JP4402217B2 - Epitaxial substrate for infrared light emitting device and light emitting device produced using the same - Google Patents

Epitaxial substrate for infrared light emitting device and light emitting device produced using the same Download PDF

Info

Publication number
JP4402217B2
JP4402217B2 JP26648399A JP26648399A JP4402217B2 JP 4402217 B2 JP4402217 B2 JP 4402217B2 JP 26648399 A JP26648399 A JP 26648399A JP 26648399 A JP26648399 A JP 26648399A JP 4402217 B2 JP4402217 B2 JP 4402217B2
Authority
JP
Japan
Prior art keywords
type
layer
light emitting
substrate
epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26648399A
Other languages
Japanese (ja)
Other versions
JP2001094143A (en
Inventor
淳一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP26648399A priority Critical patent/JP4402217B2/en
Priority to TW89107735A priority patent/TW498560B/en
Priority to DE2000120501 priority patent/DE10020501B4/en
Priority to CNB001182943A priority patent/CN1160803C/en
Priority to US09/559,263 priority patent/US6348703B1/en
Priority to TW089111087A priority patent/TW508835B/en
Priority to CNB001183990A priority patent/CN1159773C/en
Priority to US09/594,735 priority patent/US6388274B1/en
Publication of JP2001094143A publication Critical patent/JP2001094143A/en
Application granted granted Critical
Publication of JP4402217B2 publication Critical patent/JP4402217B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、赤外線を利用した光通信や空間伝送用に使用される高速・高出力赤外発光ダイオードを作製するためのエピタキシャル基板及び、このエピタキシャル基板から作製された赤外発光素子に関する。
【0002】
【従来の技術】
Ga1-XAlXAs(0<X<1)(以下、GaAlAsと略す)系化合物半導体を利用した発光素子(LED)は赤外から赤色用の光源として広く用いられている。赤外LEDは光通信や空間伝送用に使用されているが、伝送するデータの大容量化、伝送距離の長距離化に伴い、高出力・高速の赤外LEDへの要求が高くなっている。
【0003】
従来から知られているように、GaAlAs系LEDにおいて、シングルへテロ構造よりもダブルヘテロ構造(以下DH構造)の方が、出力が高く、また基板を除去することでさらなる高出力化が図られている。
【0004】
高出力・高速の赤外LEDにおいても高出力化を実現するためにはDH構造を採用するとともに基板を除去するタイプとすることが不可欠となっている。
【0005】
基板を除去するタイプの構造とする場合、DH構造、即ちp型クラッド層、p型活性層およびn型クラッド層の3層のみをエピタキシャル成長させて基板を除去すると製品の厚さが薄くなり、素子化工程でのハンドリングが困難になると同時に、このエピタキシャル基板から作製する素子の底面からpn接合までの高さが低くなり素子を導体に接着するときのペーストが素子側面を這い上がり、pn接合を短絡するという問題が発生する。これを防ぐために、基板除去後の仕上がりの全厚と素子底面から接合までの距離を稼ぐための第4のエピタキシャル層をDH構造に付加することが基板除去タイプの構造では標準的な構成になっている。第4のエピタキシャル層はバンドギャップが活性層よりも広く、活性層の発光光を吸収しないように設計される。
【0006】
この第4のエピタキシャル層は、前記DH構造のn型クラッド側に付加しても、p型クラッド側に付加しても良い。さらに、この第4のエピタキシャル層は単層である必要はなく、複数のエピタキシャル層を組み合わせても良い。
【0007】
光通信や空間伝送用途の赤外LEDでは、高出力・高速特性を実現するために、p型活性層に添加される不純物としてGeが用いられている。p型活性層の不純物としてGeを用いているのは、エピタキシャル成長法でp型層に添加する不純物として一般的に用いられているZnをp型活性層に用いた場合には、拡散エネルギーの低いZnがn型クラッド層に拡散し、接合位置が冶金学的界面からnクラッド層中にずれるという現象を生じるためで、この現象は応答速度の高速化という観点からは不利だからである。
【0008】
【発明が解決しようとする課題】
しかしながら、上記のDH構造の高速・高出力赤外発光ダイオードにおいて、p型活性層のドーパントとしてGeを用いた場合、同一の製造プロセスで製造しても製造ロットによって発光出力にバラツキが生じる現象が生じ、また発光出力も十分ではなかった。
【0009】
本発明はこの問題を解決し、発光出力のばらつきが少なく、高出力の発光素子を作製するためのエピタキシャル基板、およびこのエピタキシャル基板から作製された発光素子を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者は上記の課題を解決するため、発光素子の種々の物性と発光出力の関係について詳細に調査した結果、n型GaAlAs層中に含まれるGeの濃度と発光出力の間に負の相関があることを見いだし本発明を完成した。即ち本発明は、
[1]p型クラッド層(Ga1-X1AlX1As,0<X1<1)、p型活性層(Ga1-X2AlX2As,0<X2<1)、n型クラッド層(Ga1-X3AlX3As,0<X3<1)の3層を有し、かつ3層がこの順に接し、p型活性層の主たる不純物がゲルマニウムである、基板除去型の赤外発光素子用エピタキシャル基板において、n型クラッド層中のGe濃度が3×1016cm-3以下であることを特徴とする赤外発光素子用エピタキシャル基板、
[2]n型クラッド層に接して第2のn型層(Ga1-X4AlX4As,0<X4<1)を有し、第2のn型層中のGe濃度が3×1016cm-3以下であることを特徴とする[1]に記載の赤外発光素子用エピタキシャル基板、
[3][1]または[2]に記載の赤外発光素子用エピタキシャル基板を用いて作製した発光素子、に関する。
【0011】
【発明の実施の形態】
本発明の第1の請求項に関する実施形態は、p型クラッド層(Ga1-X1AlX1As,0<X1<1)、p型活性層(Ga1-X2AlX2As,0<X2<1)、n型クラッド層(Ga1-X3AlX3As,0<X3<1)の3層がこの順に接し、p型活性層の主たる不純物がゲルマニウムである積層構造を有し、n型クラッド層中のGe濃度を3×1016cm-3以下とする。また第2の請求項に関する実施形態では、第1の実施形態のn型クラッド層に接して第2のn型層(Ga1-X4AlX4As,0<X4<1)を有し、第2のn型層中のGe濃度を3×1016cm-3以下とする。
【0012】
Geはp型活性層の不純物として用いているが、n型層中には故意に添加していない。従って、エピタキシャル層成長過程において、Geを含むp型活性層成長用Ga溶液がn型層成長用Ga溶液へ持ち込まれること、さらに、Geを含むp型活性層成長用のGa溶液からn型層成長用のGa溶液へのGeの拡散が、n型層へのGeの混入源であることが考えられる。Ga溶液中へのGeの混入を防止する方法について、スライドボート法の成長装置を例にして説明する。
【0013】
図1に示したスライドボート治具のうち、基板収納溝2の内側、及びルツボ5〜8の内側はグラッシーカーボンでコートする。Ga溶液が直接接触する部分をグラッシーカーボンでコートすることにより、Ga溶液との濡れ性が悪くなりエピタキシャル成長過程においてGeを含むp型活性層成長用Ga溶液がn型層成長用Ga溶液中に混入することが防げる。
【0014】
また、ルツボ蓋9をグラッシーカーボン製とする。このルツボ蓋はルツボ内のGa溶液中からのドーパント不純物の蒸発と異なるルツボ中のGa溶液からのドーパント不純物の混入を防止する目的で用いているが、このルツボ蓋9も開口率の低いグラッシーカーボン製とすることで、p型層成長用のGa溶液中からのGeの蒸発やn型層成長用Ga溶液中へのGeの混入が防げる。
【0015】
従来、n型エピタキシャル層中のGe濃度はおよそ5×1016cmー3以上であるが、上記の方法を行うことにより、n型エピタキシャル層中のGe濃度を3×1016cmー3以下に制御することが可能となる。そして、この方法によりn型エピタキシャル層中のGe濃度を3×1016cmー3以下に制御することにより、DH構造の高速・高出力赤外発光ダイオードの出力を従来と比べて高くすることが可能となる。
【0016】
図2に従来の発光ダイオードと本発明によって得られた発光ダイオードのn型クラッド層中のGe濃度と発光出力の関係を示す。
【0017】
図2に示すように、n型クラッド層中のGe濃度が1×1016cmー3以下では出力はほぼ一定であるが、1×1016cmー3より高くなると出力が低下し始めた。そして、3×1016cmー3より高くなるとに急激に出力が低下することが分かった。従って、n型クラッド層中のGe濃度を3×1016cmー3以下、より好ましくは1×1016cmー3以下とすることにより高出力となることが判明した。
【0018】
図3には従来の発光ダイオードと本発明によって得られた発光ダイオードのp型活性層に接しないn型層(第2のn型層)中のGe濃度と発光出力の関係を示す。図3に示すように、n型層中のGe濃度が1×1016cmー3以下では出力はほぼ一定であるが、1×1016cmー3より高くなると出力が低下し始めた。そして、3×1016cmー3より高くなるとに急激に出力が低下することが分かった。従って、p型活性層に隣接しないn型層中のGe濃度を3×1016cmー3以下、より好ましくは1×1016cmー3以下とすることにより高出力となることが判明した。
【0019】
【実施例】
(実施例1)
本発明の発光素子を、スライドボート型成長装置を使用した徐冷法の液相エピタキシャル成長方法で作製した例について説明する。
【0020】
図4に本願記載のエピタキシャル基板から作製されたDH構造の高速・高出力赤外発光ダイオードの構造を模式的に示す。
【0021】
図1には本実施例で使用したスライドボート型成長装置を示す。スライダー3の基板収納溝2にGaAs基板1をセットする。スライドボート本体4にはGaAs基板上に成長させる層の数に応じたルツボを配置し、ルツボの中にはエピタキシャル層を成長するために好適な配合のGaメタル、金属Al、及びGaAs多結晶とそれぞれのエピタキシャル層の導電型とキャリヤ濃度を実現するために好適なドーパントが配合されている。
【0022】
実際の成長は以下のようにして行われる。即ち、図1のスライドボートを石英反応管(図示しない)内にセットし、水素気流中で950℃まで加温し、原料を溶解する。続いて雰囲気温度を900℃まで降温し、スライダー3を右側に押し、p型GaAs基板1をルツボ5の下まで移動してメルトに接触させる。次に雰囲気温度を0.5℃/分の速度で降温しp型GaAs基板上に図1に示した第1のp型GaAlAs層を成長させる。以下、同様にスライダーの移動と降温を繰り返すことにより図4に対応する4層の混晶比の異なるエピタキシャル層を成長させる。
【0023】
エピタキシャル成長終了後、エピタキシャル基板を取り出し、図4のn型クラッド層14の表面を耐酸シートで保護してアンモニア−過酸化水素系エッチャントでGaAs基板を選択的に除去する。その後、エピタキシャル基板の両面に金電極(図示しない)を形成し、ダイシングにより素子を分離することにより、図4のような赤外LEDを作製した。
【0024】
本実施例1によって得られたDH構造の高速・高出力赤外発光ダイオードのn型クラッド層中のGe濃度は0.5〜3×1016cmー3であった。
【0025】
(実施例2)
図5に本願記載のエピタキシャル基板作製された赤外発光用LEDの構造を模式的に示す。実施例1とは異なりDH構造のnクラッド層側に第4のエピタキシャル層としてn型層を付加した構造である。
【0026】
実際の成長は前記実施例1と同一の治具を用いて実施した。このとき、原料を溶解する温度およびp型GaAs基板をメルトに接触する温度は図2の構造になるのに適切な温度とした。
【0027】
エピタキシャル成長後も実施例1と同様の処理を実施し、図5の様なDH構造の高速・高出力赤外発光ダイオードを作製した。
【0028】
本実施例2によって得られたDH構造の高速・高出力赤外発光ダイオードのn型クラッド層中のGe濃度は0.5〜3×1016cmー3であり、n型クラッド層側に付加した第2のn型層中のGe濃度は0.1〜3×1016cmー3であった。
【0029】
尚、以上2つのの実施例で示したエピタキシャル成長の際には、前述したn型GaAlAs層中のGe濃度を下げるための手段はすべて実施した。すなわち、基板収納溝の内側、およびルツボの内側をグラッシーカーボンでコートした。また、ルツボ蓋をグラッシーカーボン製とした。
【0030】
(比較例1)
上記実施例1と同様の構造の、DH構造の高速・高出力赤外発光ダイオードを作製した。但し、本比較例1に係わるエピタキシャル層の成長では、前述したn型層中のGe濃度を下げるための手段は従来と同様特に行わなかった。
【0031】
本比較例によって得られたDH構造の高速・高出力赤外発光ダイオードのn型クラッド層中のGe濃度はおよそ5〜10×1016cmー3であった。
【0032】
(比較例2)
上記実施例2と同様の構造の、DH構造の高速・高出力赤外発光ダイオードを作製した。但し、本比較例2に係わるエピタキシャル層の成長では、前述したn型層中のGe濃度を下げるための手段は従来と同様特に行わなかった。
【0033】
本比較例によって得られたDH構造の高速・高出力赤外発光ダイオードのn型クラッド層中のGe濃度はおよそ5〜10×1016cmー3であった。また、nクラッド層側に付加したn型層中のGe濃度は4〜7×1016cmー3であった。
【0034】
上記実施例と比較例で作製した赤外発光ダイオードの発光出力を測定した結果を表1と表2に示す。
【0035】
【表1】

Figure 0004402217
【表2】
Figure 0004402217
表1と表2から明らかなように、本発明によれば従来品に比べて発光出力が約3倍高い赤外発光ダイオードを得ることができた。また発光出力のばらつきも減少した。
【0036】
【発明の効果】
本発明によって、n型GaAlAs層中のGe濃度を0.1〜3×1016cmー3以下に制御することにより、発光出力が向上し、発光出力のばらつきも減少した。
【図面の簡単な説明】
【図1】本発明を実施するに当たり使用したスライドボートの概略図を示す。
【図2】n型クラッド層中のGe濃度とLED出力の関係を示す。
【図3】p型活性層に隣接しないn型層中のGe濃度とLED出力の関係を示す。
【図4】本発明による実施例1で作製されたLEDの構造を示す。
【図5】本発明による実施例2で作製されたLEDの構造を示す。
【符号の説明】
1 p型GaAs基板
2 基板収納溝
3 スライダー
4 スライドボード本体
5 ルツボ
6 ルツボ
7 ルツボ
8 ルツボ
9 ルツボ蓋
10 p型GaAs基板
11 p型GaAlAs層
12 p型GaAlAsクラッド層
13 p型GaAlAs活性層
14 n型GaAlAsクラッド層
15 p型GaAs基板
16 p型GaAlAs層
17 p型GaAlAsクラッド層
18 p型GaAlAs活性層
19 n型GaAlAsクラッド層
20 第2のn型GaAlAs層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epitaxial substrate for producing a high-speed, high-power infrared light-emitting diode used for optical communication and spatial transmission using infrared rays, and an infrared light-emitting device produced from the epitaxial substrate.
[0002]
[Prior art]
A light emitting element (LED) using a Ga 1-X Al X As (0 <X <1) (hereinafter abbreviated as GaAlAs) compound semiconductor is widely used as a light source for infrared to red. Infrared LEDs are used for optical communication and spatial transmission, but with the increase in the volume of data to be transmitted and the increase in transmission distance, the demand for high-power, high-speed infrared LEDs is increasing. .
[0003]
As is known in the art, in a GaAlAs-based LED, the double heterostructure (hereinafter referred to as DH structure) has a higher output than the single heterostructure, and the output can be further increased by removing the substrate. ing.
[0004]
In order to achieve high output even in high-power and high-speed infrared LEDs, it is indispensable to adopt a DH structure and a type that removes the substrate.
[0005]
In the case of a structure in which the substrate is removed, when the substrate is removed by epitaxially growing only the DH structure, that is, the p-type cladding layer, the p-type active layer, and the n-type cladding layer, the thickness of the product is reduced. At the same time, handling in the fabrication process becomes difficult, and at the same time, the height from the bottom surface of the device fabricated from this epitaxial substrate to the pn junction becomes low, and the paste for adhering the device to the conductor crawls up the device side surface, shorting the pn junction. Problem occurs. In order to prevent this, adding a fourth epitaxial layer to the DH structure to increase the overall thickness after removal of the substrate and the distance from the bottom of the device to the junction is a standard configuration in the substrate removal type structure. ing. The fourth epitaxial layer has a wider band gap than the active layer, and is designed not to absorb the light emitted from the active layer.
[0006]
This fourth epitaxial layer may be added to the n-type cladding side or the p-type cladding side of the DH structure. Further, the fourth epitaxial layer does not have to be a single layer, and a plurality of epitaxial layers may be combined.
[0007]
In infrared LEDs used for optical communication and space transmission, Ge is used as an impurity added to the p-type active layer in order to realize high output and high speed characteristics. The reason why Ge is used as an impurity of the p-type active layer is that diffusion energy is low when Zn, which is generally used as an impurity added to the p-type layer by the epitaxial growth method, is used for the p-type active layer. This is because Zn diffuses into the n-type clad layer and the junction position shifts from the metallurgical interface into the n-cladding layer, and this phenomenon is disadvantageous from the viewpoint of increasing the response speed.
[0008]
[Problems to be solved by the invention]
However, in the high-speed, high-power infrared light emitting diode having the above DH structure, when Ge is used as the dopant of the p-type active layer, there is a phenomenon in which the light emission output varies depending on the production lot even if it is manufactured by the same manufacturing process. In addition, the light output was not sufficient.
[0009]
An object of the present invention is to solve this problem, and to provide an epitaxial substrate for producing a high-output light-emitting element with little variation in light-emission output, and a light-emitting element produced from this epitaxial substrate.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the present inventor has investigated in detail the relationship between various physical properties of the light emitting element and the light emission output, and as a result, the negative correlation between the concentration of Ge contained in the n-type GaAlAs layer and the light emission output. As a result, the present invention was completed. That is, the present invention
[1] p-type cladding layer (Ga 1 -X1 Al X1 As, 0 <X1 <1), p-type active layer (Ga 1 -X2 Al X2 As, 0 <X2 <1), n-type cladding layer (Ga 1 -X3 Al X3 As, 0 <X3 <1), the three layers are in contact with each other in this order, and the main impurity of the p-type active layer is germanium. An epitaxial substrate for an infrared light emitting device, wherein the Ge concentration in the n-type cladding layer is 3 × 10 16 cm −3 or less,
[2] Having a second n-type layer (Ga 1 -X4 Al X4 As, 0 <X4 <1) in contact with the n-type cladding layer, the Ge concentration in the second n-type layer is 3 × 10 16 The epitaxial substrate for infrared light-emitting elements according to [1], which is cm −3 or less,
[3] A light-emitting device manufactured using the infrared light-emitting device epitaxial substrate according to [1] or [2].
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments relating to the first claim of the present invention include a p-type cladding layer (Ga 1 -X 1 Al X 1 As, 0 <X 1 <1), a p-type active layer (Ga 1 -X 2 Al X 2 As, 0 <X 2 < 1) n-type cladding layer (Ga 1 -X3 Al X3 As, 0 <X3 <1) is in this order, and the p-type active layer has a laminated structure in which the main impurity is germanium, The Ge concentration in the layer is 3 × 10 16 cm −3 or less. In an embodiment relating to the second claim, the second n-type layer (Ga 1 -X4 Al X4 As, 0 <X4 <1) is in contact with the n-type cladding layer of the first embodiment, The Ge concentration in the n-type layer 2 is 3 × 10 16 cm −3 or less.
[0012]
Ge is used as an impurity of the p-type active layer, but is not intentionally added to the n-type layer. Accordingly, in the epitaxial layer growth process, the p-type active layer growth Ga solution containing Ge is brought into the n-type layer growth Ga solution, and further, the p-type active layer growth Ga solution containing Ge is brought into the n-type layer. It is considered that the diffusion of Ge into the growth Ga solution is a source of Ge contamination into the n-type layer. A method for preventing the mixing of Ge into the Ga solution will be described using a growth apparatus of the slide boat method as an example.
[0013]
In the slide boat jig shown in FIG. 1, the inside of the substrate storage groove 2 and the inside of the crucibles 5 to 8 are coated with glassy carbon. By coating the portion in direct contact with the Ga solution with glassy carbon, the wettability with the Ga solution is deteriorated, and the Ga solution for p-type active layer growth containing Ge is mixed in the Ga solution for n-type layer growth in the epitaxial growth process. You can prevent it.
[0014]
The crucible lid 9 is made of glassy carbon. This crucible lid is used for the purpose of preventing contamination of dopant impurities from the Ga solution in the crucible, which is different from the evaporation of dopant impurities from the Ga solution in the crucible, but this crucible lid 9 is also a glassy carbon having a low aperture ratio. By making it, the evaporation of Ge from the Ga solution for p-type layer growth and the mixing of Ge into the Ga solution for n-type layer growth can be prevented.
[0015]
Conventionally, the Ge concentration in the n-type epitaxial layer is approximately 5 × 10 16 cm −3 or more, but by performing the above method, the Ge concentration in the n-type epitaxial layer is reduced to 3 × 10 16 cm −3 or less. It becomes possible to control. Then, by controlling the Ge concentration in the n-type epitaxial layer to 3 × 10 16 cm −3 or less by this method, the output of the high-speed, high-power infrared light emitting diode having the DH structure can be made higher than the conventional one. It becomes possible.
[0016]
FIG. 2 shows the relationship between the Ge concentration in the n-type cladding layer of the conventional light emitting diode and the light emitting diode obtained by the present invention and the light emission output.
[0017]
As shown in FIG. 2, the output is almost constant when the Ge concentration in the n-type cladding layer is 1 × 10 16 cm −3 or less, but the output starts decreasing when the Ge concentration is higher than 1 × 10 16 cm −3 . Then, it was found that the output suddenly decreased when it became higher than 3 × 10 16 cm −3 . Therefore, it has been found that high output is obtained when the Ge concentration in the n-type cladding layer is 3 × 10 16 cm −3 or less, more preferably 1 × 10 16 cm −3 or less.
[0018]
FIG. 3 shows the relationship between the Ge concentration in the n-type layer (second n-type layer) not in contact with the p-type active layer of the conventional light-emitting diode and the light-emitting diode obtained by the present invention and the light-emission output. As shown in FIG. 3, when the Ge concentration in the n-type layer is 1 × 10 16 cm −3 or less, the output is almost constant, but when it exceeds 1 × 10 16 cm −3 , the output starts decreasing. Then, it was found that the output suddenly decreased when it became higher than 3 × 10 16 cm −3 . Accordingly, it has been found that high output is obtained by setting the Ge concentration in the n-type layer not adjacent to the p-type active layer to 3 × 10 16 cm −3 or less, more preferably 1 × 10 16 cm −3 or less.
[0019]
【Example】
Example 1
An example in which the light emitting device of the present invention is manufactured by a slow cooling liquid phase epitaxial growth method using a slide boat type growth apparatus will be described.
[0020]
FIG. 4 schematically shows the structure of a high-speed, high-power infrared light emitting diode having a DH structure manufactured from the epitaxial substrate described in the present application.
[0021]
FIG. 1 shows a slide boat type growth apparatus used in this embodiment. The GaAs substrate 1 is set in the substrate storage groove 2 of the slider 3. A crucible corresponding to the number of layers to be grown on the GaAs substrate is arranged in the slide boat body 4, and Ga metal, metal Al, and GaAs polycrystal having a suitable composition for growing an epitaxial layer are included in the crucible. A suitable dopant is blended in order to realize the conductivity type and carrier concentration of each epitaxial layer.
[0022]
Actual growth is done as follows. 1 is set in a quartz reaction tube (not shown) and heated to 950 ° C. in a hydrogen stream to dissolve the raw material. Subsequently, the ambient temperature is lowered to 900 ° C., the slider 3 is pushed to the right, and the p-type GaAs substrate 1 is moved below the crucible 5 to come into contact with the melt. Next, the ambient temperature is lowered at a rate of 0.5 ° C./min to grow the first p-type GaAlAs layer shown in FIG. 1 on the p-type GaAs substrate. Thereafter, the four layers of epitaxial layers having different mixed crystal ratios corresponding to FIG. 4 are grown by repeating the movement of the slider and the temperature drop.
[0023]
After the epitaxial growth is completed, the epitaxial substrate is taken out, the surface of the n-type cladding layer 14 in FIG. 4 is protected with an acid-resistant sheet, and the GaAs substrate is selectively removed with an ammonia-hydrogen peroxide-based etchant. Thereafter, gold electrodes (not shown) were formed on both surfaces of the epitaxial substrate, and the elements were separated by dicing, thereby producing an infrared LED as shown in FIG.
[0024]
The Ge concentration in the n-type cladding layer of the high-speed, high-power infrared light-emitting diode having the DH structure obtained in Example 1 was 0.5 to 3 × 10 16 cm −3 .
[0025]
(Example 2)
FIG. 5 schematically shows the structure of an infrared light emitting LED produced by the epitaxial substrate described in the present application. Unlike Example 1, the n-type layer is added as a fourth epitaxial layer to the n-cladding layer side of the DH structure.
[0026]
Actual growth was performed using the same jig as in Example 1. At this time, the temperature at which the raw material was dissolved and the temperature at which the p-type GaAs substrate was brought into contact with the melt were set to temperatures suitable for the structure shown in FIG.
[0027]
After the epitaxial growth, the same process as in Example 1 was performed, and a high-speed, high-power infrared light emitting diode having a DH structure as shown in FIG. 5 was produced.
[0028]
The Ge concentration in the n-type cladding layer of the high-speed, high-power infrared light-emitting diode having the DH structure obtained in Example 2 is 0.5 to 3 × 10 16 cm −3 and is added to the n-type cladding layer side. The Ge concentration in the second n-type layer was 0.1 to 3 × 10 16 cm −3 .
[0029]
In the epitaxial growth shown in the above two examples, all the means for reducing the Ge concentration in the n-type GaAlAs layer described above were implemented. That is, the inside of the substrate storage groove and the inside of the crucible were coated with glassy carbon. The crucible lid was made of glassy carbon.
[0030]
(Comparative Example 1)
A high-speed, high-power infrared light emitting diode having a DH structure having the same structure as that of Example 1 was prepared. However, in the growth of the epitaxial layer according to Comparative Example 1, the means for reducing the Ge concentration in the n-type layer was not particularly performed as in the conventional case.
[0031]
The Ge concentration in the n-type cladding layer of the high-speed, high-power infrared light emitting diode having the DH structure obtained by this comparative example was about 5 to 10 × 10 16 cm −3 .
[0032]
(Comparative Example 2)
A high-speed, high-power infrared light emitting diode having a DH structure having the same structure as that of Example 2 was prepared. However, in the growth of the epitaxial layer according to the comparative example 2, the means for reducing the Ge concentration in the n-type layer was not particularly performed as in the prior art.
[0033]
The Ge concentration in the n-type cladding layer of the DH structure high-speed, high-power infrared light-emitting diode obtained by this comparative example was about 5 to 10 × 10 16 cm −3 . The Ge concentration in the n-type layer added to the n-cladding layer side was 4 to 7 × 10 16 cm −3 .
[0034]
Tables 1 and 2 show the results of measuring the light emission output of the infrared light emitting diodes produced in the above examples and comparative examples.
[0035]
[Table 1]
Figure 0004402217
[Table 2]
Figure 0004402217
As apparent from Tables 1 and 2, according to the present invention, an infrared light emitting diode having a light emission output approximately three times higher than that of the conventional product could be obtained. In addition, the variation in light output was reduced.
[0036]
【The invention's effect】
According to the present invention, by controlling the Ge concentration in the n-type GaAlAs layer to 0.1-3 × 10 16 cm −3 or less, the light emission output is improved and the variation of the light emission output is also reduced.
[Brief description of the drawings]
FIG. 1 is a schematic view of a slide boat used for carrying out the present invention.
FIG. 2 shows a relationship between Ge concentration in an n-type cladding layer and LED output.
FIG. 3 shows the relationship between the Ge concentration in the n-type layer not adjacent to the p-type active layer and the LED output.
FIG. 4 shows the structure of an LED fabricated in Example 1 according to the present invention.
FIG. 5 shows the structure of an LED fabricated in Example 2 according to the present invention.
[Explanation of symbols]
1 p-type GaAs substrate 2 substrate housing groove 3 slider 4 slide board body 5 crucible 6 crucible 7 crucible 8 crucible 9 crucible lid 10 p-type GaAs substrate 11 p-type GaAlAs layer 12 p-type GaAlAs cladding layer 13 p-type GaAlAs active layer 14 n P-type GaAlAs cladding layer 15 p-type GaAs substrate 16 p-type GaAlAs layer 17 p-type GaAlAs clad layer 18 p-type GaAlAs active layer 19 n-type GaAlAs clad layer 20 second n-type GaAlAs layer

Claims (2)

基板上に、少なくとp型クラッド層(Ga1-X1AlX1As,0<X1<1)、p型活性層(Ga1-X2AlX2As,0<X2<1)、n型クラッド層(Ga1-X3AlX3As,0<X3<1)の3層を、この順に液相エピタキシャル法により積層し、その後基板を除去する工程を含む赤外発光素子用エピタキシャル基板の製造方法において、前記液相エピタキシャル法を基板収納溝の内側、ルツボの内側及びルツボ蓋がグラッシーカーボンからなるものを用いて行い、p型活性層の主たる不純物がゲルマニウムであり、n型クラッド層中のGe濃度が3×1016cm-3以下であることを特徴とする赤外発光素子用エピタキシャル基板の製造方法。On the substrate, less the p-type cladding layer also (Ga 1-X1 Al X1 As , 0 <X1 <1), p -type active layer (Ga 1-X2 Al X2 As , 0 <X2 <1), n -type clad In a method of manufacturing an epitaxial substrate for an infrared light emitting device, including a step of laminating three layers (Ga 1 -X3 Al X3 As, 0 <X3 <1) in this order by liquid phase epitaxy and then removing the substrate The liquid phase epitaxial method is performed using a substrate containing groove, a crucible inside, and a crucible lid made of glassy carbon , the main impurity of the p-type active layer is germanium, and the Ge concentration in the n-type cladding layer The manufacturing method of the epitaxial substrate for infrared light emitting elements characterized by being 3 * 10 < 16 > cm <-3> or less. n型クラッド層に接して第2のn型層(Ga1-X4AlX4As,0<X4<1)を有し、第2のn型層中のGe濃度が3×1016cm-3以下であることを特徴とする請求項1に記載の赤外発光素子用エピタキシャル基板の製造方法。A second n-type layer (Ga 1 -X4 Al X4 As, 0 <X4 <1) is in contact with the n-type cladding layer, and the Ge concentration in the second n-type layer is 3 × 10 16 cm −3. The manufacturing method of the epitaxial substrate for infrared light emitting elements of Claim 1 characterized by the following.
JP26648399A 1999-04-27 1999-09-21 Epitaxial substrate for infrared light emitting device and light emitting device produced using the same Expired - Lifetime JP4402217B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP26648399A JP4402217B2 (en) 1999-09-21 1999-09-21 Epitaxial substrate for infrared light emitting device and light emitting device produced using the same
TW89107735A TW498560B (en) 1999-04-27 2000-04-25 Epitaxial wafer for infrared light-emitting device and light-emitting device using the same
DE2000120501 DE10020501B4 (en) 1999-04-27 2000-04-26 A method of making an epitaxial wafer for an infrared emitting diode and a method of manufacturing an infrared LED from the epitaxial wafer
US09/559,263 US6348703B1 (en) 1999-04-27 2000-04-27 Epitaxial wafer for infrared light-emitting device and light-emitting device using the same
CNB001182943A CN1160803C (en) 1999-04-27 2000-04-27 Epitaxial growth chip used for infrared emitting diode and infrared emitting diode
TW089111087A TW508835B (en) 1999-06-18 2000-06-07 Epitaxial wafer for infrared light-emitting device and light-emitting device using the same
CNB001183990A CN1159773C (en) 1999-06-18 2000-06-16 Epitaxial chip used for infrared light-emitting component, and light-emitting component using said chip
US09/594,735 US6388274B1 (en) 1999-06-18 2000-06-16 Epitaxial wafer for infrared light-emitting device and light-emitting device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26648399A JP4402217B2 (en) 1999-09-21 1999-09-21 Epitaxial substrate for infrared light emitting device and light emitting device produced using the same

Publications (2)

Publication Number Publication Date
JP2001094143A JP2001094143A (en) 2001-04-06
JP4402217B2 true JP4402217B2 (en) 2010-01-20

Family

ID=17431571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26648399A Expired - Lifetime JP4402217B2 (en) 1999-04-27 1999-09-21 Epitaxial substrate for infrared light emitting device and light emitting device produced using the same

Country Status (1)

Country Link
JP (1) JP4402217B2 (en)

Also Published As

Publication number Publication date
JP2001094143A (en) 2001-04-06

Similar Documents

Publication Publication Date Title
KR100993408B1 (en) Light Emitting Element and Method of Making Same
US7928447B2 (en) GaN crystal substrate, fabricating method of GaN crystal substrate, and light-emitting device
US8017960B2 (en) Infrared emitting diode and method of its manufacture
JP4402217B2 (en) Epitaxial substrate for infrared light emitting device and light emitting device produced using the same
JP2005039248A (en) Method for manufacturing group iii nitride, method for manufacturing semiconductor substrate, group iii nitride crystal, semiconductor substrate, and electron device
JPH09129927A (en) Blue light emitting element
EP0516162B1 (en) Semiconductor light emitting device
JP2005217437A (en) Light emitting device and method of manufacturing the same
KR100430615B1 (en) Epitaxial wafer for infrared light emitting device
JP2001339099A (en) Epitaxial wafer for ir light emitting diode and light emitting diode using the same
JP4319291B2 (en) Epitaxial substrate for semiconductor light emitting device and light emitting device
JP4570728B2 (en) Epitaxial wafer for semiconductor light emitting device
US6388274B1 (en) Epitaxial wafer for infrared light-emitting device and light-emitting device using the same
JP2001094145A (en) Epitaxial substrate for infrared light-emitting element and light-emitting element provided with the same
CN1160803C (en) Epitaxial growth chip used for infrared emitting diode and infrared emitting diode
JP2002026380A (en) Epitaxial wafer for infrared emitting element and light emitting element
JP2002141552A (en) Group iii nitride semiconductor, semiconductor substrate laser using semiconductor and semiconductor device
JPH1065211A (en) Light-emitting diode
US6348703B1 (en) Epitaxial wafer for infrared light-emitting device and light-emitting device using the same
JP2000312025A (en) Epitaxial substrate for infrared light-emitting element and light-emitting element using the same
JP2003017738A (en) Epitaxial wafer for light emitting element, its manufacturing method, and light emitting element using it
JP4156873B2 (en) Epitaxial wafer manufacturing method
JP2646927B2 (en) Method for manufacturing semiconductor optical device and light emitting diode
TW508835B (en) Epitaxial wafer for infrared light-emitting device and light-emitting device using the same
JP2783580B2 (en) Double hetero-type infrared light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090414

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090709

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090724

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091029

R150 Certificate of patent or registration of utility model

Ref document number: 4402217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151106

Year of fee payment: 6

EXPY Cancellation because of completion of term