JP2765120B2 - Liquid phase epitaxial growth method - Google Patents

Liquid phase epitaxial growth method

Info

Publication number
JP2765120B2
JP2765120B2 JP28926689A JP28926689A JP2765120B2 JP 2765120 B2 JP2765120 B2 JP 2765120B2 JP 28926689 A JP28926689 A JP 28926689A JP 28926689 A JP28926689 A JP 28926689A JP 2765120 B2 JP2765120 B2 JP 2765120B2
Authority
JP
Japan
Prior art keywords
epitaxial growth
liquid phase
phase epitaxial
growth method
algaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28926689A
Other languages
Japanese (ja)
Other versions
JPH03150289A (en
Inventor
達也 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP28926689A priority Critical patent/JP2765120B2/en
Publication of JPH03150289A publication Critical patent/JPH03150289A/en
Application granted granted Critical
Publication of JP2765120B2 publication Critical patent/JP2765120B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 イ.発明の目的 (a) 産業上の利用分野 本発明は、AlGaAs混晶半導体結晶のエピタキシャル成
長法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for epitaxially growing an AlGaAs mixed crystal semiconductor crystal.

(b) 従来の技術 超高輝度赤色発光ダイオード、及び超高出力赤外発光
ダイオードは光の取り出し効率を向上させるために発光
した光に対して透明となるようなAlGaAs厚膜結晶(50〜
100μm)を用いて、その上にp形、n形のAlGaAs層やG
aAs層を形成したり、あるいはこの厚膜結晶にp形、n
形のドーパントを拡散させたりして製作されている。こ
のAlGaAs厚膜結晶は、一般的にはGaAs基板上に液相エピ
タキシャル成長法を用いて成長させることにより得られ
ている。
(B) Conventional technology Ultra-bright red light emitting diodes and ultra-high output infrared light emitting diodes are AlGaAs thick film crystals (50 to 50 mm) that are transparent to emitted light in order to improve light extraction efficiency.
100 μm), and p-type and n-type AlGaAs layers and G
forming an aAs layer, or adding p-type, n-type
It is manufactured by diffusing a shaped dopant. This AlGaAs thick film crystal is generally obtained by growing it on a GaAs substrate using a liquid phase epitaxial growth method.

(c) 発明が解決しようとする課題 ところがAlGaAs厚膜結晶内に積層欠陥と呼ばれる欠陥
が多数存在していると、この厚膜結晶を用いて作製した
発光ダイオードは長時間通電した場合に劣化現象をおこ
して発光出力が徐々に低下してしまう。第2図に初期発
光出力を100%とした場合の150mAで48時間通電後の発光
出力を示すが、これより積層欠陥数が102cm-2以下にな
ると発光出力の劣化率はかなり小さくなることがわか
る。しかしながらこれまでは安定して積層欠陥数の少な
いAlGaAs厚膜結晶を得ることが難しく、通常は積層欠陥
数は103cm-2〜104cm-2であり、従って劣化が少ない高品
質の発光ダイオードを得ることができなかった。
(C) Problems to be Solved by the Invention However, if there are many defects called stacking faults in an AlGaAs thick film crystal, a light emitting diode manufactured using this thick film crystal will deteriorate when subjected to long-term energization. And the light emission output gradually decreases. FIG. 2 shows the light emission output after 48 hours of energization at 150 mA when the initial light emission output is set to 100%. From this, when the number of stacking faults becomes 10 2 cm −2 or less, the deterioration rate of the light emission output becomes considerably small. You can see that. However, it has been difficult to obtain AlGaAs thick-film crystals with a small number of stacking faults in the past, and the number of stacking faults is usually 10 3 cm -2 to 10 4 cm -2 , and therefore high-quality light emission with little deterioration Diode could not be obtained.

ロ.発明の構成 (a) 課題を解決するための手段 本発明は、上記問題点を解決するために、液相エピタ
キシャル成長法によりGaAs基板上にAlGaAs混晶半導体結
晶を成長させる場合において、該GaAs基板を構成するGa
As中に含まれるSiの濃度が1X1017cm-3以下であることを
特徴としている。
B. Configuration of the Invention (a) Means for Solving the Problems The present invention solves the above problems by providing an AlGaAs mixed crystal semiconductor crystal on a GaAs substrate by a liquid phase epitaxial growth method. Constituting Ga
It is characterized in that the concentration of Si contained in As is 1 × 10 17 cm −3 or less.

(b) 作用 液相エピタキシャル成長法により得られる半導体結晶
中の積層欠陥の発生原因としては、基板表面上に付着あ
るいはエピタキシャル成長用原料に混入した異物が考え
られている。特にAlGaAs混晶半導体結晶を成長させる場
合にはAlが酸化しやすく、しかもその酸化物であるAl2
3が非常に安定であることからこのAl23が積層欠陥
の発生の核となっている。従ってAlGaAs混晶半導体結晶
のエピタキシャル成長を行うときには、酸素(O2)の
混入を防ぐことが重要なポイントである。
(B) Action As a cause of the occurrence of stacking faults in the semiconductor crystal obtained by the liquid phase epitaxial growth method, a foreign substance adhering to the substrate surface or mixed in a raw material for epitaxial growth is considered. Particularly, when growing an AlGaAs mixed crystal semiconductor crystal, Al is easily oxidized, and the oxide Al 2
Since O 3 is very stable, Al 2 O 3 is a nucleus for the generation of stacking faults. Therefore, when epitaxial growth of an AlGaAs mixed crystal semiconductor crystal is performed, it is important to prevent oxygen (O 2 ) from being mixed.

一方、液相エピタキシャル成長に用いられるGaAs基板
において、それを構成しているGaAs中に含まれたSiは基
板表面において酸化物であるSiO2を形成している。この
SiO2も安定な物質であり水素(H2)中でも還元されず
にエピタキシャル成長を行う直前まで基板表面上に残存
している。ところがここにAlを含んだ成長用原料溶液が
基板表面上に導入されると、このSiO2が還元されてより
安定であるAl23が生じてしまう。そこで含まれている
Si濃度が異なるGaAs基板を用いて、それぞれその上に混
晶比がx=0.2〜0.4、厚みが約50〜60μmのAlxGa(1
−x)As厚膜結晶を成長させた場合の積層欠陥の数を調
べてみた。その結果を第1図に示す。第1図よりわかる
ようにGaAs基板中のSi濃度と積層欠陥数は対応してお
り、積層欠陥数を102cm-2以下とするためにはGaAs中のS
i濃度を1x1017cm-3以下にすれば良いことがわかる。
On the other hand, in a GaAs substrate used for liquid phase epitaxial growth, Si contained in the GaAs constituting the GaAs substrate forms SiO 2 which is an oxide on the substrate surface. this
SiO 2 is also a stable substance and remains on the substrate surface immediately before epitaxial growth without being reduced even in hydrogen (H 2 ). However, when a growth raw material solution containing Al is introduced onto the substrate surface, this SiO 2 is reduced to produce more stable Al 2 O 3 . There included
Using GaAs substrates having different Si concentrations, AlxGa (1) having a mixed crystal ratio of x = 0.2 to 0.4 and a thickness of approximately 50 to 60 μm was formed thereon.
-X) The number of stacking faults when an As thick film crystal was grown was examined. The result is shown in FIG. Si concentration stacking number of defects in the GaAs substrate as seen from FIG. 1 corresponds, S in GaAs to the number of stacking faults and 10 2 cm -2 or less
It can be seen that it is sufficient to set the i concentration to 1 × 10 17 cm −3 or less.

ここでエピタキシャル成長に用いられるGaAs基板は、
その後の発光ダイオードを作製する過程においてエッチ
ング、あるいは研磨により除去されてしまうことからそ
のキャリア濃度(Si濃度)の低減による電気的特性の変
化は特に悪影響を与えるものではない。
Here, the GaAs substrate used for epitaxial growth is:
Since it is removed by etching or polishing in the subsequent process of fabricating the light emitting diode, a change in the electrical characteristics due to a decrease in the carrier concentration (Si concentration) does not have any particular adverse effect.

(c) 実施例 HB法(水平ブリッジマン法)により成長を行って作成
された含有Si濃度が2.5X1016cm-3(本実施例)と5.6X10
17cm-3(従来例)の2種類の基板に対して900℃から800
℃まで降温速度0.1℃/minでAlxGa(1−x)As厚膜結晶
の成長を実施した。両者共得られた厚膜結果の厚みは70
〜100μmであり、またAlの混晶比はx=0.2〜0.4であ
った。これらのAlGaAs厚膜結晶の表面における積層欠陥
数を調べたところ第1表のような結果が得られ、本発明
の効果が確認できた。
(C) Example The content of Si formed by growing by the HB method (horizontal Bridgman method) was 2.5 × 10 16 cm −3 (this example) and 5.6 × 10
900 ° C to 800 for two types of substrates of 17 cm -3 (conventional example)
AlxGa (1-x) As thick film crystals were grown at a rate of 0.1 ° C./min. The thickness of the thick film result obtained for both is 70
100100 μm, and the mixed crystal ratio of Al was x = 0.2-0.4. When the number of stacking faults on the surface of these AlGaAs thick film crystals was examined, the results shown in Table 1 were obtained, and the effect of the present invention was confirmed.

さらにこれらの厚膜結晶を用いて赤外発光ダイオード
を作成し150mAで48時間の通電を行ったところ従来例の
場合は発光出力が初期の75%まで大きく劣化したのに対
して、本実施例の基板では初期の90%以上の発光出力を
保っており高品質の発光ダイオードが得られることがわ
かった。
Furthermore, an infrared light emitting diode was prepared using these thick film crystals, and energization was performed at 150 mA for 48 hours. In the case of the conventional example, the light emission output was greatly reduced to 75% of the initial value. It was found that the light emitting output of the substrate of 90% or more of the initial level was maintained, and a high quality light emitting diode was obtained.

ハ.発明の効果 (a) 発明の効果 本発明を用いることにより積層欠陥が102cm-2以下と
非常に少ないAlGaAs厚膜結晶を得ることが可能となり、
従って長時間の通電後でも特性の劣化がほとんどない高
品質の発光ダイオードを作製することができる。
C. Effect of the Invention (a) Effect of the Invention By using the present invention, it is possible to obtain an AlGaAs thick film crystal having a very small stacking fault of 10 2 cm −2 or less,
Therefore, a high-quality light-emitting diode with almost no deterioration in characteristics even after long-time power supply can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の提案の根拠となった図、第2図は積層
欠陥数と発光出力の劣化特性を示した図である。
FIG. 1 is a diagram showing the basis of the proposal of the present invention, and FIG. 2 is a diagram showing the number of stacking faults and the degradation characteristics of light emission output.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】液相エピタキシャル成長法によりGaAs基板
上にAlGaAs混晶半導体結晶を成長させる場合において、
該GaAs基板を構成するGaAs中に含まれるSiの濃度が1×
1017cm-3以下であることを特徴とする半導体単結晶のエ
ピタキシャル成長方法。
In the case where an AlGaAs mixed crystal semiconductor crystal is grown on a GaAs substrate by a liquid phase epitaxial growth method,
The concentration of Si contained in GaAs constituting the GaAs substrate is 1 ×
A method for epitaxially growing a semiconductor single crystal, which is 10 17 cm −3 or less.
JP28926689A 1989-11-06 1989-11-06 Liquid phase epitaxial growth method Expired - Fee Related JP2765120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28926689A JP2765120B2 (en) 1989-11-06 1989-11-06 Liquid phase epitaxial growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28926689A JP2765120B2 (en) 1989-11-06 1989-11-06 Liquid phase epitaxial growth method

Publications (2)

Publication Number Publication Date
JPH03150289A JPH03150289A (en) 1991-06-26
JP2765120B2 true JP2765120B2 (en) 1998-06-11

Family

ID=17740936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28926689A Expired - Fee Related JP2765120B2 (en) 1989-11-06 1989-11-06 Liquid phase epitaxial growth method

Country Status (1)

Country Link
JP (1) JP2765120B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62266874A (en) * 1986-05-15 1987-11-19 Fujitsu Ltd Semiconductor device

Also Published As

Publication number Publication date
JPH03150289A (en) 1991-06-26

Similar Documents

Publication Publication Date Title
JPH01187883A (en) High luminance led epitaxial substrate and its manufacture
US20110062466A1 (en) AlxGa(1-x)As Substrate, Epitaxial Wafer for Infrared LEDs, Infrared LED, Method of Manufacturing AlxGa(1-x)As Substrate, Method of Manufacturing Epitaxial Wafer for Infrared LEDs, and Method of Manufacturing Infrared LEDs
JP2020102494A (en) Semiconductor light-emitting element and manufacturing method therefor
JP2765120B2 (en) Liquid phase epitaxial growth method
JPH055191B2 (en)
JP2000101133A (en) Epitaxial wafer for light-emitting element and manufacture thereof
JPS61163689A (en) Manufacture of semiconductor device
US7195991B2 (en) Method for producing an electromagnetic radiation-emitting semiconductor chip and a corresponding electromagnetic radiation-emitting semiconductor chip
JP2000058904A (en) Epitaxial wafer and its manufacture as well as light emitting diode
JPH0766450A (en) Light emitting diode device and its manufacture
JP2714885B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP4211897B2 (en) Liquid phase epitaxial growth method
US5606180A (en) III-V compound semiconductor with high crystal quality and luminous efficiency
JPH0372680A (en) Semiconductor material, photoelectric integrated circuit element, and crystal growth method of material
JP2009038132A (en) High-luminance light-emitting diode and manufacturing method thereof
JP2804093B2 (en) Optical semiconductor device
JP2646927B2 (en) Method for manufacturing semiconductor optical device and light emitting diode
JPH04278522A (en) Semiconductor material having si-doped gainp cap layer
JPH05335621A (en) Gallium phosphide green light emitting diode
JP4376373B2 (en) Epitaxial wafer for semiconductor light emitting device, manufacturing method thereof, and semiconductor light emitting device
JP2841849B2 (en) Manufacturing method of epitaxial wafer
JPH0555630A (en) Light emitting element material and its manufacture
JPH02159718A (en) Compound semiconductor crystal
JPH1012560A (en) Manufacturing of semiconductor multilayer film
JPS6236998B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees