JPH06314600A - Ion accelerating electrode plate and manufacture thereof - Google Patents

Ion accelerating electrode plate and manufacture thereof

Info

Publication number
JPH06314600A
JPH06314600A JP5105217A JP10521793A JPH06314600A JP H06314600 A JPH06314600 A JP H06314600A JP 5105217 A JP5105217 A JP 5105217A JP 10521793 A JP10521793 A JP 10521793A JP H06314600 A JPH06314600 A JP H06314600A
Authority
JP
Japan
Prior art keywords
plate
tantalum
electrode plate
cooling
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5105217A
Other languages
Japanese (ja)
Inventor
Satoru Asai
知 浅井
Masahiro Yamada
正博 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5105217A priority Critical patent/JPH06314600A/en
Publication of JPH06314600A publication Critical patent/JPH06314600A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Particle Accelerators (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To provide an ion accelerating electrode plate having a cooling passage that can cool portions near a beam hole having high cooling performance, and excellent in durability and corrosion resistance, and a method of manufacture thereof. CONSTITUTION:A flat tantalum plate 2 is laid via titanium foil 4 on top of a grooved tantalum plate 1 having a number of grooves 3 formed thereon, and the plates are joined together by diffusion process. A beam hole 5 is bored along the direction perpendicular to the surface of this electrode plate and in the adjoining position of cooling holes. An excellent joint is thus formed without deforming the grooves that serve as the cooling holes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、核融合装置の中性粒子
入射装置や能動粒子線入射装置などに用いられるイオン
源において、高冷却性能を有するイオン加速電極板およ
びその製作方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ion accelerating electrode plate having a high cooling performance in an ion source used for a neutral particle injection device, an active particle beam injection device, etc. of a nuclear fusion device, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】核融合装置の中性粒子入射装置は、高エ
ネルギの中性粒子ビームを外部から核融合装置内のプラ
ズマ中へ入射し、加熱する装置である。この中性粒子ビ
ームを生成するもとになるイオン源は、水素ガス中でア
ーク放電を行うことによりプラズマを生成し、その中の
イオンを高電圧を印加した電極で加速し、高速水素イオ
ンビームを発生させる装置であり、この水素イオンビー
ムが電子を付着され、中性化し入射ビームとなる。(参
考文献、核融合研究開発の現状、1985年、日本原子力研
究所発行) このイオンビームを加速する電極板は、高融点材料のモ
リブデンからなり、図3、図4に示すようにイオンを通
過する無数のビーム孔5を設けた構造となっている。
尚、図4のビーム孔5の1部は中心線で位置を示してい
る。さらに、イオンビームの衝突などによる過熱損傷を
防止するため、モリブデン平板6の周囲に銅パイプ7を
ろう材8でろう付し、水冷した構造が用いられている。
これらは、プラズマ中心部の温度測定を行う能動粒子線
入射装置のイオン加速電極板も同様の構造がとられてい
る。
2. Description of the Related Art A neutral particle injection device for a fusion device is a device for injecting a high-energy neutral particle beam into the plasma in the fusion device from the outside and heating it. The ion source, which is the source of this neutral particle beam, generates plasma by performing arc discharge in hydrogen gas, and accelerates the ions in it by the electrode to which a high voltage is applied. This hydrogen ion beam has electrons attached to it and is neutralized to become an incident beam. (Reference, present state of fusion research and development, published by Japan Atomic Energy Research Institute in 1985) The electrode plate that accelerates the ion beam is made of molybdenum, which has a high melting point, and passes ions as shown in FIGS. 3 and 4. The structure is provided with an infinite number of beam holes 5.
Incidentally, a part of the beam hole 5 in FIG. 4 is indicated by the center line. Further, in order to prevent overheat damage due to collision of an ion beam or the like, a structure in which a copper pipe 7 is brazed with a brazing material 8 around a molybdenum flat plate 6 and water-cooled is used.
The ion acceleration electrode plate of the active particle beam injector for measuring the temperature of the central part of the plasma has the same structure.

【0003】[0003]

【発明が解決しようとする課題】近年、上記中性粒子入
射装置等の高性能化に伴い、イオン源の高出力化、さら
にビーム出力時間の長パルス化が要求されており、イオ
ン加速電極板の耐久化が問題となっている。これらの長
パルス化、高出力化により、モリブデン平板への加熱負
荷が高くなることから、周囲を冷却した従来構造では、
冷却効果が不十分で、ビーム孔周囲を直接冷却するよう
に高冷却性能構造が必要となる。
In recent years, as the performance of the neutral particle injection device and the like has been improved, higher output of the ion source and longer pulse of the beam output time have been required, and the ion acceleration electrode plate has been demanded. Durability is a problem. By increasing the pulse length and increasing the output, the heating load on the molybdenum flat plate increases, so in the conventional structure where the surroundings are cooled,
The cooling effect is insufficient and a high cooling performance structure is required to directly cool the periphery of the beam hole.

【0004】しかしながら、ビーム孔間隔は狭く、冷却
用水路を設けるには、1〜2mmの幅しか許容できないた
め、水冷銅パイプを表面に取り付けることは製作上困難
である。さらに、こうした水路をパイプ等のろう付で行
なった場合、ろう材に含まれる蒸気圧の高い元素が加熱
中に蒸発し、装置内の真空度を劣化される欠点がある。
However, since the space between the beam holes is narrow and only a width of 1 to 2 mm is allowed to provide the cooling water channel, it is difficult to mount the water cooling copper pipe on the surface. Further, when such a water channel is brazed by a pipe or the like, an element having a high vapor pressure contained in the brazing material evaporates during heating, and the degree of vacuum in the apparatus is deteriorated.

【0005】また、モリブデンは酸化されやすく湿気を
帯びた大気中に放置しておくと青色に変色し、容易に酸
化し、ビーム孔周囲を直接冷却するように冷却孔を設け
たとしても、直接冷却水と接した場合、酸化され長時間
の使用では腐食が進行し近接するビーム孔に貫通すると
いう問題がある。
Further, molybdenum is easily oxidized and changes its color to blue when left in a humid atmosphere, and is easily oxidized. Even if a cooling hole is provided so as to directly cool the periphery of the beam hole, it is directly When it comes into contact with cooling water, there is a problem that it is oxidized and corrodes when used for a long time and penetrates the adjacent beam hole.

【0006】また、仮に冷却孔表面に耐食性のある材料
を被覆できたとしても数ミクロンの厚さでは長期的な信
頼性には欠ける問題もある。さらに、電極板を耐水腐食
性に優れた銅で構成した場合、融点が低いため、ビーム
の熱負荷による損傷や熱変形の問題も生ずる。
Further, even if the surface of the cooling hole can be coated with a material having corrosion resistance, there is a problem in that long-term reliability is not achieved with a thickness of several microns. Further, when the electrode plate is made of copper which is excellent in water corrosion resistance, the melting point is low, which causes problems such as damage and thermal deformation due to the heat load of the beam.

【0007】本発明の目的はビーム孔近傍を任意に冷却
できる冷却経路を有し、冷却性能が高く、耐久性ならび
に耐食性の優れたイオン加速電極板およびその製作方法
を提供することにある。
An object of the present invention is to provide an ion accelerating electrode plate having a cooling path capable of arbitrarily cooling the vicinity of the beam hole, having high cooling performance, excellent durability and corrosion resistance, and a method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】第1の発明はイオンビー
ムを通過させる多数のビーム孔をその表面と交差する方
向に有し、高電圧の印加により、ビーム孔を通過するイ
オンビームを加速するイオン加速電極板において、タン
タル板の拡散接合により一体化された重合板構造とする
と共に、その重合面に沿う配置でビーム孔と隣接する管
状空間からなる冷却水流通用の冷却孔を備えることを特
徴とするイオン加速電極板である。
According to a first aspect of the present invention, a large number of beam holes for passing an ion beam are provided in a direction intersecting the surface of the beam, and a high voltage is applied to accelerate the ion beam passing through the beam hole. In the ion accelerating electrode plate, it has a polymer plate structure integrated by diffusion bonding of a tantalum plate, and is provided with cooling holes for cooling water circulation consisting of a tubular space adjacent to the beam hole in an arrangement along the polymerizing surface. And an ion accelerating electrode plate.

【0009】また、第2の発明は一側面に多数の溝を形
成した溝付タンタル板の上にその溝を覆い、チタンを介
してタンタル厚板を重ね拡散接合を行うことにより溝付
タンタル板とタンタル平板を一体化固着させ、その後ビ
ーム孔加工を行うことを特徴とするイオン加速電極板の
製作方法である。
A second aspect of the invention is to form a grooved tantalum plate by covering the groove on a grooved tantalum plate having a large number of grooves formed on one side and stacking a tantalum thick plate through titanium to perform diffusion bonding. And a tantalum flat plate are integrally fixed to each other, and then beam hole processing is performed, which is a method of manufacturing an ion acceleration electrode plate.

【0010】[0010]

【作用】第1の発明についはタンタル板が拡散接合によ
り一体化された重合構造で、その重合面に沿う配置でビ
ーム孔と隣接する管状空間からなる冷却水流通用の冷却
孔を有するものであるから、タンタル板の冷却性能がよ
い。また、タンタル板の接合部が拡散接合により一体化
されているので気密保持性が確実となり、さらに、ろう
付と異なり、ろう材の蒸発により装置内の真空度を劣化
させる問題もない。
According to the first aspect of the present invention, the tantalum plate has a polymerized structure integrated by diffusion bonding, and has a cooling hole for cooling water circulation formed of a tubular space adjacent to the beam hole in an arrangement along the polymerized surface. Therefore, the cooling performance of the tantalum plate is good. Further, since the joined portion of the tantalum plate is integrated by diffusion joining, the airtightness is maintained, and unlike brazing, there is no problem of degrading the degree of vacuum in the apparatus due to evaporation of the brazing material.

【0011】しかも、タンタルは融点が約3000℃と高
く、ビーム熱負荷による損傷防止にも有効であるととも
に、冷却水に対する腐食抵抗に優れているため、耐久性
を増すことが可能になる。
Moreover, since tantalum has a high melting point of about 3000 ° C., it is effective in preventing damage due to the beam heat load, and has excellent corrosion resistance to cooling water, so that it is possible to increase durability.

【0012】第2の発明については、溝付タンタル板と
平板タンタルとの重合によって閉じられる溝を冷却孔と
するので、冷却孔の形成が従来のパイプ構造のものと異
なり溝形成でよく、比較的加工が容易であるとともに、
その配置や大きさを任意に選定することができる。
In the second aspect of the invention, since the groove closed by the superposition of the grooved tantalum plate and the flat plate tantalum is used as the cooling hole, the cooling hole may be formed unlike the conventional pipe structure. Is easy to process,
The arrangement and size can be arbitrarily selected.

【0013】よってビーム孔間の狭隘な間隙に対しても
小径な冷却孔を容易に形成することが可能となる。ま
た、溝付タンタル板と平板タンタル板の拡散接合では、
チタンを介して接合を行なうため、直接タンタル板同志
を拡散接合する場合に比べ、接合温度及び接合時の加圧
力を低くしても気密性並びに接合強度の優れた接合部の
形成が可能となる。
Therefore, it is possible to easily form a cooling hole having a small diameter even in a narrow gap between the beam holes. Also, in the diffusion bonding of the grooved tantalum plate and the flat plate tantalum plate,
Since joining is performed via titanium, it is possible to form a joined portion with excellent airtightness and joining strength, even if the joining temperature and the pressure applied during joining are reduced, as compared with the case of directly joining the tantalum plates by diffusion joining. .

【0014】さらに、接合温度と接合時の加圧力が低く
てすむので、冷却孔を形成する溝が変形するのを防ぐこ
とができ、接合後も所定寸法を確保した冷却孔を形成す
ることが可能となる。
Furthermore, since the joining temperature and the pressure applied at the time of joining are low, it is possible to prevent the grooves forming the cooling holes from being deformed, and it is possible to form the cooling holes having a predetermined size even after the joining. It will be possible.

【0015】また、チタンは高温でタンタルに比べ軟質
であるので、接合時チタンが塑性変形することによりタ
ンタルの機械加工表面の凹凸部になじみ易く、通常の加
工面アラサにて欠陥のない気密性の高い接合部を得られ
る利点がある。
Further, since titanium is softer than tantalum at high temperature, the plastic deformation of titanium during joining makes it easy to adapt to the irregularities of the machined surface of tantalum, and the airtightness without defects on the normal machined surface roughness. There is an advantage that a high joint can be obtained.

【0016】[0016]

【実施例】以下、本発明の実施例を図1および図2を参
照して説明する。本実施例では図1(a)に示すように
一側面に多数の溝3を形成した溝付きタンタル板1の上
に10μ厚さのチタン箔4を介して平板タンタル板2を重
合し、これらを拡散接合させることにより一枚のタンタ
ル板として電極板予備品として形成した。この後図1
(b)および図2に示すように電極板予備品の表面と交
差する方向に沿い冷却孔3aと隣接する位置に多数のビ
ーム孔5を穿設した。
Embodiments of the present invention will be described below with reference to FIGS. 1 and 2. In this embodiment, as shown in FIG. 1A, a flat tantalum plate 2 is superposed on a grooved tantalum plate 1 having a large number of grooves 3 formed on one side thereof via a titanium foil 4 having a thickness of 10 μm. Was diffusion-bonded to form a single tantalum plate as an electrode plate spare part. After this
As shown in (b) and FIG. 2, a large number of beam holes 5 were formed at positions adjacent to the cooling holes 3a along the direction intersecting the surface of the electrode plate spare part.

【0017】上記の電極板予備品の各溝寸法は、幅 1.5
mm、深さ寸法は1mmとした。さらに、平板タンタル板2
の厚みは 0.5mm、溝付タンタル板1の厚さは 1.5mmであ
り、径は共に 340mmとした。
The groove size of the above-mentioned spare electrode plate is 1.5
mm, and the depth dimension was 1 mm. Furthermore, flat tantalum plate 2
Has a thickness of 0.5 mm, the grooved tantalum plate 1 has a thickness of 1.5 mm, and both have a diameter of 340 mm.

【0018】溝付タンタル板1と平板タンタル板2との
拡散接合は、ホットプレス装置を用いて行われ、その接
合温度は1000℃、保持時間は1Hr、接合面圧は 1.0kg
f/mm2 、真空度は5×10-5Torrである。
Diffusion bonding between the grooved tantalum plate 1 and the flat plate tantalum plate 2 is performed by using a hot press machine, the bonding temperature is 1000 ° C., the holding time is 1 Hr, and the bonding surface pressure is 1.0 kg.
f / mm 2 and the degree of vacuum are 5 × 10 -5 Torr.

【0019】図1(b)および図2は以上の構成を有す
る電極板予備品にビーム孔5を穿設した最終製品として
の電極板を示している。すなわち、上記の如く一体化さ
れたタンタル板に機械加工にて直径6〜8mmのビーム孔
5を 450個穿設した。この場合、ビーム孔5の周囲と最
も近い冷却孔3aとの間の距離は 0.4mmであった。
FIGS. 1 (b) and 2 show an electrode plate as a final product in which a beam hole 5 is formed in the electrode plate spare part having the above-mentioned structure. That is, 450 beam holes 5 having a diameter of 6 to 8 mm were drilled by machining on the tantalum plate integrated as described above. In this case, the distance between the periphery of the beam hole 5 and the closest cooling hole 3a was 0.4 mm.

【0020】本実施例のイオン加速電極板によると、タ
ンタル板を溝付タンタル板1と平板タンタル板2との重
合構造とし、これらの接合によって塞がれる溝3が冷却
孔3aとなる。したがって、冷却孔3aの形成は溝形成
でよいため比較的加工が容易であるとともにその配置や
大きさは任意に選定することができ、ビーム孔5間の狭
隘な間隙に対しても近接して冷却孔3aを配置すること
が可能となり、冷却効率を向上させることができる。
According to the ion accelerating electrode plate of this embodiment, the tantalum plate has a superposed structure of the grooved tantalum plate 1 and the flat plate tantalum plate 2, and the groove 3 closed by the joining thereof becomes the cooling hole 3a. Therefore, since the cooling holes 3a may be formed by grooves, it is relatively easy to process, and the arrangement and size thereof can be arbitrarily selected, and the cooling holes 3a can be close to a narrow gap between the beam holes 5. The cooling holes 3a can be arranged, and the cooling efficiency can be improved.

【0021】また、溝付タンタル板1と平板タンタル板
2の拡散接合はチタン4を介して行われるので、直接接
合する場合の接合温度1300℃、面圧1〜2.0 kgf/mm2
に比べ十分低い温度で行うことができ、接合時に溝が変
形する問題もなく、設計冷却水流量を確保することが可
能であった。また、接合面の加工精度も通常の6Sで行
える。これらの拡散接合部の密着強度は、冷却水の水圧
に対しはるかに高い値である。また、気密性は冷却孔3
aを真空として外部からヘリウムガスを吹き付けたヘリ
ウムリークテストにおいて1×10-9Torr・l/sec 以下
の十分な気密性を有することが確認された。また、チタ
ンは箔以外に蒸着やイオンプレーティングにて付与する
ことも可能である。
Further, since the diffusion bonding of the grooved tantalum plate 1 and the flat plate tantalum plate 2 is performed through the titanium 4, the bonding temperature in the case of direct bonding is 1300 ° C. and the surface pressure is 1 to 2.0 kgf / mm 2.
It was possible to carry out at a temperature sufficiently lower than that of, and it was possible to secure the designed cooling water flow rate without the problem of groove deformation during joining. In addition, the processing accuracy of the joint surface can be achieved with the normal 6S. The adhesion strength of these diffusion joints is much higher than the water pressure of the cooling water. Moreover, the airtightness is determined by the cooling holes 3.
In a helium leak test in which a was a vacuum and helium gas was blown from the outside, it was confirmed that the airtightness was sufficient at 1 × 10 −9 Torr · l / sec or less. Further, titanium can be applied by vapor deposition or ion plating in addition to the foil.

【0022】さらに、本電極板がタンタルからなるため
冷却水の長時間通水試験ならびに水中浸漬試験において
も従来のモリブデンと異なり酸化による変色、腐食がみ
られず、耐水腐食性が優れていることも確認された。よ
って、本実施例のイオン加速電極板によれば優れた冷却
性能が長期間にわたって高信頼性のもとで得られ、高機
能化とともに長寿命化が図れるものとなる。
Furthermore, since this electrode plate is made of tantalum, it does not show discoloration or corrosion due to oxidation unlike the conventional molybdenum in the long-term water-cooling test and the immersion test in cooling water, and it has excellent water-corrosion resistance. Was also confirmed. Therefore, according to the ion accelerating electrode plate of the present embodiment, excellent cooling performance can be obtained with high reliability over a long period of time, and it is possible to achieve higher functionality and longer life.

【0023】[0023]

【発明の効果】以上のように本発明のイオン加速電極板
によればタンタル板が拡散接合により一体化された重合
板構造で、ビーム孔と隣接する冷却孔が配置されている
ので、冷却性能に優れている。また、チタンを介して拡
散接合されるので、冷却孔となる溝を変形させることな
く、高い密着度、気密性を有した接合部を与えることが
できる。さらに電極板がタンタルで構成されるので、耐
熱強度に優れるのみならず、耐水腐食性に優れており、
長期間にわたって冷却性能を確保することが可能であ
る。
As described above, according to the ion accelerating electrode plate of the present invention, the tantalum plate has a polymer plate structure integrated by diffusion bonding, and the cooling hole adjacent to the beam hole is arranged. Is excellent. In addition, since it is diffusion-bonded through titanium, it is possible to provide a bonded portion having high adhesion and airtightness without deforming the groove serving as the cooling hole. Furthermore, since the electrode plate is made of tantalum, it not only excels in heat resistance but also in water corrosion resistance.
It is possible to secure the cooling performance for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるイオン加速電極板の製作途中なら
びに完成品を示す断面図。
FIG. 1 is a cross-sectional view showing a process of manufacturing an ion accelerating electrode plate according to the present invention and a completed product.

【図2】図1に示すイオン加速電極板の平面図。FIG. 2 is a plan view of the ion acceleration electrode plate shown in FIG.

【図3】従来のイオン加速電極板を示す平面図。FIG. 3 is a plan view showing a conventional ion acceleration electrode plate.

【図4】図4に示すイオン加速電極板の断面図。4 is a sectional view of the ion acceleration electrode plate shown in FIG.

【符号の説明】[Explanation of symbols]

1 溝付タンタル板 2 タンタル平板 3 冷却溝 4 チタン箔 5 ビーム孔 3a 冷却孔 1 Tantalum plate with groove 2 Tantalum flat plate 3 Cooling groove 4 Titanium foil 5 Beam hole 3a Cooling hole

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 イオンビームを通過させる多数のビーム
孔をその表面と交差する方向に有し、高電圧の印加によ
り、前記ビーム孔を通過するイオンビームを加速するイ
オン加速電極板において、タンタル板の拡散接合により
一体化された重合板構造とすると共に、その重合面に沿
う配置で前記ビーム孔と隣接する管状空間からなる冷却
水流通用の冷却孔を備えることを特徴とするイオン加速
電極板。
1. An ion accelerating electrode plate having a large number of beam holes for passing an ion beam in a direction intersecting the surface thereof and accelerating the ion beam passing through the beam holes by applying a high voltage. An ion accelerating electrode plate having a structure of a superposed plate integrated by diffusion bonding and having a cooling hole for cooling water flow, the cooling hole having a tubular space adjacent to the beam hole and arranged along the superposed surface.
【請求項2】 一側面に多数の溝を形成した溝付タンタ
ル板の上に、その溝を覆いチタンを介してタンタル厚板
を重ね拡散接合を行うことにより溝付タンタル板とタン
タル平板を一体化固着させ、その後ビーム孔加工を行う
ことを特徴とするイオン加速電極板の製作方法。
2. A tantalum plate with grooves and a tantalum flat plate are integrated by stacking a tantalum thick plate over the grooves on a tantalum plate with grooves having a large number of grooves formed on one side thereof through titanium and performing diffusion bonding. A method for manufacturing an ion accelerating electrode plate, which comprises: fixing and fixing, and then performing beam hole processing.
JP5105217A 1993-05-06 1993-05-06 Ion accelerating electrode plate and manufacture thereof Pending JPH06314600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5105217A JPH06314600A (en) 1993-05-06 1993-05-06 Ion accelerating electrode plate and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5105217A JPH06314600A (en) 1993-05-06 1993-05-06 Ion accelerating electrode plate and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06314600A true JPH06314600A (en) 1994-11-08

Family

ID=14401507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5105217A Pending JPH06314600A (en) 1993-05-06 1993-05-06 Ion accelerating electrode plate and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06314600A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101438165B1 (en) * 2013-06-13 2014-09-05 이비테크(주) X-ray converter using the linear electron accelerator
JPWO2016017432A1 (en) * 2014-07-31 2017-04-27 Jx金属株式会社 Backing plate in which corrosion-resistant metal and Mo or Mo alloy are diffusion-bonded, and sputtering target-backing plate assembly including the backing plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101438165B1 (en) * 2013-06-13 2014-09-05 이비테크(주) X-ray converter using the linear electron accelerator
JPWO2016017432A1 (en) * 2014-07-31 2017-04-27 Jx金属株式会社 Backing plate in which corrosion-resistant metal and Mo or Mo alloy are diffusion-bonded, and sputtering target-backing plate assembly including the backing plate
US10381203B2 (en) 2014-07-31 2019-08-13 Jx Nippon Mining & Metals Corporation Backing plate obtained by diffusion-bonding anticorrosive metal and Mo or Mo alloy, and sputtering target-backing plate assembly provided with said backing plate

Similar Documents

Publication Publication Date Title
US8377604B2 (en) Fuel cell stack structure with tie rod including inner shaft and outer cylinder fastened together with joining material and manufacturing method
JP6304412B2 (en) Method for manufacturing vapor deposition mask with metal frame, method for manufacturing organic semiconductor element, method for forming pattern
TWI680551B (en) Steam room
KR20050084863A (en) Method of forming a sputtering target assembly and assembly made therefrom
JP6090009B2 (en) Method for manufacturing vapor deposition mask with metal frame, method for manufacturing organic semiconductor element
SE512240C2 (en) Ways of joining at least four heat transfer plates to a plate package and plate package
JP2005150053A (en) Solid electrolyte fuel cell
JPH06314600A (en) Ion accelerating electrode plate and manufacture thereof
JP2011076937A (en) Electrode for ion source
JP2010253493A (en) Method and apparatus for parallel seam welding
JP2006172964A (en) Stack structure of solid electrolyte fuel cell
JPH03129638A (en) Manufacture of ion accelerating electrode plate
JPH02215099A (en) Manufacture of ion accelerating electrode plate
CN113967788B (en) Remote laser welding method for stacked steel workpieces
JP3940521B2 (en) Manufacturing method of ion source electrode plate
JPS6376757A (en) Manufacture of cooling element of thermal high load
JP5019200B2 (en) Ion source electrode
JPH0529093A (en) Ion acceleration electrode and its manufacture
KR101515048B1 (en) Cathode
JP2002305005A (en) Gas separator and its manufacturing method
JP3802257B2 (en) Manufacturing method of ion source electrode plate
JP2007024457A (en) Cold plate
JP2523742B2 (en) Electrode plate and manufacturing method thereof
JP3207375B2 (en) Ion acceleration electrode plate and method of manufacturing the same
JPH0727335A (en) Production of combustion chamber liner for gas turbine