JP2005150053A - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell Download PDF

Info

Publication number
JP2005150053A
JP2005150053A JP2003390143A JP2003390143A JP2005150053A JP 2005150053 A JP2005150053 A JP 2005150053A JP 2003390143 A JP2003390143 A JP 2003390143A JP 2003390143 A JP2003390143 A JP 2003390143A JP 2005150053 A JP2005150053 A JP 2005150053A
Authority
JP
Japan
Prior art keywords
cell
metal
thin plate
solid oxide
oxide fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003390143A
Other languages
Japanese (ja)
Inventor
Naoki Hara
直樹 原
Yasushi Nakajima
靖志 中島
Noritoshi Sato
文紀 佐藤
Kazufumi Takeuchi
和史 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003390143A priority Critical patent/JP2005150053A/en
Publication of JP2005150053A publication Critical patent/JP2005150053A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolyte fuel cell in which gas-sealing is facilitated and there is little possibility that cross-leak of gas occurs. <P>SOLUTION: The solid electrolyte fuel cell is provided with: a metallic cell substrate 2 having a gas permeation hole 2a; a battery element 6 formed by pinching an electrolyte layer 5 between a pair of electrode layers 3, 4; and a cell 7 made by covering either one of the electrode layers 3 of the pair of electrode layers 3, 4 of the battery element 6 positioned on the gas permeable hole 2a of the metallic cell substrate 2, and also provided with a conductive metal thin plate 8 for cell support to support the cell 7 by joining to the gas impermeable part 2b of the metallic cell substrate 2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、一対の電極で固体電解質を挟持する構成を電池要素として有する固体電解質型燃料電池に関するものである。   The present invention relates to a solid oxide fuel cell having a configuration in which a solid electrolyte is sandwiched between a pair of electrodes as a battery element.

従来の固体電解質型燃料電池としては、例えば、多孔質体から成るセル基板及び一対の電極層間に電解質層を挟み込んで形成した電池要素を具備してこの電池要素をセル基板上に積層して成るセルを備えたものがあり、この固体電解質型燃料電池では、電池要素の電解質層とセルを支持するセル支持体とを接合するようにしている。   As a conventional solid oxide fuel cell, for example, a cell substrate made of a porous body and a battery element formed by sandwiching an electrolyte layer between a pair of electrode layers are laminated on the cell substrate. Some of them are equipped with cells. In this solid oxide fuel cell, the electrolyte layer of the battery element and the cell support that supports the cells are joined together.

特開2000−331692号公報JP 2000-331692 A

ところが、従来の固体電解質型燃料電池においては、セル基板が多孔質体から成っているため、電池要素が形成されていない部分に封孔処理を施す必要があるうえ、電池要素の電解質層とセル支持体との接合部分、すなわち、セラミックス層と金属との接合部分に生じる熱ストレスにより、接合部分が劣化して破損し、ガスがクロスリークする恐れがあり、その結果、性能の低下を招き兼ねないという問題があり、この問題を解決することが従来の課題となっていた。   However, in the conventional solid oxide fuel cell, since the cell substrate is made of a porous body, it is necessary to seal the portion where the battery element is not formed, and the electrolyte layer and cell of the battery element The thermal stress generated at the joint with the support, that is, the joint between the ceramic layer and the metal, may cause the joint to deteriorate and break, resulting in gas cross-leakage. There has been a problem that there is no problem, and it has been a conventional problem to solve this problem.

本発明は、上記した従来の課題に着目してなされたものであり、ガスシールが容易になり、ガスのクロスリークが生じる可能性がほとんどない固体電解質型燃料電池を提供することを目的としている。   The present invention has been made by paying attention to the above-described conventional problems, and an object thereof is to provide a solid oxide fuel cell that facilitates gas sealing and has almost no possibility of causing gas cross-leakage. .

本発明は、ガス透過孔を有する金属製セル基板及び一対の電極層間に電解質層を挟み込んで形成した電池要素を具備し、上記金属製セル基板のガス透過孔上に位置させた電池要素の一対の電極層のうちのいずれか一方の電極層を電解質層で覆って成るセルを備えた固体電解質型燃料電池において、上記金属製セル基板のガス不透過部分と接合してセルを支持する電気導伝性を有するセル支持用金属薄板を設けた構成としたことを特徴としており、この固体電解質型燃料電池の構成を前述した従来の課題を解決するための手段としている。   The present invention comprises a metal cell substrate having a gas permeable hole and a battery element formed by sandwiching an electrolyte layer between a pair of electrode layers, and a pair of battery elements positioned on the gas permeable hole of the metal cell substrate. In a solid oxide fuel cell having a cell formed by covering any one of the electrode layers with an electrolyte layer, the conductive layer is bonded to a gas-impermeable portion of the metal cell substrate to support the cell. The present invention is characterized in that a metal thin plate for supporting a cell having conductivity is provided, and the configuration of the solid oxide fuel cell is used as a means for solving the above-described conventional problems.

本発明の固体電解質型燃料電池によれば、上記した構成としているので、ガスシールが容易なものとなり、加えて、セルとセル支持用金属薄板との接合を金属同士の接合とすることでガスのクロスリークが生じる懸念を払拭することが可能であり、さらに、セルと接合するセル支持用金属薄板を集電体として機能させることができるという非常に優れた効果がもたらされる。   According to the solid oxide fuel cell of the present invention, since it has the above-described configuration, gas sealing becomes easy, and in addition, the gas is obtained by joining the cell and the cell supporting metal thin plate to each other. It is possible to eliminate the fear of the occurrence of the cross leak, and further, it is possible to provide a very excellent effect that the cell supporting metal thin plate joined to the cell can function as a current collector.

図1に示すように、本発明の固体電解質型燃料電池1は、ガス透過孔2aを有する金属製セル基板2及び一対の電極層(燃料極層3及び空気極層4)間に電解質層5を挟み込んで形成した電池要素6を具備して、金属製セル基板2のガス透過孔2a上に位置させた電池要素6の一対の電極層3,4のうちのいずれか一方の電極層(図示例では燃料極層3)を電解質層5で覆って成るセル7を備えており、金属製セル基板2のガス不透過部分2bには、セル7を支持する電気導伝性を有するセル支持用金属薄板8が接合してある。この際、金属製セル基板2からのガスリークがないため、金属製セル基板2とセル支持用金属薄板8との接合レイアウトの自由度が高く、金属製セル基板2の図示上面でセル支持用金属薄板8と接合することが可能であるほか、図2にも示すように、金属製セル基板2の図示下面でセル支持用金属薄板8と接合することが可能である。   As shown in FIG. 1, a solid oxide fuel cell 1 of the present invention includes an electrolyte layer 5 between a metal cell substrate 2 having a gas permeation hole 2a and a pair of electrode layers (a fuel electrode layer 3 and an air electrode layer 4). The battery element 6 is formed by sandwiching the electrode element, and one of the electrode layers 3 and 4 of the battery element 6 positioned on the gas permeation hole 2a of the metal cell substrate 2 (see FIG. In the example shown, a cell 7 is formed by covering the fuel electrode layer 3) with the electrolyte layer 5, and the gas-impermeable portion 2b of the metal cell substrate 2 is provided with a cell support having electric conductivity for supporting the cell 7. A thin metal plate 8 is joined. At this time, since there is no gas leak from the metal cell substrate 2, the degree of freedom of the joining layout between the metal cell substrate 2 and the cell supporting metal thin plate 8 is high, and the cell supporting metal is shown on the upper surface of the metal cell substrate 2 in the drawing. In addition to being able to be joined to the thin plate 8, it is possible to join the cell supporting metal thin plate 8 on the lower surface of the metal cell substrate 2 as shown in FIG. 2.

セル支持用金属薄板8の材料としては、Fe,Ni,Cr,Mo,Cu,Alのうちの少なくともいずれか一方の元素を含む金属又は合金が用いられる。合金としては、例えば、インコネルやハステロイ、ステンレスやインバーなどがある。   As a material of the cell supporting metal thin plate 8, a metal or an alloy containing at least one element of Fe, Ni, Cr, Mo, Cu, and Al is used. Examples of the alloy include Inconel, Hastelloy, stainless steel, and Invar.

また、本発明の固体電解質型燃料電池1において、セル支持用金属薄板8の金属製セル基板2との接合部分8aの厚みを金属製セル基板2よりも薄くすることが望ましい。このとき、図3に示すように、セル支持用金属薄板8の金属製セル基板2との接合部分8aの厚みをセル支持用金属薄板8の全体の厚みと同じにしたり、図4に示すように、セル支持用金属薄板8の金属製セル基板2との接合部分8aの厚みをセル支持用金属薄板8の全体の厚みよりも薄くしたりすることが可能である。   Further, in the solid oxide fuel cell 1 of the present invention, it is desirable that the thickness of the joint portion 8 a of the cell supporting metal thin plate 8 with the metal cell substrate 2 is thinner than that of the metal cell substrate 2. At this time, as shown in FIG. 3, the thickness of the joint portion 8a of the cell supporting metal thin plate 8 with the metal cell substrate 2 is made the same as the entire thickness of the cell supporting metal thin plate 8, or as shown in FIG. In addition, the thickness of the joint portion 8 a of the cell supporting metal thin plate 8 with the metal cell substrate 2 can be made thinner than the entire thickness of the cell supporting metal thin plate 8.

このように、金属製セル基板2よりも肉厚の薄いセル支持用金属薄板8を用いることにより、金属製セル基板2とセル支持用金属薄板8との接合時にセル支持用金属薄板8が変形することで、接合プロセスによるセル7の破損や、金属製セル基板2の変形を防止することができる。加えて、スタック運転時の熱サイクルによる熱応力に対しても、セル支持用金属薄板8が変形することで、セル7の破損を阻止し得る。   In this way, by using the cell supporting metal thin plate 8 that is thinner than the metal cell substrate 2, the cell supporting metal thin plate 8 is deformed when the metal cell substrate 2 and the cell supporting metal thin plate 8 are joined. By doing so, the damage of the cell 7 by a joining process and the deformation | transformation of the metal cell board | substrate 2 can be prevented. In addition, it is possible to prevent the cell 7 from being damaged by the deformation of the cell supporting metal thin plate 8 against the thermal stress caused by the thermal cycle during the stack operation.

ただし、セル支持用金属薄板8の接合部分8aの厚みが30μm以下であると、セル7又はスタックマニホールドとの接合に際して、セル支持用金属薄板8が大きく変形することで接合されない個所が生じて、ガスリークや接合部分8aの破損の発生が懸念される。   However, when the thickness of the joining portion 8a of the cell supporting metal thin plate 8 is 30 μm or less, a portion where the cell supporting metal thin plate 8 is largely deformed when joining to the cell 7 or the stack manifold is generated, There are concerns about the occurrence of gas leaks and breakage of the joint 8a.

また、セル支持用金属薄板8の全体の厚みが30μm以下であると、各プロセス中のセル支持用金属薄板8の取り扱いが困難となり、ガスシールの形成やマニホールドとの接合において不具合が生じることが懸念される。一方、セル支持用金属薄板8の全体の厚みが0.5mmよりも厚いと、セル支持用金属薄板8の強度が、セル本体と同等ないしそれ以上となるため、接合時にセル支持用金属薄板8が変形する力でセル7が破損したり、又は、残留応力が開放される力などで接合部分8aが破損したりする危険がある。   Further, if the total thickness of the cell supporting metal thin plate 8 is 30 μm or less, it becomes difficult to handle the cell supporting metal thin plate 8 during each process, and problems may occur in the formation of a gas seal and the joining with the manifold. Concerned. On the other hand, if the total thickness of the cell supporting metal thin plate 8 is larger than 0.5 mm, the strength of the cell supporting metal thin plate 8 is equal to or higher than that of the cell main body. There is a risk that the cell 7 may be damaged by the force of deforming, or the joint portion 8a may be damaged by the force that releases the residual stress.

さらに、本発明の固体電解質型燃料電池において、セル支持用金属薄板8の金属製セル基板2との接合部分8a又はその周辺に応力緩和部を設けることが望ましい。   Furthermore, in the solid oxide fuel cell of the present invention, it is desirable to provide a stress relaxation portion at or near the joint portion 8a of the cell supporting metal thin plate 8 with the metal cell substrate 2.

つまり、金属製セル基板2とセル支持用金属薄板8との接合時に生じる応力によって、上記応力緩和部を優先的に変形させることで、金属製セル基板2の破損及びセル支持用金属薄板8の反りなどの不具合を抑制することができ、また、スタック構造体を形成する際のセル支持用金属薄板8の積層時には、応力吸収又は応力開放の起点となって、金属製セル基板2の破損やセル支持用金属薄板8の変形を抑制し、さらに、スタック運転時の熱サイクルによる熱応力に対しても、応力吸収又は応力開放の起点となり、金属製セル基板2の破損,セル支持用金属薄板8の変形及びこれに伴うスタック構造体の破損を防止することができる。   That is, the stress relaxation portion is preferentially deformed by the stress generated when the metal cell substrate 2 and the cell supporting metal thin plate 8 are joined, so that the metal cell substrate 2 is damaged and the cell supporting metal thin plate 8 is deformed. Problems such as warping can be suppressed, and when the cell supporting metal thin plate 8 is laminated when forming the stack structure, the metal cell substrate 2 is damaged or becomes a starting point of stress absorption or stress release. The deformation of the cell supporting metal thin plate 8 is suppressed, and furthermore, it becomes a starting point of stress absorption or stress release against thermal stress due to the thermal cycle at the time of stack operation, the metal cell substrate 2 is damaged, the cell supporting metal thin plate It is possible to prevent the deformation of the stack 8 and the damage to the stack structure.

この場合、セル支持用金属薄板8の金属製セル基板2との接合部分8aの厚みをそれ以外の部分よりも薄くして応力緩和部としたり、セル支持用金属薄板8の金属製セル基板2との接合部分8aの周辺を局所的に薄くして応力緩和部としたり、セル支持用金属薄板8の金属製セル基板2との接合部分8aの周辺をうねらせて応力緩和部としたりすることができるほか、セル支持用金属薄板8の金属製セル基板2との接合部分8aの周辺に段差を設けて応力緩和部とすることができる。   In this case, the thickness of the joining portion 8a of the cell supporting metal thin plate 8 with the metal cell substrate 2 is made thinner than the other portions to form a stress relaxation portion, or the metal cell substrate 2 of the cell supporting metal thin plate 8 is used. The periphery of the joint portion 8a is thinned locally to form a stress relaxation portion, or the periphery of the joint portion 8a of the cell supporting metal thin plate 8 to the metal cell substrate 2 is swelled to form a stress relaxation portion. In addition, a step can be provided around the joint portion 8a of the cell supporting metal thin plate 8 with the metal cell substrate 2 to form a stress relaxation portion.

ここで、セル支持用金属薄板8の金属製セル基板2との接合部分8aの厚みをそれ以外の部分よりも薄くして応力緩和部とする場合、図4に示すように、それ以外の部分よりも一様に薄くしてもよいし、図5に示すように、接合部分8aの端部に向けて漸次薄くなるようにしてもよい。   Here, when the thickness of the joint portion 8a of the cell supporting metal thin plate 8 with the metal cell substrate 2 is made thinner than the other portions to form a stress relieving portion, the other portions as shown in FIG. The thickness may be made even more uniform, or as shown in FIG. 5, it may be made gradually thinner toward the end of the joint portion 8a.

また、「セル支持用金属薄板8の金属製セル基板2との接合部分8aの周辺を局所的に薄くする」とは、図6に示すように、接合部分8aの周辺に局所的に接合部分8aよりもさらに薄い薄肉部(応力緩和部)10を設けるということであり、この薄肉部10は、図7及び図8に示すように、複数箇所に配置することが可能である。   Further, “to locally thin the periphery of the joint portion 8a of the cell supporting metal thin plate 8 with the metal cell substrate 2” means that the joint portion is locally formed around the joint portion 8a as shown in FIG. That is, a thin part (stress relaxation part) 10 thinner than 8a is provided, and the thin part 10 can be disposed at a plurality of locations as shown in FIGS.

さらに、「セル支持用金属薄板8の金属製セル基板2との接合部分8aの周辺をうねらせる」とは、図9に示すように、接合部分8aの周辺に断面U字状の波状部(応力緩和部)10を設けるということであり、この波状部10は、図10に示すように、複数箇所に配置することが可能である。   Further, “undulate the periphery of the joint portion 8a of the cell supporting metal thin plate 8 with the metal cell substrate 2” means that a wavy portion having a U-shaped cross section around the joint portion 8a (see FIG. 9). Stress relieving part) 10, and the wavy part 10 can be disposed at a plurality of locations as shown in FIG. 10.

さらにまた、「セル支持用金属薄板8の金属製セル基板2との接合部分8aの周辺に段差を設ける」とは、図11及び図12に部分的に示すように、接合部分8aの周辺に凹凸部(応力緩和部)10を形成するということである。   Furthermore, “a step is provided around the joint portion 8a of the cell supporting metal thin plate 8 with the metal cell substrate 2” means that the joint portion 8a is surrounded by a portion as shown in FIGS. That is, the uneven portion (stress relaxation portion) 10 is formed.

さらにまた、ヤング率の小さいものほど、より小さい力で変形する(伸びる)、すなわち、応力に対して容易に変形させることができるので、本発明の固体電解質型燃料電池1において、セル支持用金属薄板8のヤング率を金属製セル基板2のヤング率よりも小さく設定することが望ましい。これに加えて、上記したように、セル支持用金属薄板8の肉厚を薄くしたり、接合部分8aの周辺に薄肉部や波状部などの応力緩和部10を形成すれば、セル支持用金属薄板8が変形し易くなって、セル7の破損をより一層確実に防ぐことが可能になる。   Furthermore, since the smaller the Young's modulus, the smaller the deformation (elongation), that is, the easier it is to deform with respect to the stress, in the solid oxide fuel cell 1 of the present invention, the cell supporting metal It is desirable to set the Young's modulus of the thin plate 8 to be smaller than the Young's modulus of the metal cell substrate 2. In addition to this, as described above, if the thickness of the cell supporting metal thin plate 8 is reduced, or if the stress relaxation portion 10 such as a thin portion or a wavy portion is formed around the joining portion 8a, the cell supporting metal The thin plate 8 is easily deformed, and the cell 7 can be more reliably prevented from being damaged.

さらにまた、本発明の固体電解質型燃料電池1において、セル支持用金属薄板8と金属製セル基板2とを拡散接合により接合することが可能である。ここで、『拡散接合』とは、ろう材を用いたろう付けも含むが、ろう材の使用の有無に関わらず、接合部分8aを高温にさらし、接合する部材同士の間に、基材同士又はろう材と基材の合金層(拡散層)を形成して一体化(接合)したものを指す。一般的に、ろう付けを含む拡散接合は、高温プロセスであり、接合する部材を高温にさらして接合を行う。   Furthermore, in the solid oxide fuel cell 1 of the present invention, the cell supporting metal thin plate 8 and the metal cell substrate 2 can be bonded by diffusion bonding. Here, “diffusion bonding” includes brazing using a brazing material, but regardless of whether or not the brazing material is used, the joining portion 8a is exposed to a high temperature, and between the members to be joined, An alloy layer (diffusion layer) of a brazing material and a base material is formed and integrated (joined). Generally, diffusion bonding including brazing is a high-temperature process, in which members to be bonded are exposed to a high temperature for bonding.

このとき、各部材の伸び率、熱膨張係数、熱容量、拡散の深さ(金属製セル基板2及びセル支持用金属薄板8のどちら側に拡散層を形成し易いか)によって、金属製セル基板2及びセル支持用金属薄板8のいずれかに引張り応力又は圧縮応力が生じる。加えて、金属製セル基板2及びセル支持用金属薄板8に内在する応力が開放されることによる捩れ応力も生じる。そして、セル支持用金属薄板8に応力吸収(又は開放)する起点がなければ、、すなわち、応力緩和部10がなければ、金属製セル基板2の破損又はセル支持用金属薄板8の反りが生じて、上述のようなセル7の破損やガスリークの発生が懸念される。   At this time, the metal cell substrate depends on the elongation rate, thermal expansion coefficient, heat capacity, and diffusion depth of each member (which side of the metal cell substrate 2 or the cell supporting metal thin plate 8 is likely to form a diffusion layer). Tensile stress or compressive stress is generated in any of 2 and the cell supporting metal thin plate 8. In addition, a torsional stress is also generated due to the release of the stress inherent in the metal cell substrate 2 and the cell supporting metal thin plate 8. If the cell supporting metal thin plate 8 does not have a starting point for stress absorption (or release), that is, if there is no stress relaxation portion 10, the metal cell substrate 2 is damaged or the cell supporting metal thin plate 8 is warped. Thus, there is a concern about the damage of the cell 7 or the occurrence of gas leak as described above.

さらにまた、本発明の固体電解質型燃料電池1において、セル支持用金属薄板8と金属製セル基板2とを超音波接合により接合することが可能である。この超音波接合は、上記した拡散接合に比較して、低温での接合が可能である。これは、金属/金属の接合において可能なプロセスであり、従来技術のようなセラミクス/金属の接合には適さない。また、従来技術に示される電解質層と金属薄板の接合に本工法を用いると、電解質層を破損し、破損箇所からのガスリーク及び破損箇所からの接合界面の剥離が生じる危険性がある。   Furthermore, in the solid oxide fuel cell 1 of the present invention, the cell supporting metal thin plate 8 and the metal cell substrate 2 can be bonded by ultrasonic bonding. This ultrasonic bonding can be bonded at a lower temperature than the diffusion bonding described above. This is a possible process in metal / metal bonding and is not suitable for ceramic / metal bonding as in the prior art. Moreover, when this construction method is used for the joining of the electrolyte layer and the metal thin plate shown in the prior art, there is a risk that the electrolyte layer is damaged, and gas leakage from the damaged part and separation of the joint interface from the damaged part occur.

したがって、本発明の固体電解質型燃料電池1では、セル支持用金属薄板8と金属製セル基板2とがいずれも金属部材で構成されているため、セル支持用金属薄板8及び金属製セル基板2を過度の高温にさらすことなく、スタック形成プロセスに移行でき、セル支持用金属薄板8の積層部のガスシール構築が容易になる。   Therefore, in the solid oxide fuel cell 1 of the present invention, since the cell supporting metal thin plate 8 and the metal cell substrate 2 are both made of metal members, the cell supporting metal thin plate 8 and the metal cell substrate 2 are formed. Without being exposed to an excessively high temperature, the process can be shifted to a stack forming process, and the gas seal construction of the laminated portion of the cell supporting metal thin plate 8 is facilitated.

さらにまた、本発明の固体電解質型燃料電池1において、セル支持用金属薄板8と金属製セル基板2とがいずれも金属製であるため、溶接技術を用いてセル支持用金属薄板8と金属製セル基板2とを電気的導通を保ったまま溶接により接合することができる。ここで、溶接とは、レーザビーム溶接、プレシジョン溶接、TIG溶接、アーク溶接、肉盛溶接を含むほか、ガスデポジションやスパークデポジションといった溶接に似た接合方法を用いることも可能である。この場合も、低温での接合が可能であるため、セル支持用金属薄板8及び金属製セル基板2を過度の高温にさらすことなく、スタック形成プロセスに移行でき、セル支持用金属薄板8の積層部のガスシール構築が容易になる。   Furthermore, in the solid oxide fuel cell 1 of the present invention, since the cell supporting metal thin plate 8 and the metal cell substrate 2 are both made of metal, the cell supporting metal thin plate 8 and the metal The cell substrate 2 can be joined by welding while maintaining electrical continuity. Here, the welding includes laser beam welding, precision welding, TIG welding, arc welding, overlay welding, and a joining method similar to welding such as gas deposition and spark deposition can be used. Also in this case, since the bonding at a low temperature is possible, the cell supporting metal thin plate 8 and the metal cell substrate 2 can be transferred to a stack forming process without being exposed to an excessively high temperature, and the cell supporting metal thin plate 8 is laminated. Gas seal construction of the part becomes easy.

ここで、大きな金属製セル基板2をセル支持用金属薄板8に接合した場合、ガスシールが必要な箇所が長く(広く)なる。また、ガスシール部とセル7の中央部の距離も長くなるため、運転時の熱サイクルなどのガスシール部への応力が大きくなり、ガスシール部の破損などが懸念される。さらに、一つの金属製セル基板2の接合部が長くなると、ガスシール部の歩留まりなどへの影響が懸念される。   Here, when the large metal cell substrate 2 is joined to the cell supporting metal thin plate 8, a portion requiring gas sealing becomes long (wide). In addition, since the distance between the gas seal portion and the central portion of the cell 7 is increased, the stress on the gas seal portion such as a heat cycle during operation is increased, and there is a concern that the gas seal portion is damaged. Furthermore, when the joining part of one metal cell substrate 2 becomes long, there is a concern about the influence on the yield of the gas seal part.

一方、小さな金属製セル基板2を複数枚分散して配置するように成せば、トータルのガスシール部の長さは長くなるものの、上記のような懸念を払拭することができるため、ガスシール部の信頼性が向上する。そして、移動用電源としての固体電解質型燃料電池のスタック構造体を考えた場合、例えば、携帯用発電機としてのスタック構造体と自動車用の主動力電源とでは、スタック構造体に必要な出力も要求サイズも異なるが、それぞれに適したサイズの金属製セル基板2を作製し、積層するよりも同じ金属製セル基板2をスタックの要求値に合わせてセル支持用金属薄板8に配置して積層するほうが、セル7の低コスト化及びスタックの設計変更の容易化を実現することができるといった製造面及び生産面のメリットがあることから、本発明の固体電解質型燃料電池において、セル支持用金属薄板8上に複数のセル7を配置することが望ましい。   On the other hand, if a plurality of small metal cell substrates 2 are arranged in a dispersed manner, the total gas seal portion becomes longer, but the above-mentioned concerns can be eliminated. Reliability is improved. When considering a solid oxide fuel cell stack structure as a power source for movement, for example, a stack structure as a portable generator and a main power source for an automobile also have an output required for the stack structure. Although the required sizes are different, the metal cell substrates 2 having sizes suitable for each are manufactured, and the same metal cell substrate 2 is arranged on the cell supporting metal thin plate 8 in accordance with the required value of the stack rather than stacking. Therefore, there is a manufacturing and production merit that the cost of the cell 7 can be reduced and the stack design can be easily changed. Therefore, in the solid oxide fuel cell of the present invention, the cell supporting metal It is desirable to arrange a plurality of cells 7 on the thin plate 8.

例えば、図13に示すように、セル支持用金属薄板8に1つ以上の開口8b(開口の大きさは問わない)を形成し、これらの開口8bにセル7をそれぞれ配置して、開口8bの周縁部(接合部分)8aとセル7の金属製セル基板2のガス不透過部分2bとを接合することができ、この際、1つの開口8bに1つのセル7を配置する構成を採用することができるほか、複数の開口8bに対して1つのセル7を配置する構成を採用することができる。   For example, as shown in FIG. 13, one or more openings 8b (regardless of the size of the openings) are formed in the cell supporting metal thin plate 8, and the cells 7 are arranged in these openings 8b, respectively. Can be bonded to the gas-impermeable portion 2b of the metal cell substrate 2 of the cell 7, and at this time, a configuration is adopted in which one cell 7 is disposed in one opening 8b. In addition, it is possible to employ a configuration in which one cell 7 is arranged with respect to the plurality of openings 8b.

そして、本発明において、セル7における金属製セル基板2の電池要素6側の面にセル支持用金属薄板8を接合して成る図1に示す固体電解質型燃料電池1(図13(d))と、セル7における金属製セル基板2の電池要素6とは反対側の面にセル支持用金属薄板8を接合して成る図2に示す固体電解質型燃料電池1(図13(c))とを交互に積層することで、図13(a)に示すように、固体電解質型燃料電池1のスタック構造体15を形成することができる。   And in this invention, the solid oxide fuel cell 1 shown in FIG. 1 (FIG.13 (d)) formed by joining the cell supporting metal thin plate 8 to the surface by the side of the battery element 6 of the metal cell board 2 in the cell 7. And a solid oxide fuel cell 1 (FIG. 13 (c)) shown in FIG. 2 in which a cell supporting metal thin plate 8 is joined to the surface of the cell 7 opposite to the battery element 6 of the metal cell substrate 2. As shown in FIG. 13A, the stack structure 15 of the solid oxide fuel cell 1 can be formed.

このように、金属製セル基板2の電池要素6側の面にセル支持用金属薄板8を接合して成る固体電解質型燃料電池1と、金属製セル基板2の電池要素6とは反対側の面にセル支持用金属薄板8を接合して成る固体電解質型燃料電池1とを上下交互に積層することで、接合時の応力を相殺することができ、より一層セル支持用金属薄板8の変形を抑制することができ、スタック構造体15の形成の際に極めて効果的である。   Thus, the solid oxide fuel cell 1 formed by joining the cell supporting metal thin plate 8 to the surface of the metal cell substrate 2 on the battery element 6 side, and the battery element 6 of the metal cell substrate 2 on the opposite side. The solid electrolyte fuel cells 1 formed by joining the cell supporting metal thin plates 8 on the surface are alternately stacked on top and bottom, so that the stress at the time of joining can be offset and the cell supporting metal thin plates 8 can be further deformed. This is extremely effective when forming the stack structure 15.

以下、本発明を実施例により更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to a following example.

[実施例1]
図1に示すように、金属製セル基板2としてφ30mm、厚さ100μmのフェライト系SUSを使用した。
[Example 1]
As shown in FIG. 1, a ferrite cell SUS having a diameter of 30 mm and a thickness of 100 μm was used as the metal cell substrate 2.

そして、このフェライト系SUSから成る金属製セル基板2上に、エアロゾルデポジッション法を用いて、中心からφ26mmの範囲に8YSZ電解質層5を形成する。このエアロゾルデポジッション法では、平均粒径が0.2μmのYSZ原料粉末を用い、ゾル化室を150rpmで振動させながら、Heガスを8L/minで吹き込んで、成膜チャンバー内のノズルへ搬送する。   Then, the 8YSZ electrolyte layer 5 is formed in a range of φ26 mm from the center on the metal cell substrate 2 made of ferrite-based SUS by using an aerosol deposition method. In this aerosol deposition method, YSZ raw material powder having an average particle diameter of 0.2 μm is used, He gas is blown at 8 L / min while the solubilizing chamber is vibrated at 150 rpm, and is conveyed to the nozzle in the film forming chamber. .

次に、YSZ膜を成膜した金属製セル基板2の表裏にエッチングマスク用の光硬化樹脂層を形成し、YSZ成膜裏面には、中心よりφ20mmの範囲に対してφ500μm径300個のパターンを形成したマスク層を形成した。塩化鉄系の公知のエッチャントを用いて、金属製セル基板2をエッチングし、発電可能な多孔部(セル部分)を形成した。   Next, a photo-curing resin layer for an etching mask is formed on the front and back of the metal cell substrate 2 on which the YSZ film is formed. On the back surface of the YSZ film formation, a pattern of 300 pieces having a diameter of 500 μm with respect to a range of 20 mm from the center. A mask layer was formed. The metal cell substrate 2 was etched using a known iron chloride-based etchant to form a porous portion (cell portion) capable of generating power.

次いで、電解質層5の上面に、エアロゾルデポジッション法を用いてランタン−ガリウム−コバルト酸化物((La0.8 Sr0.2)CoO)を空気極層4として成膜した。原料粉平均粒径は0.5μm、ゾル化室の振動159rpm、Heガスの吹き込み量8L/min、チャンバー内真空度は1.5Torrとし、膜厚6μmで成膜した。続いて、金属製セル基板2の裏面の多孔部に公知のスパッタ法を用いて、Ni−YSZサーメット層を燃料極層3として1μm形成して、セル7を得た。 Next, a lanthanum-gallium-cobalt oxide ((La0.8 Sr0.2) CoO 3 ) was formed as an air electrode layer 4 on the upper surface of the electrolyte layer 5 by using an aerosol deposition method. The raw material powder had an average particle size of 0.5 μm, a vibration of 159 rpm in the sol chamber, a He gas blowing rate of 8 L / min, a vacuum in the chamber of 1.5 Torr, and a film thickness of 6 μm. Subsequently, a cell 7 was obtained by forming a Ni—YSZ cermet layer as a fuel electrode layer 1 in a thickness of 1 μm in a porous portion on the back surface of the metal cell substrate 2 using a known sputtering method.

このようにして得たセル7と、外径φ60mm、内径φ25、厚み100μmのドーナツ形状をしたフェライト系SUS製のセル支持用金属薄板8とを接合して、本実施例の固体電解質型燃料電池1を得た。   The cell 7 thus obtained was joined to the ferrous SUS cell supporting metal thin plate 8 having an outer diameter of φ60 mm, an inner diameter of φ25, and a thickness of 100 μm, and the solid oxide fuel cell of this example. 1 was obtained.

この際、フェライト系SUS製のセル支持用金属薄板8の内側周囲に、Ag−Cu系ロウ材ペーストを幅2mm,厚さ30μmで印刷塗布し、このAg−Cu系ロウ材ペースト上に外径φ30mmの上記セル7を乗せて、Arキャリアガス0.8torr中において750℃−2時間の熱処理を施すことにより、セル7とセル支持用金属薄板8とを接合した。   At this time, an Ag—Cu brazing paste is printed and applied in a width of 2 mm and a thickness of 30 μm around the inner periphery of the ferrous SUS cell supporting metal thin plate 8, and an outer diameter is applied on the Ag—Cu brazing paste. The cell 7 and the cell supporting metal thin plate 8 were joined by placing the cell 7 having a diameter of 30 mm and performing a heat treatment at 750 ° C. for 2 hours in Ar carrier gas 0.8 torr.

[実施例2]
図2に示すように、金属製セル基板2としてφ30mm、厚さ100μmのインコネル625を使用した。
[Example 2]
As shown in FIG. 2, Inconel 625 having a diameter of 30 mm and a thickness of 100 μm was used as the metal cell substrate 2.

そして、上記インコネル625製の金属製セル基板2上に、高温スパッタ(基板加熱300℃)により、NiO−YSZ層を燃料極層3として形成した。   Then, a NiO—YSZ layer was formed as the fuel electrode layer 3 on the metal cell substrate 2 made of Inconel 625 by high-temperature sputtering (substrate heating 300 ° C.).

次に、上記NiO−YSZ層を完全に覆うように、NiO−YSZ層上に、基板加熱及びバイアス印加スパッタ(基板加熱700℃、印加バイアス25V)によりYSZ膜5を形成する。   Next, a YSZ film 5 is formed on the NiO-YSZ layer by substrate heating and bias application sputtering (substrate heating 700 ° C., application bias 25 V) so as to completely cover the NiO—YSZ layer.

次いで、電解質層5としてのYSZ層上に、高温スパッタ(基板加熱300℃)により、サマリウム−ストロンチウム−コバルト酸化物((Sm0.5,Sr0.5)CoO)を空気極層4として形成した。 Next, samarium-strontium-cobalt oxide ((Sm0.5, Sr0.5) CoO 3 ) was formed as the air electrode layer 4 on the YSZ layer as the electrolyte layer 5 by high-temperature sputtering (substrate heating 300 ° C.). .

上記電池要素6を金属製セル基板2に形成した後、YSZ成膜裏面に、中心よりφ20mmの範囲に対してφ500μm径300個のパターンを形成したマスク層を形成し、化学的微細孔エッチング手法を用いて、低部に複数の微細孔が形成されたφ500μmの凹部(ガス透過孔)2aを多数形成する。   After the battery element 6 is formed on the metal cell substrate 2, a mask layer is formed on the back surface of the YSZ film by forming a pattern of 300 pieces with a diameter of 500 μm with respect to a range of 20 mm from the center. Are used to form a large number of φ500 μm recesses (gas permeation holes) 2a having a plurality of fine holes formed in the lower part.

上記、微細孔エッチングで用いる化学的エッチング処理は、例えば、プリント基板の製造プロセスにおいて、配線と樹脂との密着力を向上させるために配線の表面を粗化する目的で用いられる表面粗化剤(例えば、メックニッケルラフナー1870)を用いることができる。   The above-mentioned chemical etching process used for microhole etching is, for example, a surface roughening agent (used for roughening the surface of the wiring in order to improve the adhesion between the wiring and the resin in the printed circuit board manufacturing process ( For example, a Meck nickel roughener 1870) can be used.

このようにして得たセル7と、外径φ60mm、内径φ25、厚み100μmのドーナツ形状をしたインコネル625製のセル支持用金属薄板8とを接合して、本実施例の固体電解質型燃料電池1を得た。   The cell 7 thus obtained was joined to the cell support metal thin plate 8 made of Inconel 625 having a donut shape with an outer diameter of 60 mm, an inner diameter of 25, and a thickness of 100 μm, and the solid oxide fuel cell 1 of this example was used. Got.

この際、インコネル625製のセル支持用金属薄板8の内側周囲に、Ag−Cu系ロウ材ペーストを幅2mm,厚さ30μmで印刷塗布し、このAg−Cu系ロウ材ペースト上に外径φ30mmの上記セル7を載せて、Arキャリアガス0.8torr中において750℃−2時間の熱処理を施すことにより、セル7とセル支持用金属薄板8とを接合した。   At this time, an Ag—Cu-based brazing paste is printed on the inner periphery of the cell supporting metal thin plate 8 made of Inconel 625 with a width of 2 mm and a thickness of 30 μm, and an outer diameter of φ30 mm is formed on this Ag-Cu-based brazing paste. The cell 7 and the cell supporting metal thin plate 8 were joined by performing a heat treatment at 750 ° C. for 2 hours in Ar carrier gas 0.8 torr.

[実施例3]
実施例2で得たセル7と、外径φ60mm、内径φ25、厚み80μmのドーナツ形状をしたフェライト系SUS製のセル支持用金属薄板8とを接合して、本実施例の固体電解質型燃料電池1を得た。
[Example 3]
The cell 7 obtained in Example 2 was joined to the cell-supported metal thin plate 8 made of ferrite SUS having an outer diameter of 60 mm, an inner diameter of 25, and a thickness of 80 μm, and the solid oxide fuel cell of this example. 1 was obtained.

ここで、接合温度近傍での金属製セル基板2とセル支持用金属薄板8のヤング率(0.2% Yield Strengths)は、フェライト系SUS:約150[MPa/m]、インコネル625:約350[MPa/m]であり、セル支持用金属薄板8の方が、金属製セル基板2よりも変形しやすい。 Here, the Young's modulus (0.2% Yield Strengths) of the metal cell substrate 2 and the cell supporting metal thin plate 8 in the vicinity of the junction temperature is as follows: ferrite SUS: about 150 [MPa / m 2 ], inconel 625: about 350 [MPa / m 2 ], and the cell supporting metal thin plate 8 is more easily deformed than the metal cell substrate 2.

この際、フェライト系SUS製のセル支持用金属薄板8の内側周囲に、Ag−Cu系ロウ材ペーストを幅2mm,厚さ30μmで印刷塗布し、このAg−Cu系ロウ材ペースト上に外径φ30mmの上記セル7を載せて、Arキャリアガス0.8torr中において750℃−2時間の熱処理を施すことにより、セル7とセル支持用金属薄板8とを接合した。   At this time, an Ag—Cu brazing paste is printed and applied in a width of 2 mm and a thickness of 30 μm around the inner periphery of the ferrous SUS cell supporting metal thin plate 8, and an outer diameter is applied on the Ag—Cu brazing paste. The cell 7 and the cell supporting metal thin plate 8 were joined by mounting the cell 7 having a diameter of 30 mm and performing a heat treatment at 750 ° C. for 2 hours in Ar carrier gas 0.8 torr.

[実施例4]
図3に示すように、実施例2で得たセル7と、外径φ60mm、内径φ25、厚み100μmのドーナツ形状をしたフェライト系SUS製のセル支持用金属薄板8とを接合して、本実施例の固体電解質型燃料電池を得た。
[Example 4]
As shown in FIG. 3, the cell 7 obtained in Example 2 was joined to the cell-supporting metal thin plate 8 made of ferrite SUS having a donut shape having an outer diameter of 60 mm, an inner diameter of 25, and a thickness of 100 μm. An example solid oxide fuel cell was obtained.

この際、フェライト系SUS製のセル支持用金属薄板8の内側周囲上に外径φ30mmの上記セル7を載せ、セル支持用金属薄板8とセル7とが重なり合う領域(およそ2.5mm幅)に、およそ20kHzの超音波振動を印加して、超音波シーム接合を施した。   At this time, the cell 7 having an outer diameter of 30 mm is placed on the inner periphery of the cell-supporting metal thin plate 8 made of ferritic SUS, and the cell-supporting metal thin plate 8 and the cell 7 overlap each other (approximately 2.5 mm width). The ultrasonic seam bonding was performed by applying an ultrasonic vibration of approximately 20 kHz.

[実施例5]
図4に示すように、φ30mm、厚さ200μmのインコネル625製の金属製セル基板2の内側φ20mmの範囲に、化学的エッチングを用いてφ500μmの貫通穴を500個形成し、金属製セル基板2として用いた。
[Example 5]
As shown in FIG. 4, 500 through-holes having a diameter of 500 μm are formed by chemical etching in the inner diameter of 20 mm in the metal cell substrate 2 made of Inconel 625 having a diameter of 30 mm and a thickness of 200 μm. Used as.

次いで、上記インコネル625製の金属製セル基板2上のφ25mmの範囲に、Ni+SDCペーストをスクリーン印刷により塗布し、10%水素(Arベース)雰囲気中1100℃で焼成した。このとき、燃料極層3としてのNi+SDC層は、金属製セル基板2の貫通穴が形成されていない箇所で、およそ100μmであった。   Next, Ni + SDC paste was applied by screen printing in the range of φ25 mm on the metal cell substrate 2 made of Inconel 625, and baked at 1100 ° C. in a 10% hydrogen (Ar base) atmosphere. At this time, the Ni + SDC layer as the fuel electrode layer 3 was about 100 μm at a location where the through hole of the metal cell substrate 2 was not formed.

次に、インコネル625製の金属製セル基板2のNi+SDC層の上に薄膜電池要素6中の電解質層5として、膜厚8μmのYSZ層を金属製セル基板2の加熱(700℃)及びバイアス印加のスパッタ(印加バイアス25V)により得た。   Next, as the electrolyte layer 5 in the thin film battery element 6 on the Ni + SDC layer of the metal cell substrate 2 made of Inconel 625, a YSZ layer having a thickness of 8 μm is heated (700 ° C.) and bias is applied to the metal cell substrate 2. Obtained by sputtering (applied bias 25 V).

そして、YSZ膜の上に薄膜電池要素6中の空気極層4として、気孔率30%、膜厚40μmのSSC層を金属製セル基板2の加熱スパッタ(基板温度300℃)により形成し、セル7を得た。   Then, an SSC layer having a porosity of 30% and a film thickness of 40 μm is formed on the YSZ film as the air electrode layer 4 in the thin film battery element 6 by heat sputtering of the metal cell substrate 2 (substrate temperature 300 ° C.). 7 was obtained.

このようにして得たセル7と、外径φ60mm、内径φ25mm、内側部幅5mmの範囲の厚み80μm、その他の部分の厚み200μmの段差つきドーナツ形状をしたフェライト系SUS製のセル支持用金属薄板8とを接合して、本実施例の固体電解質型燃料電池1を得た。   A cell support metal thin plate made of ferritic SUS having a stepped donut shape with the cell 7 thus obtained and a thickness of 80 μm in the range of outer diameter φ60 mm, inner diameter φ25 mm, inner width 5 mm, and other thickness 200 μm. 8 was joined to obtain a solid oxide fuel cell 1 of this example.

この際、金属製セル基板2とセル支持用金属薄板8との接合をYAGレーザ溶接により実施した。このYAGレーザ溶接の条件は、パルスエネルギー:2[J]、パルス幅:0.1[ms]のYAGレーザをセル支持用金属薄板8側から直角に照射して、溶接を行った。   At this time, the metal cell substrate 2 and the cell supporting metal thin plate 8 were joined by YAG laser welding. The YAG laser welding was performed by irradiating a YAG laser having a pulse energy of 2 [J] and a pulse width of 0.1 [ms] perpendicularly from the cell supporting metal thin plate 8 side.

[実施例6]
図13に示すように、外径φ125mm、内径φ40mm、厚さ100μmのフェライト系SUS製のドーナツ状薄板に、φ26mmの貫通穴(開口)8bを化学的エッチングにより、8箇所形成し、次いで、φ26mmの貫通穴8bの周囲幅5mmの範囲にプレス加工による段差8cを形成して、セル支持用金属薄板8を得た。
[Example 6]
As shown in FIG. 13, eight through-holes (openings) 8b of φ26 mm are formed by chemical etching on a ferrite-type SUS donut-shaped thin plate having an outer diameter of φ125 mm, an inner diameter of φ40 mm, and a thickness of 100 μm, and then φ26 mm A step 8c was formed by pressing in the range of the peripheral width of 5 mm of the through hole 8b to obtain a metal thin plate 8 for cell support.

なお、ドーナツ状薄板のφ26mmの貫通穴8bの周囲に形成した段差8cは、全てセル支持用金属薄板8の同じ側に形成するのではなく、隣り合う貫通穴8bに形成される段差8cが互い違いの方向に成るようにして形成してある。また、段差8cの部分は、図4に示すセル支持用金属薄板8と同様にして厚みを100μmから80μmまで薄くしてあり、応力緩和部として機能するようにしてある。   The steps 8c formed around the φ26mm through hole 8b of the doughnut-shaped thin plate are not all formed on the same side of the cell supporting metal thin plate 8, but the steps 8c formed in the adjacent through holes 8b are staggered. It is formed so as to be in the direction. Further, the thickness of the step 8c is reduced from 100 μm to 80 μm in the same manner as the cell supporting metal thin plate 8 shown in FIG. 4, and functions as a stress relaxation portion.

上記、セル支持用金属薄板8と図4に示したセル7とを実施例5と同様にYAGレーザを用いて溶接する。なお、表面側に凸となるように段差8cが形成されている箇所では、図13(d)に示すように、セル支持用金属薄板8の裏面側とセル7の表面側が接合され、裏面側に凸と成るように段差8cが形成されている箇所では、図13(c)に示すように、セル支持用金属薄板8の表面側とセル7の裏面側が接合される。   The cell supporting metal thin plate 8 and the cell 7 shown in FIG. 4 are welded using a YAG laser in the same manner as in the fifth embodiment. In addition, in the location where the level | step difference 8c is formed so that it may become convex on the surface side, as shown in FIG.13 (d), the back surface side of the metal thin plate 8 for cell support and the surface side of the cell 7 are joined, and back surface side As shown in FIG. 13C, the front surface side of the cell supporting metal thin plate 8 and the back surface side of the cell 7 are joined at a location where the step 8c is formed so as to be convex.

本発明では、上述したように、セルとセル支持用金属薄板との接合が金属同士の接合になるため、熱サイクルに強くなるだけでなく、接合方法の選択肢が増えることとなって、接合自体も容易になる。   In the present invention, as described above, since the bonding between the cell and the metal thin plate for supporting a cell is a bonding between metals, not only the heat cycle is strengthened, but the number of options for the bonding method is increased, and the bonding itself Will also be easier.

本発明の固体電解質型燃料電池の一実施例を示す断面説明図である。(実施例1)It is a section explanatory view showing one example of a solid oxide fuel cell of the present invention. (Example 1) 本発明の固体電解質型燃料電池の他の実施例を示す断面説明図である。(実施例2,3)It is a section explanatory view showing other examples of a solid oxide fuel cell of the present invention. (Examples 2 and 3) 本発明の固体電解質型燃料電池のさらに他の実施例を示す断面説明図である。(実施例4)FIG. 6 is a cross-sectional explanatory view showing still another embodiment of the solid oxide fuel cell of the present invention. (Example 4) 本発明の固体電解質型燃料電池のさらに他の実施例を示す断面説明図である。(実施例5)FIG. 6 is a cross-sectional explanatory view showing still another embodiment of the solid oxide fuel cell of the present invention. (Example 5) 本発明の固体電解質型燃料電池のさらに他の実施例を示す断面説明図である。FIG. 6 is a cross-sectional explanatory view showing still another embodiment of the solid oxide fuel cell of the present invention. 本発明の固体電解質型燃料電池のさらに他の実施例を示す断面説明図である。FIG. 6 is a cross-sectional explanatory view showing still another embodiment of the solid oxide fuel cell of the present invention. 図6の固体電解質型燃料電池における応力緩和部の他の変形例を示す部分断面説明図である。FIG. 7 is a partial cross-sectional explanatory view showing another modification of the stress relaxation portion in the solid oxide fuel cell of FIG. 6. 図6の固体電解質型燃料電池における応力緩和部のさらに他の変形例を示す部分断面説明図である。FIG. 9 is a partial cross-sectional explanatory view showing still another modification of the stress relaxation portion in the solid oxide fuel cell of FIG. 6. 本発明の固体電解質型燃料電池のさらに他の実施例を示す断面説明図である。FIG. 6 is a cross-sectional explanatory view showing still another embodiment of the solid oxide fuel cell of the present invention. 図9の固体電解質型燃料電池における応力緩和部の他の変形例を示す部分断面説明図である。FIG. 10 is a partial cross-sectional explanatory view showing another modification of the stress relaxation portion in the solid oxide fuel cell of FIG. 9. 図9の固体電解質型燃料電池における応力緩和部のさらに他の変形例を示す部分断面説明図である。FIG. 10 is a partial cross-sectional explanatory view showing still another modified example of the stress relaxation portion in the solid oxide fuel cell of FIG. 9. 図9の固体電解質型燃料電池における応力緩和部のさらに他の変形例を示す部分断面説明図である。FIG. 10 is a partial cross-sectional explanatory view showing still another modified example of the stress relaxation portion in the solid oxide fuel cell of FIG. 9. 本発明の固体電解質型燃料電池のスタック構造体の一実施例を示す断面説明図(a),固体電解質型燃料電池の平面説明図(b),図13(b)におけるA−A線に基づく断面説明図(c)及び図13(b)におけるB−B線に基づく断面説明図(d)である。(実施例6)The cross-sectional explanatory drawing (a) which shows one Example of the stack structure of the solid oxide fuel cell of this invention, the plane explanatory drawing (b) of a solid oxide fuel cell, and the AA line in FIG.13 (b) It is sectional explanatory drawing (d) based on the BB line in sectional explanatory drawing (c) and FIG.13 (b). (Example 6)

符号の説明Explanation of symbols

1 固体電解質型燃料電池
2 金属製セル基板
2a ガス透過孔
2b ガス不透過部分
3 燃料極層(電極層)
4 空気極層(電極層)
5 電解質層
6 電池要素
7 セル
8 セル支持用金属薄板
8a 接合部分
8b 開口
8c 段差
10 応力緩和部
15 固体電解質型燃料電池のスタック構造体
DESCRIPTION OF SYMBOLS 1 Solid electrolyte fuel cell 2 Metal cell board 2a Gas permeation hole 2b Gas impermeability part 3 Fuel electrode layer (electrode layer)
4 Air electrode layer (electrode layer)
DESCRIPTION OF SYMBOLS 5 Electrolyte layer 6 Battery element 7 Cell 8 Metal thin plate for cell support 8a Joint part 8b Opening 8c Step 10 Stress relaxation part 15 Stack structure of solid electrolyte fuel cell

Claims (14)

ガス透過孔を有する金属製セル基板及び一対の電極層間に電解質層を挟み込んで形成した電池要素を具備し、上記金属製セル基板のガス透過孔上に位置させた電池要素の一対の電極層のうちのいずれか一方の電極層を電解質層で覆って成るセルを備えた固体電解質型燃料電池において、
上記金属製セル基板のガス不透過部分と接合してセルを支持する電気導伝性を有するセル支持用金属薄板を設けたことを特徴とする固体電解質型燃料電池。
A battery cell element formed by sandwiching an electrolyte layer between a metal cell substrate having a gas permeable hole and a pair of electrode layers, and a pair of electrode layers of the battery element positioned on the gas permeable hole of the metal cell substrate; In a solid oxide fuel cell comprising a cell formed by covering one of the electrode layers with an electrolyte layer,
A solid oxide fuel cell comprising a thin metal plate for supporting a cell having electrical conductivity which is bonded to a gas-impermeable portion of the metal cell substrate and supports the cell.
セル支持用金属薄板の金属製セル基板との接合部分の厚みを金属製セル基板よりも薄くしてある請求項1に記載の固体電解質型燃料電池。   2. The solid oxide fuel cell according to claim 1, wherein a thickness of a joint portion between the cell supporting metal thin plate and the metal cell substrate is made thinner than that of the metal cell substrate. セル支持用金属薄板の金属製セル基板との接合部分又はその周辺に応力緩和部を設けた請求項1又は2に記載の固体電解質型燃料電池。   3. The solid oxide fuel cell according to claim 1, wherein a stress relaxation portion is provided at or around a joint portion of the metal thin plate for cell support with a metal cell substrate. セル支持用金属薄板の金属製セル基板との接合部分の厚みをそれ以外の部分よりも薄くして応力緩和部とした請求項3に記載の固体電解質型燃料電池。   4. The solid oxide fuel cell according to claim 3, wherein the thickness of the joint portion of the metal thin plate for cell support with the metal cell substrate is made thinner than the other portions to form a stress relaxation portion. セル支持用金属薄板の金属製セル基板との接合部分の周辺を局所的に薄くして応力緩和部とした請求項3に記載の固体電解質型燃料電池。   The solid oxide fuel cell according to claim 3, wherein the periphery of the joint portion between the metal thin plate for cell support and the metal cell substrate is locally thinned to form a stress relaxation portion. セル支持用金属薄板の金属製セル基板との接合部分の周辺をうねらせて応力緩和部とした請求項3に記載の固体電解質型燃料電池。   4. The solid oxide fuel cell according to claim 3, wherein a stress relaxation portion is formed by undulating the periphery of the joint portion of the cell supporting metal thin plate with the metal cell substrate. セル支持用金属薄板の金属製セル基板との接合部分の周辺に段差を設けて応力緩和部とした請求項3に記載の固体電解質型燃料電池。   4. The solid oxide fuel cell according to claim 3, wherein a step is provided around a joint portion between the thin metal plate for cell support and the metal cell substrate to form a stress relaxation portion. セル支持用金属薄板のヤング率を金属製セル基板のヤング率よりも小さく設定した請求項1〜7のいずれか一つの項に記載の固体電解質型燃料電池。   The solid oxide fuel cell according to any one of claims 1 to 7, wherein the Young's modulus of the cell supporting metal thin plate is set smaller than the Young's modulus of the metal cell substrate. セル支持用金属薄板と金属製セル基板とを拡散接合により接合してある請求項1〜8のいずれか一つの項に記載の固体電解質型燃料電池。   The solid oxide fuel cell according to any one of claims 1 to 8, wherein the cell supporting metal thin plate and the metal cell substrate are bonded by diffusion bonding. セル支持用金属薄板と金属製セル基板とを超音波接合により接合してある請求項1〜4のいずれか一つの項に記載の固体電解質型燃料電池。   The solid oxide fuel cell according to any one of claims 1 to 4, wherein the cell supporting metal thin plate and the metal cell substrate are bonded by ultrasonic bonding. セル支持用金属薄板と金属製セル基板とを溶接により接合してある請求項4に記載の固体電解質型燃料電池。 The solid oxide fuel cell according to claim 4, wherein the cell supporting metal thin plate and the metal cell substrate are joined by welding. セル支持用金属薄板上に複数のセルを配置してなる請求項1〜11のいずれか一つの項に記載の固体電解質型燃料電池。   The solid oxide fuel cell according to any one of claims 1 to 11, wherein a plurality of cells are arranged on a metal thin plate for cell support. セル支持用金属薄板は1つ以上の開口を具備し、この開口にセルを配置して、開口の周縁部とセルの金属製セル基板のガス不透過部分とを接合してある請求項13に記載の固体電解質型燃料電池。   The thin metal plate for supporting a cell has at least one opening, and a cell is disposed in the opening, and a peripheral portion of the opening is joined to a gas-impermeable portion of a metal cell substrate of the cell. The solid oxide fuel cell as described. セルにおける金属製セル基板の電池要素側の面にセル支持用金属薄板を接合して成る請求項1〜13のいずれか一つの項に記載の固体電解質型燃料電池と、セルにおける金属製セル基板の電池要素とは反対側の面にセル支持用金属薄板を接合して成る請求項1〜13のいずれか一つの項に記載の固体電解質型燃料電池とを交互に積層して成る固体電解質型燃料電池のスタック構造体。   The solid oxide fuel cell according to any one of claims 1 to 13, and a metal cell substrate in the cell, wherein a cell supporting metal thin plate is joined to a surface on the battery element side of the metal cell substrate in the cell. 14. A solid electrolyte type obtained by alternately laminating a solid oxide fuel cell according to any one of claims 1 to 13, wherein a cell supporting metal thin plate is joined to a surface opposite to the battery element. Fuel cell stack structure.
JP2003390143A 2003-11-20 2003-11-20 Solid electrolyte fuel cell Pending JP2005150053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003390143A JP2005150053A (en) 2003-11-20 2003-11-20 Solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003390143A JP2005150053A (en) 2003-11-20 2003-11-20 Solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2005150053A true JP2005150053A (en) 2005-06-09

Family

ID=34696624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003390143A Pending JP2005150053A (en) 2003-11-20 2003-11-20 Solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2005150053A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016248A (en) * 2006-07-04 2008-01-24 Nissan Motor Co Ltd Solid electrolyte fuel cell unit, and stack thereof
JP2008066296A (en) * 2006-08-10 2008-03-21 Ngk Insulators Ltd Electrochemical device
JP2008226478A (en) * 2007-03-08 2008-09-25 Dainippon Printing Co Ltd Solid oxide fuel cell and its manufacturing method
JP2008251379A (en) * 2007-03-30 2008-10-16 Ngk Insulators Ltd Electrochemical device
CN100440595C (en) * 2007-01-05 2008-12-03 天津大学 Thin metal dual-pole board of proton exchange film fuel battery
EP2000242A2 (en) 2005-05-23 2008-12-10 Amada Company, Ltd. Method of cutting a workpiece using band saw machine as well as band saw machine
JP2010067593A (en) * 2008-09-08 2010-03-25 Korea Advanced Inst Of Sci Technol Metal support type solid oxide fuel cell and its manufacturing method
JP2011503790A (en) * 2007-11-09 2011-01-27 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング High temperature fuel cell stack and manufacturing method thereof
JP2011228280A (en) * 2010-03-31 2011-11-10 Dainippon Printing Co Ltd Solid oxide fuel cell and its manufacturing method
JP2013077450A (en) * 2011-09-30 2013-04-25 Nippon Shokubai Co Ltd Metal support type solid oxide fuel battery cell, and solid oxide fuel battery using the same
JP2013152945A (en) * 2007-09-28 2013-08-08 Dainippon Printing Co Ltd Solid oxide fuel cell and method for manufacturing the same
JP2013201038A (en) * 2012-03-26 2013-10-03 Nippon Shokubai Co Ltd Metal support type solid oxide fuel battery cell, and solid oxide fuel battery using the same
JP2015165454A (en) * 2014-02-28 2015-09-17 三菱日立パワーシステムズ株式会社 Fuel cell module and manufacturing method of fuel cell module
WO2019189912A1 (en) * 2018-03-30 2019-10-03 大阪瓦斯株式会社 Metal support body for electrochemical element, electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, solid oxide electrolytic cell, and method for manufacturing metal support body
WO2019189911A1 (en) * 2018-03-30 2019-10-03 大阪瓦斯株式会社 Metal supporting body for electrochemical element, electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and production method for metal supporting body
WO2019189913A1 (en) * 2018-03-30 2019-10-03 大阪瓦斯株式会社 Metal support for electrochemical device, electrochemical device, electrochemical module, electrochemical apparatus, energy system, solid oxide fuel cell, solid oxide electrolytic cell, and method for producing metal support
JP2019216041A (en) * 2018-06-13 2019-12-19 日産自動車株式会社 Cell unit of solid oxide fuel cell and solid oxide fuel cell
JP2020095983A (en) * 2020-03-23 2020-06-18 大阪瓦斯株式会社 Electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and method of manufacturing electrochemical element

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2000242A2 (en) 2005-05-23 2008-12-10 Amada Company, Ltd. Method of cutting a workpiece using band saw machine as well as band saw machine
JP2008016248A (en) * 2006-07-04 2008-01-24 Nissan Motor Co Ltd Solid electrolyte fuel cell unit, and stack thereof
JP2008066296A (en) * 2006-08-10 2008-03-21 Ngk Insulators Ltd Electrochemical device
CN100440595C (en) * 2007-01-05 2008-12-03 天津大学 Thin metal dual-pole board of proton exchange film fuel battery
JP2008226478A (en) * 2007-03-08 2008-09-25 Dainippon Printing Co Ltd Solid oxide fuel cell and its manufacturing method
JP2008251379A (en) * 2007-03-30 2008-10-16 Ngk Insulators Ltd Electrochemical device
JP2013152945A (en) * 2007-09-28 2013-08-08 Dainippon Printing Co Ltd Solid oxide fuel cell and method for manufacturing the same
JP2011503790A (en) * 2007-11-09 2011-01-27 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング High temperature fuel cell stack and manufacturing method thereof
JP2010067593A (en) * 2008-09-08 2010-03-25 Korea Advanced Inst Of Sci Technol Metal support type solid oxide fuel cell and its manufacturing method
JP2011228280A (en) * 2010-03-31 2011-11-10 Dainippon Printing Co Ltd Solid oxide fuel cell and its manufacturing method
JP2013077450A (en) * 2011-09-30 2013-04-25 Nippon Shokubai Co Ltd Metal support type solid oxide fuel battery cell, and solid oxide fuel battery using the same
JP2013201038A (en) * 2012-03-26 2013-10-03 Nippon Shokubai Co Ltd Metal support type solid oxide fuel battery cell, and solid oxide fuel battery using the same
JP2015165454A (en) * 2014-02-28 2015-09-17 三菱日立パワーシステムズ株式会社 Fuel cell module and manufacturing method of fuel cell module
WO2019189912A1 (en) * 2018-03-30 2019-10-03 大阪瓦斯株式会社 Metal support body for electrochemical element, electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, solid oxide electrolytic cell, and method for manufacturing metal support body
WO2019189911A1 (en) * 2018-03-30 2019-10-03 大阪瓦斯株式会社 Metal supporting body for electrochemical element, electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and production method for metal supporting body
WO2019189913A1 (en) * 2018-03-30 2019-10-03 大阪瓦斯株式会社 Metal support for electrochemical device, electrochemical device, electrochemical module, electrochemical apparatus, energy system, solid oxide fuel cell, solid oxide electrolytic cell, and method for producing metal support
JP2019179755A (en) * 2018-03-30 2019-10-17 大阪瓦斯株式会社 Metal support of electrochemical element, electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and manufacturing method of metal support
JP7080090B2 (en) 2018-03-30 2022-06-03 大阪瓦斯株式会社 Method for manufacturing metal support of electrochemical element, electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell and metal support
US11670779B2 (en) 2018-03-30 2023-06-06 Osaka Gas Co., Ltd. Metal support for electrochemical element, electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, solid oxide electrolytic cell, and method for manufacturing metal support
US11936076B2 (en) 2018-03-30 2024-03-19 Osaka Gas Co., Ltd. Metal support for electrochemical element, electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and method for manufacturing metal support
US12119526B2 (en) 2018-03-30 2024-10-15 Osaka Gas Co., Ltd. Metal support for electrochemical element, electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, solid oxide electrolytic cell, and method for manufacturing metal support
JP2019216041A (en) * 2018-06-13 2019-12-19 日産自動車株式会社 Cell unit of solid oxide fuel cell and solid oxide fuel cell
JP7095425B2 (en) 2018-06-13 2022-07-05 日産自動車株式会社 Solid oxide fuel cell cell unit and solid oxide fuel cell
JP2020095983A (en) * 2020-03-23 2020-06-18 大阪瓦斯株式会社 Electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and method of manufacturing electrochemical element

Similar Documents

Publication Publication Date Title
JP2005150053A (en) Solid electrolyte fuel cell
JP5679893B2 (en) Solid oxide fuel cell and method for producing the same
JP4854237B2 (en) Solid oxide fuel cell and stack structure
WO1992002057A1 (en) Separator and its manufacturing method
JP5093833B2 (en) Single cell for fuel cell
JP4438295B2 (en) Fuel cell
JP5502615B2 (en) Fuel cell
JP2006172964A (en) Stack structure of solid electrolyte fuel cell
JP5223272B2 (en) Method of welding metal separator for fuel cell and welding apparatus for metal separator for fuel cell
JP2016519413A (en) Fuel cell
JP6199697B2 (en) Fuel cell single cell with separator, fuel cell stack, and manufacturing method thereof
JP4900364B2 (en) Fuel cell
JP2004319152A (en) Cell body for tubular fuel cell and its manufacturing method
JP6339495B2 (en) Interconnector-fuel cell single cell composite and fuel cell stack
JP2009231172A (en) Separator for fuel cell
JP2006055705A (en) Hydrogen separation substrate
JP4192481B2 (en) Flat plate type solid oxide fuel cell and its manufacturing method
JP4232614B2 (en) Solid oxide fuel cell
JP4534780B2 (en) Fuel cell separator and method for producing fuel cell separator
JP4073750B2 (en) Manufacturing method of diffusion layer separator assembly
JP6861185B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP5017777B2 (en) Separator for fuel cell, method for producing separator, and solid oxide fuel cell
JP5083644B2 (en) Stack structure and fuel cell
JP2751434B2 (en) Fuel cell separator
JPWO2018225617A1 (en) Electrochemical reaction cell stack, interconnector-electrochemical reaction single cell complex and method of manufacturing electrochemical reaction cell stack