けた発光ダイオ
ードにおいて、n型GaAlAsクラッド層中のC濃度
を1.0×1018cm-3以下にしたものである。
The light emitting diode of the present invention is an n-type GaAs
On a substrate, an n-type GaAlAs cladding layer, a p-type GaAlAs active layer having an Al mixed crystal ratio required for a desired emission wavelength,
In a light emitting diode in which an anode electrode and a cathode electrode are provided on an epitaxial wafer having a double hetero structure in which a GaAlAs cladding layer is sequentially formed by a liquid phase epitaxial method, the C concentration in the n-type GaAlAs cladding layer is set to 1.0 × 10 18 cm − 3 or less.

【0013】本発明によれば、n型GaAlAsクラッ
ド層中のC濃度を1.0×1018cm-3以下にしてエピ
タキシャルウェハを順次形成することにより、ピークC
濃度がn型クラッド層と基板との接合部付近のTe濃度
より低くなるため、接合部付近でp型反転が生じなくな
る。このようなエピタキシャルウェハを用いることによ
り、光取出し面がp型層であり、しかも歩留りが高い発
光ダイオードが得られる。
According to the present invention, the C concentration in the n-type GaAlAs cladding layer is controlled to be 1.0 × 10 18 cm −3 or less, and the epitaxial wafer is sequentially formed, whereby the peak C
Since the concentration is lower than the Te concentration near the junction between the n-type cladding layer and the substrate, p-type inversion does not occur near the junction. By using such an epitaxial wafer, a light-emitting diode having a light extraction surface of a p-type layer and a high yield can be obtained.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面に基づいて詳述する。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0015】本発明者らは、n型GaAs基板とn型G
aAlAsクラッド層との接合部でp型反転層が発生す
る原因は、Zn拡散だけでなく、n型クラッド層中に含
まれる不純物C(カーボン)が関与していることが分か
った。
The present inventors have proposed an n-type GaAs substrate and an n-type G
It has been found that the cause of the formation of the p-type inversion layer at the junction with the aAlAs cladding layer is not only Zn diffusion but also the impurity C (carbon) contained in the n-type cladding layer.

【0016】図3はn型GaAs基板とn型GaAlA
sクラッド層との接合部付近のC濃度SIMS(Second
ary Ion Mass Spectroscopy:二次イオン質量分析)測定
結果を示す図である。同図において横軸が深さを示し、
縦軸が濃度を示す。
FIG. 3 shows an n-type GaAs substrate and an n-type GaAlA.
C concentration SIMS near the junction with the s cladding layer (Second
FIG. 4 is a diagram showing measurement results of ary ion mass spectroscopy (secondary ion mass spectroscopy). In the figure, the horizontal axis indicates the depth,
The vertical axis indicates the concentration.

【0017】液相エピタキシャル成長に用いる成長治具
はグラファイトでできているため、自然にCは溶液中に
含まれてしまう。そのためCはエピタキシャル層中にも
含まれてしまうが、そのピーク濃度は2×1018cm-3
以上の高濃度である。
Since the growth jig used for liquid phase epitaxial growth is made of graphite, C is naturally contained in the solution. Therefore, C is also contained in the epitaxial layer, but its peak concentration is 2 × 10 18 cm −3.
The above high concentration.

【0018】通常、n型クラッド層の基板接合部付近の
Te濃度は0.5〜1.0×1018cm-3であるため、
p型不純物であるCがそれ以上含まれた場合、n型クラ
ッド層がp型クラッド層に反転してしまう。
Usually, the Te concentration near the substrate junction of the n-type cladding layer is 0.5 to 1.0 × 10 18 cm −3 ,
If C, which is a p-type impurity, is further contained, the n-type cladding layer is inverted to the p-type cladding layer.

【0019】したがって、n型クラッド層中の不純物C
濃度は、n型クラッド層のTe濃度より低くなければな
らない。すなわち、n型クラッド層と基板との接合部付
近のTe濃度は0.5〜1.0×1018cm-3以下でな
ければならない。
Therefore, the impurity C in the n-type cladding layer
The concentration must be lower than the Te concentration of the n-type cladding layer. That is, the Te concentration near the junction between the n-type cladding layer and the substrate must be 0.5 to 1.0 × 10 18 cm −3 or less.

【0020】なお、n型クラッド層と基板との接合部付
近のTe濃度を1×1018cm-3以上にした場合、発光
出力が極端に低下する。
When the Te concentration near the junction between the n-type cladding layer and the substrate is set to 1 × 10 18 cm −3 or more, the light emission output is extremely reduced.

【0021】[0021]

【実施例】図1は本発明のエピタキシャルウェハの製造
方法を適用したエピタキシャルウェハの断面図である。
FIG. 1 is a sectional view of an epitaxial wafer to which the method of manufacturing an epitaxial wafer according to the present invention is applied.

【0022】このようなエピタキシャルウェハは以下の
ようにして製造した。
Such an epitaxial wafer was manufactured as follows.

【0023】エピタキシャル成長治具(図示せず)は、
PBNコーティングを施したグラファイト治具を用い
た。n型GaAs基板1とエピタキシャル層の原料であ
るGa、GaAs、Al、Zn、Teをエピタキシャル
成長治具にセットし、液相エピタキシャル成長装置内に
設置した。
The epitaxial growth jig (not shown)
A graphite jig with a PBN coating was used. An n-type GaAs substrate 1 and Ga, GaAs, Al, Zn, and Te, which are raw materials for an epitaxial layer, were set in an epitaxial growth jig and set in a liquid phase epitaxial growth apparatus.

【0024】水素気流中でn型GaAs基板1をエピタ
キシャル成長治具ごと約900℃に加熱して3時間保持
した後、約700℃まで1℃/minの割合で降温させ
た。降温中にn型GaAs基板1を順次成長溶液に接触
させ、n型GaAlAsクラッド層2、p型GaAlA
s活性層3、p型GaAlAsクラッド層4を順次液相
エピタキシャル成長させた。なお、n型GaAlAsク
ラッド層と基板との接合部付近のTe濃度は、1×10
18cm-3になるように条件を定めて成長させた。
The n-type GaAs substrate 1 was heated together with the epitaxial growth jig to about 900 ° C. and maintained for 3 hours in a hydrogen stream, and then cooled to about 700 ° C. at a rate of 1 ° C./min. During cooling, the n-type GaAs substrate 1 is sequentially brought into contact with the growth solution, and the n-type GaAlAs cladding layer 2 and the p-type GaAlA
The s active layer 3 and the p-type GaAlAs cladding layer 4 were sequentially grown by liquid phase epitaxial growth. The Te concentration near the junction between the n-type GaAlAs cladding layer and the substrate was 1 × 10
The growth was performed under conditions so as to be 18 cm -3 .

【0025】得られたエピタキシャルウェハの半面を用
いて、基板界面付近のC濃度SIMS測定を行った。エ
ピタキシャルウェハの残りの半面には、アノード電極及
びカソード電極を形成し、ダイシングによりチップに分
割した。分割したチップは、ステムに取付けられた後エ
ポキシ樹脂でコートして発光ダイオードにした。
Using the half surface of the obtained epitaxial wafer, a C concentration SIMS measurement near the substrate interface was performed. An anode electrode and a cathode electrode were formed on the remaining half surface of the epitaxial wafer, and divided into chips by dicing. The divided chip was mounted on a stem and coated with an epoxy resin to form a light emitting diode.

【0026】なお、比較例としてPBNコーティングを
施していない、通常使用されるグラファイト治具を用い
て、上述した条件と同様の条件でエピタキシャルウェハ
を作製し、同様に半面を用いてC濃度SIMS測定を行
い、残りの半面で発光ダイオードを作製した。
As a comparative example, an epitaxial wafer was prepared under the same conditions as described above using a commonly used graphite jig without PBN coating, and a C concentration SIMS measurement was similarly performed using a half surface. And a light emitting diode was fabricated on the other half.

【0027】表1は本実施例と比較例との電流−電圧特
性不良発生率とn型クラッド層のピークC濃度を示す表
である。
Table 1 is a table showing the current-voltage characteristic defect occurrence rate and the peak C concentration of the n-type cladding layer in this embodiment and the comparative example.

【0028】[0028]

【表1】 [Table 1]

【0029】同表より、本実施例のエピタキシャルウェ
ハを用いて発光ダイオードを製造すると、従来のエピタ
キシャルウェハを用いた発光ダイオードと比較して、不
良発生率が1/30と少ないことが分かる。これは、ピ
ークC濃度がn型クラッド層と基板との接合部付近のT
e濃度より低いため、接合部付近でp型反転が生じなく
なったためである。
From the table, it can be seen that when a light emitting diode is manufactured using the epitaxial wafer of this embodiment, the defect occurrence rate is as low as 1/30 as compared with a light emitting diode using a conventional epitaxial wafer. This is because the peak C concentration has a T value near the junction between the n-type cladding layer and the substrate.
This is because p-type inversion does not occur near the junction because the concentration is lower than the e concentration.

【0030】以上において本実施例ではダブルヘテロ構
造のエピタキシャルウェハについて説明したが、ダブル
ヘテロ構造のエピタキシャルウェハからGaAs基板を
除去して作られる裏面反射型の発光ダイオードにも適用
できる。
Although the present embodiment has been described with reference to the epitaxial wafer having the double hetero structure, the present invention can be applied to a back reflection type light emitting diode formed by removing the GaAs substrate from the epitaxial wafer having the double hetero structure.

【0031】[0031]

【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果を発揮する。
In summary, according to the present invention, the following excellent effects are exhibited.

【0032】n型GaAlAsクラッド層中のC濃度
を、1.0×1018cm-3以下にすることにより、基板
とn型クラッド層との接合部付近でのp型反転がなく、
光取出し面がp型層であり、しかも歩留りが高いエピタ
キシャルウェハ及びその製造方法並びに発光ダイオード
の提供を実現することができる。
By setting the C concentration in the n-type GaAlAs cladding layer to 1.0 × 10 18 cm −3 or less, there is no p-type inversion near the junction between the substrate and the n-type cladding layer.
An epitaxial wafer having a light extraction surface of a p-type layer and having a high yield, a method for manufacturing the same, and provision of a light emitting diode can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のエピタキシャルウェハの製造方法を適
用したエピタキシャルウェハの断面図である。
FIG. 1 is a cross-sectional view of an epitaxial wafer to which an epitaxial wafer manufacturing method according to the present invention is applied.

【図2】従来のエピタキシャルウェハの断面図である。FIG. 2 is a sectional view of a conventional epitaxial wafer.

【図3】図3はn型GaAs基板とn型GaAlAsク
ラッド層との接合部付近のC濃度SIMS測定結果を示
す図である。
FIG. 3 is a diagram showing a C concentration SIMS measurement result near a junction between an n-type GaAs substrate and an n-type GaAlAs cladding layer.

【符号の説明】 1 n型GaAs基板 2 n型GaAlAsクラッド層 3 p型GaAlAs活性層 4 p型GaAlAsクラッド層[Description of Signs] 1 n-type GaAs substrate 2 n-type GaAlAs cladding layer 3 p-type GaAlAs active layer 4 p-type GaAlAs cladding layer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F041 AA41 CA04 CA12 CA35 CA36 CA49 CA53 CA57 CA63 CA67 CA76 CB15 DA19 DA44 FF01 FF06  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5F041 AA41 CA04 CA12 CA35 CA36 CA49 CA53 CA57 CA63 CA67 CA76 CB15 DA19 DA44 FF01 FF06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 n型GaAs基板上に、n型GaAlA
sクラッド層、所望する発光波長に必要なAl混晶比の
p型GaAlAs活性層、p型GaAlAsクラッド層
を液相エピタキシャル法により順次形成するダブルヘテ
ロ構造のエピタキシャルウェハの製造方法において、上
記n型GaAlAsクラッド層中のC濃度を1.0×1
18cm-3以下にして上記各層を順次形成するエピタキ
シャルウェハの製造方法。
An n-type GaAs substrate is provided on an n-type GaAs substrate.
In the method for manufacturing an epitaxial wafer having a double hetero structure in which an s cladding layer, a p-type GaAlAs active layer having an Al mixed crystal ratio required for a desired emission wavelength, and a p-type GaAlAs cladding layer are sequentially formed by a liquid phase epitaxial method, When the C concentration in the GaAlAs cladding layer is 1.0 × 1
A method for manufacturing an epitaxial wafer in which each of the above layers is sequentially formed at a temperature of 0 18 cm −3 or less.
【請求項2】 n型GaAs基板上に、n型GaAlA
sクラッド層、所望する発光波長に必要なAl混晶比の
p型GaAlAs活性層、p型GaAlAsクラッド層
を液相エピタキシャル法により順次形成したダブルヘテ
ロ構造のエピタキシャルウェハにおいて、上記n型Ga
AlAsクラッド層中のC濃度を1.0×1018cm-3
以下にしたことを特徴とするエピタキシャルウェハ。
2. An n-type GaAs substrate on which an n-type GaAlA
In an epitaxial wafer having a double hetero structure in which an s cladding layer, a p-type GaAlAs active layer having an Al mixed crystal ratio required for a desired emission wavelength, and a p-type GaAlAs cladding layer are sequentially formed by a liquid phase epitaxial method,
The C concentration in the AlAs cladding layer is set to 1.0 × 10 18 cm −3
An epitaxial wafer characterized by the following.
【請求項3】 n型GaAs基板上に、n型GaAlA
sクラッド層、所望する発光波長に必要なAl混晶比の
p型GaAlAs活性層、p型GaAlAsクラッド層
が液相エピタキシャル法により順次形成したダブルヘテ
ロ構造のエピタキシャルウェハにアノード電極及びカソ
ード電極を設けた発光ダイオードにおいて、上記n型G
aAlAsクラッド層中のC濃度を1.0×1018cm
-3以下にしたことを特徴とする発光ダイオード。
3. An n-type GaAs substrate on which an n-type GaAlA
An anode electrode and a cathode electrode are provided on an epitaxial wafer having a double hetero structure in which an s cladding layer, a p-type GaAlAs active layer having an Al composition ratio required for a desired emission wavelength, and a p-type GaAlAs cladding layer are sequentially formed by a liquid phase epitaxial method. In the light emitting diode, the n-type G
a The concentration of C in the AlAs cladding layer is set to 1.0 × 10 18 cm
A light emitting diode characterized by having a value of -3 or less.
JP22174198A 1998-08-05 1998-08-05 Epitaxial wafer and its manufacture as well as light emitting diode Pending JP2000058904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22174198A JP2000058904A (en) 1998-08-05 1998-08-05 Epitaxial wafer and its manufacture as well as light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22174198A JP2000058904A (en) 1998-08-05 1998-08-05 Epitaxial wafer and its manufacture as well as light emitting diode

Publications (1)

Publication Number Publication Date
JP2000058904A true JP2000058904A (en) 2000-02-25

Family

ID=16771511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22174198A Pending JP2000058904A (en) 1998-08-05 1998-08-05 Epitaxial wafer and its manufacture as well as light emitting diode

Country Status (1)

Country Link
JP (1) JP2000058904A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308376A (en) * 2000-04-24 2001-11-02 Showa Denko Kk Epitaxial wafer for semiconductor light-emitting element
CN108550670A (en) * 2013-01-25 2018-09-18 新世纪光电股份有限公司 Nitride semiconductor structure and semiconductor light-emitting elements
US10319879B2 (en) 2016-03-08 2019-06-11 Genesis Photonics Inc. Semiconductor structure
US10468549B2 (en) 2016-09-19 2019-11-05 Genesis Photonics Inc. Semiconductor device containing nitrogen

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308376A (en) * 2000-04-24 2001-11-02 Showa Denko Kk Epitaxial wafer for semiconductor light-emitting element
JP4570728B2 (en) * 2000-04-24 2010-10-27 昭和電工株式会社 Epitaxial wafer for semiconductor light emitting device
CN108550670A (en) * 2013-01-25 2018-09-18 新世纪光电股份有限公司 Nitride semiconductor structure and semiconductor light-emitting elements
CN108550670B (en) * 2013-01-25 2020-10-27 新世纪光电股份有限公司 Nitride semiconductor structure and semiconductor light emitting element
US10319879B2 (en) 2016-03-08 2019-06-11 Genesis Photonics Inc. Semiconductor structure
US10468549B2 (en) 2016-09-19 2019-11-05 Genesis Photonics Inc. Semiconductor device containing nitrogen

Similar Documents

Publication Publication Date Title
JPH0770755B2 (en) High brightness LED epitaxial substrate and method of manufacturing the same
JP3143040B2 (en) Epitaxial wafer and method for manufacturing the same
US5529938A (en) Method for producing light-emitting diode
JPS61183977A (en) Light emitting element and manufacture thereof
JP2000058904A (en) Epitaxial wafer and its manufacture as well as light emitting diode
KR100343849B1 (en) Epitaxial wafers and their manufacturing methods and light-emitting diodes with increased brightness
US5571321A (en) Method for producing a gallium phosphide epitaxial wafer
JP3146874B2 (en) Light emitting diode
JPH0897466A (en) Light emitting device
US7195991B2 (en) Method for producing an electromagnetic radiation-emitting semiconductor chip and a corresponding electromagnetic radiation-emitting semiconductor chip
JPH08139358A (en) Epitaxial wafer
JP2000312032A (en) Compound semiconductor epitaxial wafer, its manufacture, and light emitting diode manufactured thereby
JPH1065211A (en) Light-emitting diode
JP2666525B2 (en) GaAs light emitting diode and method of manufacturing the same
US4609411A (en) Liquid-phase epitaxial growth method of a IIIb-Vb group compound
JPH0766450A (en) Light emitting diode device and its manufacture
US6890781B2 (en) Transparent layer of a LED device and the method for growing the same
JPS63213378A (en) Manufacture of semiconductor light emitting element
JP3625677B2 (en) Epitaxial wafer, light emitting diode, and manufacturing method thereof
JP2001015800A (en) Epitaxial wafer and light emitting device
JPH01315174A (en) Semiconductor light-emitting device
JP2765120B2 (en) Liquid phase epitaxial growth method
JP2646927B2 (en) Method for manufacturing semiconductor optical device and light emitting diode
JPH11346000A (en) Epitaxial wafer, its manufacture, and light emitting diode
JP2804093B2 (en) Optical semiconductor device