JPH06314805A - Photoelectric conversion semiconductor device - Google Patents

Photoelectric conversion semiconductor device

Info

Publication number
JPH06314805A
JPH06314805A JP5029745A JP2974593A JPH06314805A JP H06314805 A JPH06314805 A JP H06314805A JP 5029745 A JP5029745 A JP 5029745A JP 2974593 A JP2974593 A JP 2974593A JP H06314805 A JPH06314805 A JP H06314805A
Authority
JP
Japan
Prior art keywords
electrode
photoelectric conversion
cell
contact
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5029745A
Other languages
Japanese (ja)
Other versions
JPH088369B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP5029745A priority Critical patent/JPH088369B2/en
Publication of JPH06314805A publication Critical patent/JPH06314805A/en
Publication of JPH088369B2 publication Critical patent/JPH088369B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To improve the visual product value as a whole device by a method wherein an open groove for isolation to prevent a leak is provided in a region other than the inter-electrode junction section in the circumferential region of either of the first electrode or the second electrode along the end section of the electrode. CONSTITUTION:A first electrode 23' of the cell 13 and a second electrode 25 of the cell 11 establish an ohm contact through the oxide contact and form junction section 12 through a second open groove 18. The contact 17 in the junction section 12 is established by the side surface of the first electrode 23' made by the second open hole 15 or the upper end surface of that side surface and the first electrode 23' to form a side contact structure. The second electrode 25 is closely contacted to this section to establish an electric serial connection. And, the third open groove 20 isolates only the electrode without poly- crystallizing the semiconductor underneath to electrically insulate between the second electrode 25 of element. Thus, it is possible to improve the product value, with the open grooves between the adjacent cells being difficult to be visually recognized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】この発明は、光電変換素子またはセル(以
下単にセルという)を絶縁表面を有する可曲性の透光性
有機樹脂基板上に複合化するに関し、隣合ったセル間の
切断線(開溝)を肉眼では十分見分けにくい100 μm以
下とし、装置全体としての視覚的商品価値を向上させる
ことを目的としている。
The present invention relates to compounding a photoelectric conversion element or a cell (hereinafter, simply referred to as a cell) on a flexible light-transmitting organic resin substrate having an insulating surface. The groove is set to 100 μm or less, which is hard to distinguish with the naked eye, and the purpose is to improve the visual commercial value of the entire device.

【0002】この発明は、有機樹脂薄膜とこの上面の透
光性導電膜(CTF という)とがレ−ザスクライブ(以下
LSという)を実施するのに際し、CTF をスクライブしつ
つも有機樹脂薄膜にまったく損傷を与えることのない条
件が実験的に存在することを見いだし、この事実を利用
して半導体装置特に光電変換装置を作製せんとしたもの
である。
According to the present invention, an organic resin thin film and a transparent conductive film (CTF) on the upper surface of the organic resin thin film are used for laser scribing (hereinafter referred to as "laser scribe").
We have found experimentally a condition that does not damage the organic resin thin film while scribing the CTF when carrying out (LS). It is not made.

【0003】このため、本発明においては、活性領域に
設けられたセルにおける透光性有機樹脂薄膜(以下OFと
いう)の基板上に、第1の電極と、この電極上に光照射
により光起電力を発生する非単結晶半導体と、該半導体
上の第2の電極とよりなる複数の素子を直列接続して配
設するに関し、隣合った素子間の電気的連結を活性領域
の内部にコンタクトを設けて成就したことを特長とす
る。
For this reason, in the present invention, the first electrode and the photo-irradiation on the electrode are provided on the substrate of the transparent organic resin thin film (hereinafter referred to as OF) in the cell provided in the active region. Regarding disposing a plurality of elements composed of a non-single-crystal semiconductor that generates electric power and a second electrode on the semiconductor in series, electrical connection between adjacent elements is contacted inside the active region. It is characterized by having been fulfilled by establishing.

【0004】光電変換装置の安価、多量生産のための基
板として可曲性の有機薄膜の使用が求められてきた。本
発明はこのOF側よりの光照射を可能とする透光性のOF
と、その上の酸化インジュ−ムまたは酸化スズを主成分
とする導電性酸化膜よりなるCTF に対して、レ−ザ光を
照射した時、このOFを損傷せずにCTF を選択的に除去す
ることができる条件を実験的に検討したところ、そのレ
−ザ光を1つの場所に長時間(数十m秒以上)照射する
ことなく、また走査(スキャン)スピ−ドを適切化する
ことにより、CTF のみを除去することが可能であること
を見いだした。即ち、レ−ザ光の照射によりOFは熱伝導
率が小さい(一般には1〜7×10-4Cal /sec /cm2
℃/cm)ため、同じ位置に繰り返しレ−ザパルスを加え
ると、この有機樹脂内に熱が蓄積され、この熱で樹脂が
炭化され切断されてしまう。しかしその繰り返しを1回
または数回とすると、このOFの熱伝導率がCTF の1/10
3 であるため、逆にCTF のみを選択的にレ−ザ光の照射
された場所のみ除去することができることを見いだし
た。
It has been required to use a flexible organic thin film as a substrate for inexpensive and mass production of photoelectric conversion devices. The present invention is a translucent OF that enables light irradiation from the OF side.
When the laser light is applied to the CTF consisting of a conductive oxide film containing indium oxide or tin oxide as the main component, the CTF is selectively removed without damaging the OF. As a result of experimental examination of the conditions that can be achieved, it is necessary to optimize the scanning speed without irradiating the laser light on one place for a long time (tens of milliseconds or more). Found that it is possible to remove only CTF. That is, OF has a small thermal conductivity upon irradiation with laser light (generally 1 to 7 × 10 −4 Cal / sec / cm 2 / cm 2 /
Therefore, when a laser pulse is repeatedly applied to the same position, heat is accumulated in the organic resin, and the heat causes the resin to be carbonized and cut. However, if the repetition is done once or several times, the thermal conductivity of this OF is 1/10 of CTF.
Since it is 3 , on the contrary, it was found that only CTF can be selectively removed only at the place where the laser light is irradiated.

【0005】従来、非単結晶半導体即ちアモルファスシ
リコンを含む非単結晶シリコンを主成分としたPIN 接合
により、光起電力を光照射により発生させんとしてい
た。しかしかかる接合を有する半導体の上下の電極は直
列接続をするため、1つのセルの下側電極と隣のセルの
上側電極とを電気的に連結を活性領域の「外側」でさせ
なければならず、かつ各セル間は互いに電気的にアイソ
レイトされていることを必要な条件としていた。
Conventionally, a photovoltaic junction has been used to generate a photoelectromotive force by light irradiation by a PIN junction whose main component is a non-single crystal semiconductor, that is, non-single crystal silicon including amorphous silicon. However, since the upper and lower electrodes of the semiconductor having such a junction are connected in series, it is necessary to electrically connect the lower electrode of one cell and the upper electrode of the adjacent cell “outside” of the active region. In addition, it is necessary to electrically isolate the cells from each other.

【0006】図1は従来構造の代表的な例を示してい
る。 図1(A)は光電変換装置(1)を透光性のガラ
ス基板(2)を下側にした背面より見た平面図である。
図面において、光照射により光起電力を発生する活性領
域(14)と、各セル(11)(13)を連結する連結部(12)
を有する非活性領域(15)とを有する。図1(A)のA
─A,B−Bの縦断面図を対応させて(B),(C)に示
していることより明らかなごとく、活性領域において各
セル(11),(13)はガラス基板(2)上の第1の電極の透
光性導電膜(CTF )の(3)は各セル間で互いに分離さ
れている。また半導体(4)は各セル間にて互いに連結
されている。また非活性領域において、セル(13)の上
側電極は、セル(11)の下側電極と連結部(6),(7) での
コンタクト(18)で連結し、これを繰り返し5つのセル
を外部電極(8),(9) 間にて直列接続をさせている。
FIG. 1 shows a typical example of a conventional structure. FIG. 1 (A) is a plan view of the photoelectric conversion device (1) viewed from the back side with the translucent glass substrate (2) facing down.
In the drawing, a connection part (12) for connecting an active region (14) that generates a photoelectromotive force by light irradiation and each cell (11) (13).
And an inactive region (15). A in FIG. 1 (A)
-As is clear from the fact that the vertical sectional views of A and BB are shown in correspondence with each other in (B) and (C), each cell (11) and (13) is on the glass substrate (2) in the active region. (3) of the transparent conductive film (CTF) of the first electrode of is isolated from each other in each cell. The semiconductors (4) are connected to each other between the cells. In the inactive region, the upper electrode of the cell (13) is connected to the lower electrode of the cell (11) by the contact (18) at the connecting portions (6) and (7), and this is repeated to form five cells. A series connection is made between the external electrodes (8), (9).

【0007】しかしこの従来構造は一見半導体(4)が
1枚であるため製造歩留りが高いように見える。しかし
実際には3種類(第1の導電膜のパタ─ニング用の第1
のマスク、非活性領域形成のための第2のマスク、第2
の導電膜のパタ─ニング用の第3のマスク)のマスクを
用いるが、そのマスクにおいて第1のマスクと第3のマ
スクとがセルファライン方式でないため、マスクずれを
起こしやすい。このずれ(即ち金属マスクにおいては0.
3 〜1mmのずれはごく当然である)により、セルの有効
面積が10〜20%も実質的に減少してしまうことが判明し
た。
However, this conventional structure seems to have a high manufacturing yield because there is one semiconductor (4) at first sight. However, in practice, there are three types (first for patterning the first conductive film).
Mask, second mask for forming inactive region, second mask
A third mask for conductive film patterning) is used. However, since the first mask and the third mask are not the self-alignment method in the mask, a mask shift easily occurs. This shift (i.e., 0 for metal masks).
The deviation of 3 to 1 mm is quite natural), and it was found that the effective area of the cell is substantially reduced by 10 to 20%.

【0008】さらにマスクを用いるため、図1(B)の
活性領域での電極間の開溝であるアイソレイション領域
(22)は、0.2 〜1mm 例えば0.5 mmを有するため、セル
巾を10mmとする時、2mm ずれるとするとセル巾(11)は
8mm となり、アイソレイション巾(22)は2.5mm となっ
てしまい、20%近くも有効面積が減少してしまう。また
セルの外枠(10)の占める面積も5〜7%もある。この
ため上下の電極の組合せをセルフレジストレイション化
することがその効率の向上のために強く求められてい
た。
Further, since a mask is used, the isolation region (22), which is an open groove between the electrodes in the active region of FIG. 1B, has a width of 0.2 to 1 mm, for example 0.5 mm, so that the cell width is 10 mm. If the cell width (11) is off by 2 mm,
It becomes 8mm and the isolation width (22) becomes 2.5mm, which reduces the effective area by nearly 20%. The area occupied by the outer frame (10) of the cell is also 5 to 7%. For this reason, it has been strongly demanded that the combination of the upper and lower electrodes be self-registered in order to improve its efficiency.

【0009】また図1の従来例においては、基板に非活
性領域(15)が設けられ、この非活性領域は基板全体に
おける20〜30%も占めてしまう。このためプロセス上の
効率が低くなり、ひいては製造コストの低下を図ること
ができない。このため非活性領域が存在しない光電変換
装置を作ることがきわめて重要であった。さらに基板が
ガラス基板であるため、機械ストレスにより破損しやす
い。このため基板として透光性の可曲性のOFが低価格
化、耐機械破損防止のため求められていた。
In the conventional example shown in FIG. 1, the inactive region (15) is provided on the substrate, and this inactive region occupies 20 to 30% of the entire substrate. For this reason, the efficiency in the process becomes low, and eventually the manufacturing cost cannot be reduced. Therefore, it was extremely important to make a photoelectric conversion device having no inactive region. Furthermore, since the substrate is a glass substrate, it is easily damaged by mechanical stress. Therefore, a transparent and flexible OF is required as a substrate for lowering the price and preventing mechanical damage.

【0010】本発明はかかる目的を成就するためになさ
れたものである。即ち本発明においては、光照射面側か
らは複数の第1の電極の分離用の開溝(巾5〜70μm)
が見られるのみである。さらに図1(A)における領域
(15)のごとき非活性領域がまったく存在せず、連結部
が即ち各セルのアイソレイション領域を構成せしめてい
る。加えてLSを用いるマスクレスプロセスであるため、
第1の開溝をテレビモニタ─で積層して、その開溝を基
準として所定の位置に光学的にパタ─ニングを行ういわ
ゆるコンピュ─タ・エイデッド・セルフレジストレイシ
ョン方式を採用することが可能になった。
The present invention has been made to achieve such an object. That is, in the present invention, an open groove (width 5 to 70 μm) for separating the plurality of first electrodes from the light irradiation surface side.
Can only be seen. Further, there is no inactive region such as the region (15) in FIG. 1 (A), and the connecting portion constitutes the isolation region of each cell. In addition, since it is a maskless process using LS,
It is possible to adopt a so-called computer-aided self-registration method in which the first open groove is stacked on a television monitor and optically patterned at a predetermined position with reference to the open groove. became.

【0011】また第1のセルの第1の電極と、第2のセ
ルの第2の電極との連結部のコンタクトは、基板の半導
体「内部」(この図2では中央部)に設け、従来例とそ
のコンタクトの位置がまったく異なる。 さらにこの内
部コンタクトにより、透光性導電膜の光電変換装置に与
える直列抵抗を小さくできる。この結果、連結部をセル
の外側に設けなかったことにより、著しくその有効面積
の効率の向上を図ることができた。さらにこのコンタク
トが隣合うセル間の半導体をすべて切断する構造で開溝
を作るのではなく、その開溝(20〜90μmφ)を1つま
たは複数個不連続に設けることにより、この開溝の存在
が透光性OF面側より実質的に肉眼で見い出し得ず、商品
的にスクライブラインが目障りにならないようにできた
という他の特長を有する。
Further, the contact of the connecting portion between the first electrode of the first cell and the second electrode of the second cell is provided in the semiconductor "inside" (the central portion in FIG. 2) of the substrate, and the contact is conventionally formed. The position of the contact is completely different from that of the example. Further, this internal contact can reduce the series resistance applied to the photoelectric conversion device of the transparent conductive film. As a result, since the connecting portion is not provided outside the cell, the efficiency of the effective area can be significantly improved. Furthermore, the presence of this open groove is not formed by the structure in which this contact cuts all semiconductors between adjacent cells, but by providing one or more open grooves (20 to 90 μmφ) discontinuously. However, it has other features that it cannot be found with the naked eye from the translucent OF surface side, and the scribe line can be prevented from becoming an obtrusive product.

【0012】またコンタクトが開孔であるため、その孔
の側周辺のすべての側面が第1の電極と第2の電極との
連結部のコンタクトを構成させることができ、この部分
での接触抵抗を1 Ω以下に下げることができた。
Further, since the contact is an opening, all the side surfaces around the side of the hole can form a contact at the connecting portion between the first electrode and the second electrode, and the contact resistance at this portion Could be reduced to less than 1 Ω.

【0013】本発明はかかる多くの特長を有するもので
あって、以下に図面に従ってその詳細を記す。図2は本
発明の光電変換装置の製造工程および装置を示すもので
ある。図面において、絶縁表面を有する透光性有機樹脂
薄膜基板例えば住友ベ−クライト社製スミライト(連続
使用温度 150〜300 ℃、光線透光率 80〜92%(厚さ10
0 μm)、熱伝導率 3〜7×10-4Cal /sec /cm2
℃/cm)を透光性基板(2)例えば厚さ100 μm、長さ
(図面では左右方向)60cm、巾20cm)として用いた。さ
らにこの上面に全面にわたって透光性導電膜例えばITO
(約1500Å)+SnO2(200 〜400 Å)またはハロゲン元
素が添加された酸化スズを主成分とする透光性導電膜
(1500〜2000Å)を真空蒸着法、プラズマCVD 法または
スプレ−法により形成させた。OFとして例えば住友ベ−
クライト社製スミライトFS−1300を用いた。このOFは連
続使用上限温度180 ℃、熱伝導率4.3 ×10-4Cal /sec
/cm2 /℃/cm、光線透光率86.3%(100 μm)の厚さ
とする、表面抵抗率5.4 ×1014Ω、体積抵抗率1.7 ×10
16Ωcmをその代表例として有する。このOF上にスパッタ
法にてITO を700 Åの厚さに形成させた。するとそのシ
−ト抵抗は200 Ω/cm2 を有していた。
The present invention has many such features, and the details will be described below with reference to the drawings. FIG. 2 shows a manufacturing process and a device of the photoelectric conversion device of the present invention. In the drawing, a translucent organic resin thin film substrate having an insulating surface such as Sumitomo Becklite Sumilite (continuous operating temperature 150 to 300 ° C, light transmittance 80 to 92% (thickness 10
0 μm), thermal conductivity 3 to 7 × 10 -4 Cal / sec / cm 2 /
(° C./cm) was used as the transparent substrate (2), for example, 100 μm thick, 60 cm long (horizontal direction in the drawing), and 20 cm wide). Further, a transparent conductive film such as ITO is entirely formed on the upper surface.
(Approximately 1500Å) + SnO 2 (200 to 400Å) or a transparent conductive film (1500 to 2000Å) mainly composed of tin oxide added with a halogen element is formed by a vacuum deposition method, a plasma CVD method or a spray method. Let For example, Sumitomo base
Sumilite FS-1300 manufactured by Crite Co. was used. This OF is the upper limit temperature of continuous use 180 ℃, thermal conductivity 4.3 × 10 -4 Cal / sec
/ Cm 2 / ° C / cm, light transmittance 86.3% (100 μm), surface resistivity 5.4 × 10 14 Ω, volume resistivity 1.7 × 10
It has 16 Ωcm as a typical example. ITO was formed on this OF to a thickness of 700 Å by sputtering. The sheet resistance was then 200 Ω / cm 2 .

【0014】この図面は4つのセルを直列接続せしめた
場合である。即ち本発明の光電変換装置は、活性領域
(14)を同一基板に100 〜2000ケ同時に有するより大き
い20cm×60cmの基体を用いた。各セルでは、第1の導電
膜を基体全面に形成した。さらにこの導電膜を所定の形
状にレ─ザ(ここでは1.06μmまたは0.53μmの波長の
YAG レ−ザ)スクライブをマイクロコンピュ─タにより
記憶され制御されたパタ─ンに従って行って第1の開溝
(16)を形成した。さらにセルの外側でのリ−クを除去
するため、分離用開溝(26),(26')を形成させた。そして
セル領域(11),(13) および外部接続用電極部(8),(9) を
形成させた。
This drawing shows the case where four cells are connected in series. That is, the photoelectric conversion device of the present invention uses a larger substrate of 20 cm × 60 cm having 100 to 2000 active regions (14) on the same substrate at the same time. In each cell, the first conductive film was formed on the entire surface of the substrate. Further, this conductive film is formed into a laser having a predetermined shape (here, a wavelength of 1.06 μm or 0.53 μm is used).
A YAG laser) scribe was performed according to a pattern stored and controlled by the micro computer to form the first open groove (16). Further, in order to remove the leak on the outside of the cell, separation grooves (26) and (26 ') were formed. Then, the cell regions (11) and (13) and the external connection electrode parts (8) and (9) were formed.

【0015】即ち、ここにYAG レ−ザ(発光波長1.06μ
m、焦点距離50mm、光径50μm)を照射した。その条件
として、繰り返し同時に6KHz, 平均出力1.3W, スキャン
スピ−ド(走査速度、以下SSという)60cm/分とした。
スクライビングにより形成された開溝(16)は巾約70μ
m、長さ20cm(図面では1cm)深さはOFのそれぞれの第
1の電極を完全に切断分離した。第1の素子(11)およ
び第2の素子(13)を構成する巾は10mmとした。この時
電子顕微鏡にて調べた範囲では、OF表面には何等の損傷
もまた部分的な劣化も見られなかった。このレ−ザ光は
1600℃以上の温度を有すると推察されるが、連続使用上
限温度が180 ℃程度の低い耐熱性しか有さないOFに何等
損傷を与えなかった。即ち、OF上のCTF に対し、選択的
に開溝(16)を作製することができることがわかった。
その上、2つのプロ−プ間には1MΩ以上の抵抗(巾は
1cm とする)を得ることができた。
That is, the YAG laser (emission wavelength 1.06 μ
m, focal length 50 mm, light diameter 50 μm). The conditions were as follows: 6 KHz repeatedly, average output 1.3 W, scan speed (scan speed, hereinafter referred to as SS) 60 cm / min.
Open groove (16) formed by scribing is about 70μ wide
m, length 20 cm (1 cm in the drawing) and depth OF OF each first electrode was completely cut and separated. The width of the first element (11) and the second element (13) was 10 mm. At this time, in the range examined by an electron microscope, no damage or partial deterioration was observed on the OF surface. This laser light
It is presumed that it has a temperature of 1600 ° C or higher, but it did not cause any damage to OF, which has a low heat resistance with a maximum continuous use temperature of about 180 ° C. That is, it was found that the open groove (16) can be selectively formed with respect to the CTF on OF.
In addition, a resistance of 1 MΩ or more (width is
1 cm).

【0016】図3はレ−ザ光の繰り返し周波数を可変に
したもので、開溝が形成される場合の電気抵抗を示す。
図面において、スキャンスピ−ド60cm/分、平均出力0.
8W, 光径50μmのYAGレ−ザを用いた。するとその周波
数を10KHz より下げてゆくと、曲線(45)は7KHz以下で
不連続に1MΩ以上(45') となって電気的にアイソレイシ
ョンを行うことができるようになったことが判明した。
しかしこの周波数が4KHz以下ではこのCTF に加えて下地
のOFをもその中心部(ガウス分布のエネルギ密度の最も
高い領域)で損傷してしまった。 このことにより、OF
上のCTF のLS(レ−ザスクライブ)には(44)に示す範
囲が適していた。
FIG. 3 shows the electric resistance when an open groove is formed by varying the repetition frequency of laser light.
In the drawing, scan speed 60 cm / min, average output 0.
A YAG laser with 8 W and a light diameter of 50 μm was used. Then, when the frequency was lowered below 10 KHz, it became clear that the curve (45) became discontinuously above 1 MΩ (45 ') below 7 KHz and electrical isolation could be performed.
However, at frequencies below 4 kHz, in addition to this CTF, the underlying OF was also damaged at its center (the region with the highest Gaussian energy density). This makes OF
The range shown in (44) was suitable for the LS (laser scribe) of the above CTF.

【0017】さらに、この下地のOFに損傷を与えること
なくCTF のみを除去する領域を調べたところ、図4を得
た。即ち、SSを0〜120cm /分、平均出力0〜3W、繰
り返し周波数6KHz、焦点距離50cm、レ−ザ光の直径50μ
mのYAG レ−ザとすると、領域(49)即ち点A,B,C,D,E,
F で囲まれる範囲はOFの損傷がなくCTF のみで除去する
ことができた。さらに領域(47)はCTF すらも除去する
ことができない領域であり、領域(46)はパルス光がCT
F 上で連続せず、破線のごとく不連続な穴溝を得たのみ
であった。領域(48)はCTF のみならず下地のOFに対し
ても損傷を与えてしまった領域であった。このことによ
り下地のOFに対して損傷を与えることなく、CTF のみを
選択的に開溝として除去することのできる領域(19)が
あることがわかった。
Further, when a region where only CTF is removed without damaging OF of the underlayer is examined, FIG. 4 is obtained. That is, SS 0 to 120 cm / min, average output 0 to 3 W, repetition frequency 6 KHz, focal length 50 cm, laser light diameter 50 μ
Assuming a YAG laser of m, the region (49), that is, the points A, B, C, D, E,
The area surrounded by F was not damaged by OF and could be removed only by CTF. Furthermore, the region (47) is a region where even CTF cannot be removed, and the region (46) shows that the pulsed light is CT.
It was not continuous on F, and only discontinuous hole grooves were obtained as shown by the broken line. Region (48) was a region that damaged not only the CTF but also the underlying OF. From this, it was found that there is a region (19) in which only CTF can be selectively removed as an open groove without damaging OF underlayer.

【0018】図2(A)の平面図またA─A, F─Fに
おける縦断面図を(A─1),( A─2)にそれぞれ示
す。次に図2(B)の平面図に示すごとく、光照射によ
り光起電力を発生する水素または弗素が添加された非単
結晶半導体を、この電極(3),開溝(16)のすべての上面
に均質の膜厚に形成させる。 この半導体(4)は例え
ばSix C1-x(0<x<1一般にはx=0.7 〜0.8 )のP
型を約100 Åの厚さに、さらにI型の水素またはハロゲ
ン元素が添加された珪素を主成分とする半導体を0.4 〜
0.8 μmの厚さに、さらにN型の微結晶化した珪素また
はN型のSix C1-x(0<x<1 x〜0.9 )を主成分と
する半導体のPIN 接合構造とした。もちろんこれをP
(Six C1-x x=0.7 〜0.8 )─I(Si)─N(μCSi
)─P(Six C1-x x=0.7 〜0.8 )─I(Six Ge
1-x x=0.6 〜0.8 )─N(微結晶化CSi またはSix C
1-x 0<x<1)といったPINPIN構造のタンデム構造
としてもよい。
A plan view of FIG. 2 (A) and vertical sectional views taken along lines A--A and F--F are shown in (A-1) and (A-2), respectively. Next, as shown in the plan view of FIG. 2 (B), a non-single-crystal semiconductor added with hydrogen or fluorine, which generates a photoelectromotive force by light irradiation, is formed on the electrode (3) and the open groove (16). A uniform film thickness is formed on the upper surface. This semiconductor (4) is made of, for example, Si x C 1-x (0 <x <1 generally x = 0.7 to 0.8) P
The mold has a thickness of about 100 Å, and a semiconductor mainly composed of silicon to which I-type hydrogen or a halogen element is added is 0.4-
The thickness was 0.8 μm, and a PIN junction structure of a semiconductor containing N-type microcrystallized silicon or N-type Si x C 1-x (0 <x <1 x to 0.9) as a main component was used. Of course this is P
(Si x C 1-x x = 0.7 to 0.8) -I (Si) -N (μCSi
) -P (Si x C 1-x x = 0.7 to 0.8) -I (Si x Ge
1-x x = 0.6 to 0.8) -N (microcrystallized CSi or Si x C
It may be a tandem structure of PINPIN structure such as 1-x 0 <x <1).

【0019】さらに第2の開孔(15)をレ─ザ光により
形成させ、図2(B)におけるB−B,C−Cの縦断面
図を(B−1),( B─2)に対応して示している。かく
して第2の開孔(15)はOFの表面には損傷を与えずに第
1の電極の側面(17)を露出させた。 この時、CTF の
上端部を0〜5μmの巾で露呈させる結果、連結はCTF
(3)の側面および上面が連結部のコンタクトを構成す
る。この第2の開孔(15)の形成条件は第1の開溝を形
成する条件とレ−ザ光をパルスを不連続に(15)の位置
のみに加える以外は同一である。即ち、半導体の存在は
実質的に無視しても差支えなく、図3、図4の特性を用
いることができた。次に図2(C)のパタ─ンを形成さ
せた。図2(C)のD−D,E−E,G─Gに対応した
縦断面図を(C─2),( C─3),( C─1)に示してい
る。即ち、半導体(4)上に第2の電極を電子ビ−ム蒸
着法によりITO を100 〜1600Å例えば1050Åの厚さに設
け、さらにクロムを主成分とする金属を 500〜2000Åの
厚さに形成させた。
Further, a second opening (15) is formed by laser light, and vertical sectional views of BB and CC in FIG. 2 (B) are (B-1), (B-2). It corresponds to and is shown. Thus, the second opening (15) exposed the side surface (17) of the first electrode without damaging the surface of OF. At this time, the upper end of the CTF is exposed with a width of 0 to 5 μm, so that the connection is CTF.
The side surface and the upper surface of (3) form a contact of the connecting portion. The conditions for forming the second opening (15) are the same as the conditions for forming the first opening except that a pulse of laser light is discontinuously applied only to the position (15). That is, the presence of the semiconductor can be ignored substantially, and the characteristics shown in FIGS. 3 and 4 can be used. Next, the pattern of FIG. 2C was formed. Vertical sectional views corresponding to DD, EE, and GG in FIG. 2C are shown in (C-2), (C-3), and (C-1). That is, the second electrode is formed on the semiconductor (4) by the electron beam evaporation method to a thickness of ITO of 100 to 1600Å, for example, 1050Å, and a metal containing chromium as a main component is formed to a thickness of 500 to 2000Å. Let

【0020】すると、開口(15)において、第1の透光
性導電膜(3)の側面(17)に対し、ITO の導電性酸化
物がコンタクトし、オ−ム接触をさせることができた。
このクロムは融点1800℃、沸点2660℃、熱伝導度0.2cal
/(cm.cec.deg)を有している。特にこの熱伝導率は他
が金属例えばチタンの0.05に比べて4倍を有し、銀の0.
998 の1/5であり、この熱伝導率が0.1 〜0.3 の範囲
がレ−ザ加工にもっとも好ましいと推定される。即ち、
レ−ザ照射でアルミニュ−ム等の酸化物を作りにくく、
かつ下地と反応しにくい金属として特にすぐれたもので
あった。またこの下のITO がないとレ−ザ光は下側の半
導体をも容易にスクライブし、その周辺を多結晶半導体
化してしまった。またITO のみではレ−ザ光が透過し、
半導体のみを実質的にスクライブしてしまった。これら
のことより、裏面電極はITO とクロムとの2層膜が最適
であった。
Then, in the opening (15), the conductive oxide of ITO was brought into contact with the side surface (17) of the first light-transmissive conductive film (3), and an ohmic contact could be made. .
This chrome has a melting point of 1800 ℃, a boiling point of 2660 ℃, and a thermal conductivity of 0.2cal.
/(Cm.cec.deg). In particular, this thermal conductivity is 4 times higher than that of other metals such as titanium, which is 0.05, and that of silver is 0.
It is ⅕ of 998, and it is estimated that the thermal conductivity in the range of 0.1 to 0.3 is most preferable for laser processing. That is,
It is difficult to make oxides such as aluminum by laser irradiation,
Moreover, it was a particularly excellent metal as a metal that does not easily react with the substrate. Without the ITO underneath, laser light could easily scribe the semiconductor underneath, turning the periphery into a polycrystalline semiconductor. Also, the laser light is transmitted only by ITO,
I virtually scribed only semiconductors. From these, the back electrode was optimally a two-layer film of ITO and chromium.

【0021】裏面電極の反射性を利用して特性改良を図
るには、前記したITO (1050Å)+Ti(20Å)またはAg
(100 〜200 Å)+Cr (1000〜3000Å)が好ましかっ
た。この後、図2(C)においてレ─ザスクライブ(1
9)を行った。これはYAG レ─ザ(波長1.06μm,0.53
μm)をテレビモニタ─にて第1の開溝をモニタ─しつ
つ、それより50〜200 μm第2のセル側(13)にはいっ
た位置にて開溝を作った。レ─ザ光の平均出力0.5 〜1.
3Wとし、ビ─ム径30〜50μmφ、ビ─ム走査スピ─ド0.
1 〜1m/分、一般には0.3m/分として行った。かくする
とITO+Crの組合せにより熱伝導率が他の金属に比べて適
度に小さいため、半導体にその熱を伝え、この半導体に
導電性の多結晶体とずれることなくこの第2の電極用の
導体のみをスクライブして除去させることができた。さ
らにこの第3の開溝(20)をアセトン等の洗浄溶液にて
溶去することは残存物を除去するために好ましい。
In order to improve the characteristics by utilizing the reflectivity of the back surface electrode, the above-mentioned ITO (1050Å) + Ti (20Å) or Ag
(100-200Å) + Cr (1000-3000Å) was preferred. After this, in FIG. 2 (C), the laser scribe (1
9) was done. This is a YAG laser (wavelength 1.06 μm, 0.53
While monitoring the first open groove with a television monitor, the open groove was formed at a position 50 to 200 μm from that side on the second cell side (13). Average output of laser light 0.5-1.
3 W, beam diameter 30-50 μmφ, beam scanning speed 0.
It was performed at 1 to 1 m / min, generally 0.3 m / min. Thus, the combination of ITO + Cr has a reasonably small thermal conductivity as compared with other metals, so the heat is transferred to the semiconductor, and this semiconductor is used for this second electrode without shifting from the conductive polycrystal. Only the conductor could be scribed and removed. Further, it is preferable to dissolve away the third open groove (20) with a cleaning solution such as acetone in order to remove the residue.

【0022】またこの半導体(3)がP型半導体層、I
型半導体層、N型半導体層と例えば1つのPIN 接合を有
し、このN型半導体層が微結晶または多結晶構造を有す
る。その電気伝導度が1〜200 (cm)-1と高い伝導度を持
つ場合、本発明のN型半導体層を室温〜150 ℃の温度で
酸化(10〜200 時間)させ、絶縁物化することによりパ
ッシベイションおよびリ−ク電流発生を防止することは
きわめて重要であった。
This semiconductor (3) is a P-type semiconductor layer, I
The n-type semiconductor layer and the n-type semiconductor layer have, for example, one PIN junction, and the n-type semiconductor layer has a microcrystalline or polycrystalline structure. When the electric conductivity thereof is as high as 1 to 200 (cm) −1 , the N-type semiconductor layer of the present invention is oxidized (at 10 to 200 hours) at room temperature to 150 ° C. to be an insulator. It was very important to prevent passivation and leak current generation.

【0023】かくして、連結部(12)において、セル
(13)の第1の電極(23') と、セル(11)の第2の電極
(25)とが酸化物コンタクトによりオ─ム接触を第2の
開溝(18)を介してしている。特に連結部(12)におけ
るコンタクト(17)は、第2の開孔(15)により作られ
た第1の電極の側面または側面と0〜5μmの巾の第1
の電極の上端面とで成就され、いわゆるサイドコンタク
ト構造を有している。即ち2つのセルはわずか10〜70μ
mφの第2の開孔のサイドコンタクトで十分であり、こ
の部分に第2の電極を構成する材料を密接させて電気的
に直列接続をさせている。(C─1),( C─2)の断面
図より明らかなごとく、半導体(4)上に第2の電極
(5)が形成されているにすぎない。そしてこの第3の
開溝(20)はその下の半導体を多結晶化することなく、
また実質的に半導体をえぐることなく電極のみを分離し
て各素子の第2の電極間を電気的にアイソレイトさせる
ことができた。
Thus, in the connecting portion (12), the first electrode (23 ') of the cell (13) and the second electrode (25) of the cell (11) are brought into ohmic contact by oxide contact. It is through the second open groove (18). In particular, the contact (17) in the connecting portion (12) has a side surface of the first electrode formed by the second opening (15) or a side surface of the first electrode having a width of 0 to 5 μm.
And the upper end face of the electrode, and has a so-called side contact structure. That is, the two cells are only 10-70μ
The side contact of the second aperture of mφ is sufficient, and the material forming the second electrode is brought into close contact with this portion for electrical series connection. As is clear from the cross-sectional views of (C-1) and (C-2), the second electrode (5) is merely formed on the semiconductor (4). And the third groove (20) does not polycrystallize the semiconductor thereunder,
Further, it was possible to electrically isolate the second electrodes of the respective elements by electrically separating only the electrodes without substantially scooping the semiconductor.

【0024】さらに図2(C)において、これらの上面
に有機樹脂(28)例えばシリコ─ン、エポキシまたはポ
リイミドを10〜100 μmの厚さにコ─ティングして完成
させている。その結果、この図面より明らかなごとく、
この光電変換装置は、例えば図面に示されているごと
く、1cm ×5cm の光電変換装置を同じ大きさの透光性OF
上に1つ作るのではなく、20cm×20cmまたは20cm×60cm
または40cm×40cmの大きな同一透光性OF基板上に一度に
多数の光電変換装置を作ることが可能となった。そして
最後にこれらを(70)の境界で裁断法により切断し、そ
れぞれの光電変換装置にした。このためには、従来より
知られた光電変換装置のごとく活性領域と非活性領域と
を作るのではなく、すべて実質的に活性領域とし、かつ
レ−ザ光による開溝を端から端まで作り、レ−ザ光の走
査スピ−ドを大きなOF上で常に一定にさせていることが
重要である。さもないと、SSが遅い部分ではOFに損傷が
おきてしまうからである。
Further, in FIG. 2C, an organic resin (28) such as silicone, epoxy or polyimide is coated on the upper surface of these to a thickness of 10 to 100 μm to complete the process. As a result, as is clear from this drawing,
This photoelectric conversion device is, for example, as shown in the drawing, a photoelectric conversion device of 1 cm × 5 cm, which has the same size as the translucent OF.
20cm x 20cm or 20cm x 60cm instead of making one on top
Or, it has become possible to fabricate a large number of photoelectric conversion devices at one time on a large 40 cm × 40 cm identical translucent OF substrate. Finally, these were cut at the boundary of (70) by a cutting method to obtain each photoelectric conversion device. To this end, rather than forming an active region and an inactive region as in the conventionally known photoelectric conversion device, all of them are made substantially active regions, and an open groove by laser light is formed from end to end. , It is important to keep the scanning speed of the laser light constant on a large OF. Otherwise, OF will be damaged in the part where SS is slow.

【0025】図2(C)での開溝(20),(27),(27') が端
から端まで走査されているのは、量産化を考えた時重要
である。もちろんこれらの開溝は入射光側からはまった
く見られないため高商品価値化を下げない。また図2
(C)において明らかなごとく、セルの有効面積は連結
部(12)の10〜300 μmのきわめてわずかな部分を除い
て他のすべてが有効であり、実効面積は90%以上を得る
ことができ、従来例の80%に比べ本発明構造は格段に優
れたものであった。これらのことを考慮すると、本発明
は以下の大きな特長を有することが判明した。即ち、本
発明は〔1〕透光性有機樹脂膜の大面積基板に同時に多
数の光電変換装置を作り、これを分割して各基板上に1
つの光電変換装置を作る方式を採用することが可能とな
った。このため、従来の1/3〜1/5の価格での製造
が可能である。〔2〕第1の開溝と第2の開孔、第3の
開溝とがコンピュ─タにより制御されたセルフレジスト
レイション方式のため、セルの有効面積が大きく、かつ
その同一バッチで作られた各光電変換装置間のバラツキ
が少ない〔3〕LSによるマスクレス工程であるため、製
造歩留りが高い〔4〕各セル間分離の第1の開溝のスク
ライブラインの巾が10〜100 μmときわめて小さく、か
つ第2の開孔も10〜50μmφときわめて小さく、また第
3の開溝は透光性OF面側からはまったく見えない。その
結果肉眼によりハイブリット化がされていることを確認
され得ず、高付加商品価値を与えることができた。
It is important in consideration of mass production that the open grooves (20), (27) and (27 ') in FIG. 2C are scanned from one end to the other. Of course, these open grooves are not seen from the incident light side at all, so they do not reduce the product value. See also FIG.
As is clear from (C), the effective area of the cell is all other than the extremely small portion of 10 to 300 μm of the connecting portion (12), and the effective area can be 90% or more. The structure of the present invention was remarkably superior to 80% of the conventional example. In view of these, it was found that the present invention has the following great features. That is, according to the present invention, [1] a large number of photoelectric conversion devices are simultaneously formed on a large-area substrate of a translucent organic resin film, and the photoelectric conversion devices are divided into one on each substrate.
It has become possible to adopt a method of making two photoelectric conversion devices. Therefore, it is possible to manufacture at a price of 1/3 to 1/5 that of the conventional one. [2] Since the first opening, the second opening, and the third opening are self-registration system controlled by a computer, the effective area of the cell is large and the cells are produced in the same batch. [3] The manufacturing yield is high because the maskless process by LS has a small variation between photoelectric conversion devices. [4] The width of the scribe line of the first open groove for separating cells is 10 to 100 μm. It is extremely small, and the second opening is also extremely small at 10 to 50 μmφ, and the third opening is completely invisible from the transparent OF surface side. As a result, it could not be confirmed with the naked eye that it was hybridized, and it was possible to give a high added commercial value.

【0026】図2において、第2の開孔(15)は1つの
みを半導体内部の特に中央付近に存在させた。しかしこ
の開孔は、複数ケ(2〜4ケ)を破線的にY方向に第1
および第3の開溝の間に作製しても、また櫛目形状に半
導体(3)の内部に第1の開溝(16)にそって形成させ
てもよい。
In FIG. 2, only one second opening (15) was present inside the semiconductor, especially near the center. However, a plurality of holes (2 to 4) are formed in the opening in the Y direction in a broken line.
It may be formed between the first open groove (16) and the third open groove, or may be formed inside the semiconductor (3) along the first open groove (16) in a comb shape.

【0027】以上の説明は本発明の図2のパタ─ンには
限定されない。セルの数、大きさはその設計仕様によっ
て定められるものである。また半導体はプラズマCVD
法、減圧CVD 法、光CVD 法または光プラズマCVD 法を用
いた。非単結晶シリコンを主成分とするPIN 接合、ヘテ
ロ接合、タンデム接合のみに限らず多くの構造への応用
が可能である。なお本発明は透光性有機樹脂上に透光性
導電膜を密接させた場合を示した。しかし本発明は、有
機樹脂上に窒化珪素または酸化珪素の膜を300 〜3000Å
の厚さにバリア層として形成し、その上に透光性導電膜
を形成してもよいことはいうまでもない。
The above description is not limited to the pattern of FIG. 2 of the present invention. The number and size of cells are determined by their design specifications. For semiconductors, plasma CVD
Method, low pressure CVD method, optical CVD method or optical plasma CVD method was used. It can be applied not only to PIN junctions, heterojunctions, and tandem junctions mainly composed of non-single-crystal silicon, but also to many structures. The present invention shows the case where the transparent conductive film is brought into close contact with the transparent organic resin. However, according to the present invention, a silicon nitride or silicon oxide film is formed on the organic resin in an amount of 300 to 3000 Å.
Needless to say, it may be formed as a barrier layer having the above thickness, and a translucent conductive film may be formed thereon.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の光電変換装置の縦断面図である。FIG. 1 is a vertical sectional view of a conventional photoelectric conversion device.

【図2】実施例の光電変換装置の平面図および縦断面図
を製造工程に従って示したものである。
2A and 2B are a plan view and a vertical sectional view of a photoelectric conversion device according to an example, which are shown according to a manufacturing process.

【図3】実施例における有機樹脂上の透明導電膜をレ−
ザスクライブした時のレ−ザスクライブによる電気抵抗
の変化を示す。
FIG. 3 shows a transparent conductive film on an organic resin in the example.
The change in electric resistance due to the laser scribe when the scribe is performed is shown.

【図4】実施例の有機樹脂上の透明導電膜をレ−ザスク
ライブした時のレ−ザスクライブの可能な領域を示す。
FIG. 4 shows a region where laser scribing is possible when the transparent conductive film on the organic resin of the example is laser scribed.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 絶縁表面を有する有機樹脂基板上に導電
膜の第1の電極、該第1の電極上の光照射により光起電
力を発生させる非単結晶半導体、および前記非単結晶半
導体上の第2の電極を有する光電変換素子を複数個集積
化して前記有機樹脂基板上に設けるに際し、隣合う前記
光電変換素子の第1および第2の電極は前記非単結晶半
導体の両側端部に至らない内部で電気的に直列に連結し
た連結部を有する光電変換半導体装置であって、 前記第1の電極または第2の電極のうち少なくともどち
らか一方の電極の外周部領域のうち電極間連結部分以外
の領域に、前記電極の端部に沿ってリーク防止のための
分離用開溝を設けたことを特徴とする光電変換半導体装
置。
1. A first electrode of a conductive film on an organic resin substrate having an insulating surface, a non-single-crystal semiconductor that generates a photoelectromotive force by light irradiation on the first electrode, and the non-single-crystal semiconductor When a plurality of photoelectric conversion elements each having the second electrode are integrated and provided on the organic resin substrate, the first and second electrodes of the photoelectric conversion elements adjacent to each other are formed on both end portions of the non-single crystal semiconductor. A photoelectric conversion semiconductor device having a connecting portion electrically connected in series inside a non-extending portion, wherein inter-electrode connection in an outer peripheral region of at least one of the first electrode and the second electrode A photoelectric conversion semiconductor device, characterized in that an isolation trench for preventing leakage is provided along an end portion of the electrode in a region other than the portion.
JP5029745A 1993-01-26 1993-01-26 Photoelectric conversion semiconductor device Expired - Lifetime JPH088369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5029745A JPH088369B2 (en) 1993-01-26 1993-01-26 Photoelectric conversion semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5029745A JPH088369B2 (en) 1993-01-26 1993-01-26 Photoelectric conversion semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58204441A Division JPH0638512B2 (en) 1983-07-12 1983-10-31 Photoelectric conversion semiconductor device

Publications (2)

Publication Number Publication Date
JPH06314805A true JPH06314805A (en) 1994-11-08
JPH088369B2 JPH088369B2 (en) 1996-01-29

Family

ID=12284641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5029745A Expired - Lifetime JPH088369B2 (en) 1993-01-26 1993-01-26 Photoelectric conversion semiconductor device

Country Status (1)

Country Link
JP (1) JPH088369B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011014892A (en) * 2009-06-05 2011-01-20 Semiconductor Energy Lab Co Ltd Photoelectric conversion device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS554994A (en) * 1978-06-20 1980-01-14 Siemens Ag Solar battery and method of manufacturing same
JPS5645480A (en) * 1979-09-10 1981-04-25 Elder Thomas C Inc 4**substitutedd4*5**88trialkylpsoralen
JPS56152275A (en) * 1980-04-25 1981-11-25 Teijin Ltd Thin film type solar cell
JPS5753986A (en) * 1980-07-25 1982-03-31 Eastman Kodak Co
JPS57176778A (en) * 1981-03-31 1982-10-30 Rca Corp Solar battery array
JPS57190368A (en) * 1981-05-19 1982-11-22 Matsushita Electric Ind Co Ltd Solar battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS554994A (en) * 1978-06-20 1980-01-14 Siemens Ag Solar battery and method of manufacturing same
JPS5645480A (en) * 1979-09-10 1981-04-25 Elder Thomas C Inc 4**substitutedd4*5**88trialkylpsoralen
JPS56152275A (en) * 1980-04-25 1981-11-25 Teijin Ltd Thin film type solar cell
JPS5753986A (en) * 1980-07-25 1982-03-31 Eastman Kodak Co
JPS57176778A (en) * 1981-03-31 1982-10-30 Rca Corp Solar battery array
JPS57190368A (en) * 1981-05-19 1982-11-22 Matsushita Electric Ind Co Ltd Solar battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011014892A (en) * 2009-06-05 2011-01-20 Semiconductor Energy Lab Co Ltd Photoelectric conversion device

Also Published As

Publication number Publication date
JPH088369B2 (en) 1996-01-29

Similar Documents

Publication Publication Date Title
EP1039554B1 (en) Method of manufacturing thin film solar cell-modules
US4597161A (en) Method of making photoelectric conversion device
US4710397A (en) Photoelectric conversion device and its manufacturing method
JP4425917B2 (en) Solar cell and manufacturing method thereof
WO2010064549A1 (en) Method for manufacturing thin-film photoelectric conversion device
JPH0518274B2 (en)
JPH0638512B2 (en) Photoelectric conversion semiconductor device
JPH069251B2 (en) Photoelectric conversion semiconductor device manufacturing method
JPH06314805A (en) Photoelectric conversion semiconductor device
KR20110060162A (en) Solar cell and method for fabricating the same
JPH0476227B2 (en)
JPH06314808A (en) Photoelectric conversion semiconductor device
KR19990030106A (en) Integrated photovoltaic device and manufacturing method thereof
JP2585503B2 (en) Laser processing method
JPH065776B2 (en) Method for manufacturing photoelectric conversion device
JP2005260158A (en) Solar cell module
JPH07105511B2 (en) Photovoltaic device manufacturing method
JPH077840B2 (en) Method for manufacturing photoelectric conversion semiconductor device
JPH065775B2 (en) Photoelectric conversion semiconductor device
JP3685964B2 (en) Photoelectric conversion device
JPH0758351A (en) Manufacture of thin film solar cell
JPH0415631B2 (en)
JP2000049371A (en) Photovoltaic device and its manufacture
JP2883370B2 (en) Photovoltaic device
JPH0614556B2 (en) Photoelectric conversion device and manufacturing method thereof