JPH06310739A - Solar cell element - Google Patents

Solar cell element

Info

Publication number
JPH06310739A
JPH06310739A JP5100887A JP10088793A JPH06310739A JP H06310739 A JPH06310739 A JP H06310739A JP 5100887 A JP5100887 A JP 5100887A JP 10088793 A JP10088793 A JP 10088793A JP H06310739 A JPH06310739 A JP H06310739A
Authority
JP
Japan
Prior art keywords
solar cell
type
crystal
cell element
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5100887A
Other languages
Japanese (ja)
Other versions
JP3094730B2 (en
Inventor
Tomomichi Nagashima
知理 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP05100887A priority Critical patent/JP3094730B2/en
Publication of JPH06310739A publication Critical patent/JPH06310739A/en
Application granted granted Critical
Publication of JP3094730B2 publication Critical patent/JP3094730B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To enhance output characteristics by forming a lightly doped impurity layer having large crystal particle size on the side of light receiving face. CONSTITUTION:Oxide 2 is deposited on the surface of a p-type Si wafer 1 heavily doped with B(boron) and microopenings 7 are made regularly in the oxide 2. An amorphous Si film is then formed thereon and annealed. Crystal growth of the amorphous Si film 2 takes place gradually from the opening 7 onto the surrounding oxide 2 with the crystallinity of the p-type Si wafer 1 as the speed. The crystal growth stops when the crystal comes into contact with a crystal part grown from an adjacent opening 7 thus forming a p-type lightly doped impurity layer 3 having a regular and square grain boundary 8. A light receiving face n-layer 4 doped with P(phosphorus) is then formed on the layer 3 followed by formation of a surface electrode 5 and a rear surface electrode 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、単結晶シリコン基板に
非単結晶シリコン層を積層して、非単結晶シリコンを結
晶成長させた基板を用いる太陽電池素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell element using a substrate in which a non-single-crystal silicon layer is laminated on a single-crystal silicon substrate and non-single-crystal silicon is crystal-grown.

【0002】[0002]

【従来の技術】太陽電池素子に用いられるSi(シリコ
ン)基板には、単結晶Si、多結晶Si、アモルファス
Siがある。ところで、単結晶Siを用いた太陽電池素
子の特性を向上させる方法として、Siウエハのキャリ
アライフタイムを長くする方法がある。通常、Siウエ
ハはp型またはn型不純物を含有し、不純物量が少ない
ほど、ライフタイムは向上するが、電気抵抗が増加し
て、特性が低下する問題点を含むため、通常は0.01
〜1ppma程度の不純物元素を含有させる。
2. Description of the Related Art Si (silicon) substrates used for solar cell elements include single crystal Si, polycrystalline Si and amorphous Si. By the way, as a method of improving the characteristics of a solar cell element using single crystal Si, there is a method of lengthening the carrier lifetime of a Si wafer. Usually, the Si wafer contains p-type or n-type impurities, and the life is improved as the amount of impurities is reduced, but the problem is that the electrical resistance increases and the characteristics deteriorate.
An impurity element of about 1 ppma is contained.

【0003】上記相反する問題を解決するため、不純物
量の多い低抵抗基板上に不純物量が少なくライフタイム
の長い領域を形成して、光をより多く吸収する表面側に
近い領域の特性向上を図るという技術がある。
In order to solve the contradictory problem, a region having a small amount of impurities and a long lifetime is formed on a low resistance substrate having a large amount of impurities to improve the characteristics of a region near the surface side that absorbs more light. There is a technology to try.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来
は、Si基板上に良質な結晶性を有するSi層領域を形
成する場合、高温プロセスであるエピタキシャル成長を
行う必要があり、熱歪欠陥が生成し、ライフタイムが減
少するという問題点がある。
However, conventionally, when forming a Si layer region having good crystallinity on a Si substrate, it is necessary to carry out epitaxial growth, which is a high temperature process, and thermal strain defects are generated. There is a problem that the lifetime is reduced.

【0005】また、例えば特開平4−177880号公
報に示されるように、低温で、基板上に多結晶Si膜を
形成後、アニールにより再結晶化させる方法があるが、
この方法では、基板の任意の部分を核としてランダムに
結晶化するため、微小な結晶が多数析出し、キャリアの
移動が悪くなり、良好な光電変換特性を有する太陽電池
素子の形成が困難であった。
Further, as disclosed in, for example, Japanese Patent Application Laid-Open No. 4-177880, there is a method in which a polycrystalline Si film is formed on a substrate at a low temperature and then recrystallized by annealing.
In this method, random crystallization is performed using any part of the substrate as a nucleus, so that a large number of minute crystals are deposited, carrier movement is deteriorated, and it is difficult to form a solar cell element having good photoelectric conversion characteristics. It was

【0006】なお、受光面の結晶成長層に求められる性
質は以下の3点である。(a)不純物元素濃度が少な
い。(b)ライフタイムが長い。(c)結晶性が良好
で、多結晶の場合は結晶粒径が大きい。
The properties required for the crystal growth layer on the light receiving surface are the following three points. (A) The impurity element concentration is low. (B) Long lifetime. (C) The crystallinity is good, and in the case of polycrystal, the crystal grain size is large.

【0007】しかしながら、従来は上記3点を満たすこ
とが難しかった。
However, conventionally, it was difficult to satisfy the above three points.

【0008】そこで本発明の目的は、受光面側に結晶粒
径の大きい不純物低濃度層を形成でき、出力特性を向上
させることができるようにした太陽電池素子を提供する
ことにある。
Therefore, an object of the present invention is to provide a solar cell element capable of forming a low impurity concentration layer having a large crystal grain size on the light receiving surface side and improving output characteristics.

【0009】[0009]

【課題を解決するための手段】本発明の太陽電池素子
は、単結晶シリコン基板の受光面側に不純物低濃度の非
単結晶シリコン層を形成し、この非単結晶シリコン層を
結晶成長させた基板を用いるものにおいて、単結晶シリ
コン基板と非単結晶シリコン層の間に、微小な開口部を
有する中間層を設け、開口部より非単結晶シリコンが結
晶成長するように、開口部を介して単結晶シリコン基板
と非単結晶シリコン層とを接触させたものである。
In the solar cell element of the present invention, a non-single-crystal silicon layer having a low impurity concentration is formed on the light-receiving surface side of a single-crystal silicon substrate, and the non-single-crystal silicon layer is crystal-grown. In the case of using a substrate, an intermediate layer having a minute opening is provided between the single crystal silicon substrate and the non-single crystal silicon layer, and the non-single crystal silicon is crystallized through the opening so that the non-single crystal silicon grows through the opening. The single crystal silicon substrate and the non-single crystal silicon layer are in contact with each other.

【0010】[0010]

【作用】この太陽電池素子では、単結晶シリコン基板と
非単結晶シリコン層の間に設けられた中間層の開口部よ
り非単結晶シリコンが結晶成長し、他の部分からは結晶
成長しないので、成長中の結晶同士が衝突しあうことが
なく、結晶粒径が大きくなる。
In this solar cell element, the non-single-crystal silicon crystal grows from the opening of the intermediate layer provided between the single-crystal silicon substrate and the non-single-crystal silicon layer, and does not grow from other portions. The growing crystals do not collide with each other and the crystal grain size increases.

【0011】[0011]

【実施例】以下、本発明の実施例について詳細に説明す
る。
EXAMPLES Examples of the present invention will be described in detail below.

【0012】図1は本発明の第1実施例の太陽電池素子
の断面図である。この図に示すように、本実施例の太陽
電池素子は、高濃度にB(ホウ素)がドーピングされた
p型Siウエハ1の表面に熱酸化膜2を形成し、この熱
酸化膜2の表面に低濃度にB(ホウ素)がドーピングさ
れたp型不純物低濃度層領域3を形成し、このp型不純
物低濃度層領域3の上に、P(リン)がドーピングされ
た受光面n層領域4を形成している。さらに、上記のよ
うに加工されたSiウエハの受光面に、表面クシ型電極
5を形成し、裏面に裏面電極6を形成して太陽電池素子
を形成している。
FIG. 1 is a sectional view of a solar cell element according to the first embodiment of the present invention. As shown in this figure, in the solar cell element of this embodiment, a thermal oxide film 2 is formed on the surface of a p-type Si wafer 1 that is highly doped with B (boron), and the surface of this thermal oxide film 2 is formed. A p-type impurity low-concentration layer region 3 lightly doped with B (boron) is formed on the p-type impurity low-concentration layer region 3, and a light-receiving surface n-layer region doped with P (phosphorus) is formed on the p-type impurity low-concentration layer region 3. 4 is forming. Further, the surface comb-shaped electrode 5 is formed on the light receiving surface of the Si wafer processed as described above, and the back surface electrode 6 is formed on the back surface to form a solar cell element.

【0013】なお、本実施例では、Siウエハにp型を
選んだが、n型Siウエハにおいても同様に、n型不純
物低濃度層領域および受光面p層を形成して太陽電池素
子を形成することが可能である。
Although the p-type is selected for the Si wafer in this embodiment, the n-type low-concentration impurity layer region and the light-receiving surface p-layer are similarly formed in the n-type Si wafer to form a solar cell element. It is possible.

【0014】図2は受光面(表面)側より見た酸化膜2
の概要を示す平面図である。この図に示すように、酸化
膜2は規則的に微小な開口部7を有している。酸化膜2
上に形成されたアモルファス(非晶質)Si膜はアニー
ルにより結晶化され、開口部7よりp型Siウエハ1の
結晶性を種として徐々に周囲の酸化膜2上へ結晶成長す
る。そして、隣接する開口部7より成長した結晶部分と
接することにより結晶成長は停止し、規則的で正方状の
粒界8を有するp型不純物低濃度層領域3が形成され
る。
FIG. 2 shows the oxide film 2 as seen from the light receiving surface (front surface) side.
It is a top view showing the outline of. As shown in this figure, the oxide film 2 has regularly minute openings 7. Oxide film 2
The amorphous (amorphous) Si film formed above is crystallized by annealing and gradually grows on the surrounding oxide film 2 from the opening 7 using the crystallinity of the p-type Si wafer 1 as a seed. Then, the crystal growth is stopped by coming into contact with the crystal part grown from the adjacent opening 7, and the p-type impurity low concentration layer region 3 having the regular and square grain boundaries 8 is formed.

【0015】このように、Siウエハ1上に設けられ
た、規則的に形成された開口部7を有する酸化膜2を介
してアモルファスSi膜を形成し、アニールすることに
よって、規則的で粒径の大きいp型不純物低濃度層領域
3を形成できる。この領域は受光面に近く、光の吸収量
が最も多い領域であり、低不純物濃度化を行い、ライフ
タイムを向上させることが、太陽電池素子の出力向上に
大きく寄与する。また、p型Siウエハ1の不純物(ホ
ウ素)濃度を多くし、低抵抗化することにより、太陽電
池素子の直列抵抗を減少させることができ、さらに出力
を向上させることが可能となる。また、上記プロセスは
比較的低温で行われるため、熱歪による結晶性の低下を
防止することもできる。
As described above, the amorphous Si film is formed through the oxide film 2 having the regularly formed openings 7 provided on the Si wafer 1 and is annealed to form a regular grain size. It is possible to form the p-type impurity low-concentration layer region 3 having a large area. This region is close to the light-receiving surface and has the largest amount of light absorption. By reducing the impurity concentration and improving the lifetime, the output of the solar cell element is greatly improved. Further, by increasing the concentration of impurities (boron) in the p-type Si wafer 1 to reduce the resistance, it is possible to reduce the series resistance of the solar cell element and further improve the output. Further, since the above process is performed at a relatively low temperature, it is possible to prevent deterioration of crystallinity due to thermal strain.

【0016】次に、図3を参照して、本実施例の太陽電
池素子の製造方法を具体的に説明する。まず、(a)に
示すような、B(ホウ素)が高濃度にドーピングされた
比抵抗範囲0.05〜1.0Ω・cm程度のp型Siウ
エハ1の表面に、(b)に示すように酸化膜(Si
2 )2を約400nm程度形成する。次に、(c)に
示すように、酸化膜2にフォトリソグラフィ工程を用い
て、3μm正方角の開口部7を15μm間隔で、加工形
成する。次に、(d)に示すように、B2 6 (ジボラ
ン)を微量に含有したSiH4 (モノシラン)ガスを、
プラズマCVD法により分解堆積させ、膜厚約5μmの
p型アモルファスSi膜11を形成する。この膜11を
600℃でアニールすることにより、酸化膜2の開口部
7に存在するSiウエハ(結晶部分)を種として、脱水
素化しながらエピタキシャル成長させ、(e)に示すよ
うに、開口部間隔15μmに合わせて粒径約15μmの
均一で規則正しい結晶粒を有するp型不純物低濃度層領
域3を形成する。
Next, with reference to FIG. 3, a method of manufacturing the solar cell element of this embodiment will be specifically described. First, as shown in (b), the surface of the p-type Si wafer 1 having a specific resistance range of about 0.05 to 1.0 Ω · cm doped with B (boron) at a high concentration as shown in (a) is shown in (b). Oxide film (Si
O 2 ) 2 is formed to a thickness of about 400 nm. Next, as shown in (c), the oxide film 2 is processed by photolithography to form openings 7 of 3 μm square at 15 μm intervals. Next, as shown in (d), SiH 4 (monosilane) gas containing a trace amount of B 2 H 6 (diborane) was added to
The p-type amorphous Si film 11 having a film thickness of about 5 μm is formed by decomposition and deposition by the plasma CVD method. By annealing this film 11 at 600 ° C., the Si wafer (crystal part) existing in the opening 7 of the oxide film 2 is used as a seed to grow epitaxially while dehydrogenating, and as shown in FIG. A p-type impurity low-concentration layer region 3 having uniform and regular crystal grains with a grain size of about 15 μm is formed in accordance with 15 μm.

【0017】続いて、裏面側に、B(ホウ素)を高濃度
にドーピングしたp+ 層(図示せず)を形成し、受光面
(p型不純物低濃度層領域3)にP(リン)を高濃度に
ドーピングしたn層4を形成し、続いて、TiO2 より
なる反射防止膜(図示せず)を形成した後、銀ペースト
スクリーン印刷により表面クシ型電極5と裏面電極6を
形成して、図1に示す太陽電池素子を完成させた。
Subsequently, a p + layer (not shown) heavily doped with B (boron) is formed on the back surface side, and P (phosphorus) is formed on the light receiving surface (p-type impurity low concentration layer region 3). After forming a heavily doped n layer 4 and subsequently forming an antireflection film (not shown) made of TiO 2 , a front surface comb electrode 5 and a back surface electrode 6 are formed by silver paste screen printing. The solar cell element shown in FIG. 1 was completed.

【0018】次に本発明の第2実施例について説明す
る。本実施例では、第1実施例と同様のp型Siウエハ
1の表面に、酸化膜(SiO2 )2を約400nm程度
形成する。次に、この酸化膜2にフォトリソグラフィ工
程を用いて、3μm正方角の開口部7を30μm間隔
で、加工形成する。次に、B2 6 を微量に含有したS
iH4 ガスを、プラズマCVD法により分解堆積させ、
膜厚約5μmのp型アモルファスSi膜11を形成す
る。この膜11を600℃でアニールすることにより、
酸化膜2の開口部7に存在するSiウエハ(結晶部分)
を種として、脱水素化しながらエピタキシャル成長さ
せ、開口部間隔30μmに合わせて粒径約30μmの均
一で規則正しい結晶粒を有するp型不純物低濃度層領域
3を形成する。続いて、第1実施例と同様の加工を施
し、太陽電池素子を完成させた。
Next, a second embodiment of the present invention will be described. In this embodiment, an oxide film (SiO 2 ) 2 is formed on the surface of the p-type Si wafer 1 similar to that of the first embodiment to a thickness of about 400 nm. Next, the oxide film 2 is processed by photolithography to form openings 7 having a square shape of 3 μm at intervals of 30 μm. Next, S containing a small amount of B 2 H 6
iH 4 gas is decomposed and deposited by the plasma CVD method,
A p-type amorphous Si film 11 having a film thickness of about 5 μm is formed. By annealing this film 11 at 600 ° C.,
Si wafer existing in opening 7 of oxide film 2 (crystal part)
Using as a seed, epitaxial growth is performed while dehydrogenating to form a p-type impurity low-concentration layer region 3 having uniform and regular crystal grains with a grain size of about 30 μm in accordance with an opening interval of 30 μm. Subsequently, the same processing as in Example 1 was performed to complete the solar cell element.

【0019】次に本発明の第3実施例について説明す
る。太陽電池素子は、入射光の表面反射を低減させ、出
力を向上させるため、表面にピラミッド状の凹凸を全面
に形成させたテクスチャ構造を採用する場合がある。本
実施例は、本発明をこのテクスチャ構造の太陽電池素子
に適用したものである。
Next, a third embodiment of the present invention will be described. A solar cell element may employ a textured structure in which pyramid-shaped irregularities are formed on the entire surface in order to reduce surface reflection of incident light and improve output. In this example, the present invention is applied to a solar cell element having this texture structure.

【0020】図4は本実施例の太陽電池素子の断面図で
ある。フォトリソグラフィ工程を用いた規則的なテクス
チャ構造においては、図5に示すように、p型Siウエ
ハ1上に酸化膜2を形成し、この酸化膜2に対して、ピ
ラミッドの壁面中央に開口部7を形成する。そして、こ
の酸化膜2上にアモルファスSi膜を形成し、アニール
することによりp型ウエハ1の結晶性を種として徐々に
周囲の酸化膜2上へ結晶成長する。そして、隣接する開
口部7より成長した結晶部分と接することにより結晶成
長は停止し、規則的で三角形状の粒界8を有するp型不
純物低濃度層領域3が形成される。その他の構成は、第
1実施例と同様である。
FIG. 4 is a sectional view of the solar cell element of this embodiment. In the regular texture structure using the photolithography process, as shown in FIG. 5, an oxide film 2 is formed on a p-type Si wafer 1, and an opening is formed in the center of the wall surface of the pyramid with respect to this oxide film 2. Form 7. Then, an amorphous Si film is formed on the oxide film 2 and annealed to gradually grow crystals on the surrounding oxide film 2 using the crystallinity of the p-type wafer 1 as a seed. Then, the crystal growth is stopped by coming into contact with the crystal part grown from the adjacent opening 7, and the p-type impurity low concentration layer region 3 having the regular and triangular grain boundaries 8 is formed. Other configurations are similar to those of the first embodiment.

【0021】このように、テクスチャ構造を形成したS
iウエハ1においても、規則的で粒径の大きいp型不純
物低濃度層領域3の形成が可能であり、図1の構造を有
する太陽電池素子と同様に出力を大きく向上させること
が可能となる。
As described above, the S having the texture structure is formed.
Also in the i-wafer 1, it is possible to form the p-type impurity low-concentration layer region 3 having a regular and large grain size, and it is possible to greatly improve the output similarly to the solar cell element having the structure of FIG. .

【0022】次に、本実施例の太陽電池素子の製造方法
を具体的に説明する。本実施例では、第1実施例と同様
のp型Siウエハ1にフォトリソグラフィ工程およびア
ルカリ選択性エッチング法を用いて、底辺20μmの正
四角錐よりなる均一なピラミッド型テクスチャ構造を形
成する。ここに、酸化膜2を約400nm程度形成す
る。次に、この酸化膜2にフォトリソグラフィ工程を用
いて、図5に示すように、一辺が3μmの三角形状の開
口部7を10μm間隔で、加工形成する。次に、B2
6 を微量に含有したSiH4 ガスを、プラズマCVD法
により分解堆積させ、膜厚約5μmのp型アモルファス
Si膜11を形成する。この膜11を600℃でアニー
ルすることにより、酸化膜2の開口部7に存在するSi
ウエハ(結晶部分)を種として、脱水素化しながらエピ
タキシャル成長させ、開口部間隔10μmおよびテクス
チャ構造の四角錐形状に合わせて粒径約10μmの均一
で規則正しい結晶粒を有するp型不純物低濃度層領域3
を形成する。続いて、第1実施例と同様の加工を施し、
太陽電池素子を完成させた。
Next, the method for manufacturing the solar cell element of this embodiment will be specifically described. In the present embodiment, a uniform pyramid-shaped texture structure having a base of 20 μm and a regular square pyramid is formed on the p-type Si wafer 1 similar to the first embodiment by using a photolithography process and an alkali selective etching method. The oxide film 2 is formed here with a thickness of about 400 nm. Next, as shown in FIG. 5, triangular openings 7 having a side length of 3 μm are processed and formed at intervals of 10 μm on the oxide film 2 by a photolithography process. Next, B 2 H
SiH 4 gas containing a small amount of 6 is decomposed and deposited by a plasma CVD method to form a p-type amorphous Si film 11 having a film thickness of about 5 μm. By annealing this film 11 at 600 ° C., the Si existing in the opening 7 of the oxide film 2
A p-type impurity low-concentration layer region 3 having uniform and regular crystal grains with a gap between openings of 10 μm and a grain size of about 10 μm in accordance with the square pyramid shape of the texture structure is epitaxially grown using a wafer (crystal portion) as a seed.
To form. Then, the same processing as in the first embodiment is performed,
The solar cell element was completed.

【0023】表1は、上記第1ないし第3実施例におけ
るp型不純物低濃度層領域を有する素子構成と、前記領
域を有しない従来例による素子構成とを示し、合わせて
出力特性を比較したものである。
Table 1 shows the device structure having the p-type impurity low concentration layer region in the first to third embodiments and the device structure of the conventional example not having the region, and the output characteristics are also compared. It is a thing.

【0024】[0024]

【表1】 この表1から分かるように、従来例においては、基板比
抵抗を、従来例1の2.0Ω・cmから従来例2の0.
08Ω・cmに減少させることにより、1.33Wから
1.08Wへ出力特性が大きく減少した。しかし、本発
明の第1実施例では、不純物低濃度層領域を設けること
により、逆に1.48Wへ出力特性が向上した。さら
に、粒径を拡大した第2実施例においては、1.52W
へ出力特性がさらに向上し、本発明の有効性が確認され
た。また、基板にテクスチャ構造を形成した第3実施例
においては、1.75Wへ出力特性が大きく向上するこ
とが確認された。
[Table 1] As can be seen from Table 1, in the conventional example, the substrate specific resistance varies from 2.0 Ω · cm in the conventional example 1 to 0.
The output characteristic was greatly reduced from 1.33 W to 1.08 W by reducing the voltage to 08 Ω · cm. However, in the first embodiment of the present invention, by providing the impurity low concentration layer region, conversely, the output characteristics are improved to 1.48 W. Furthermore, in the second embodiment in which the particle size is expanded, 1.52 W
The output characteristics were further improved, and the effectiveness of the present invention was confirmed. It was also confirmed that in the third example in which the texture structure was formed on the substrate, the output characteristics were greatly improved to 1.75W.

【0025】[0025]

【発明の効果】以上説明したように本発明によれば、単
結晶シリコン基板と非単結晶シリコン層の間に、微小な
開口部を有する中間層を設け、この中間層の開口部より
非単結晶シリコンが結晶成長するようにしたので、受光
面側に結晶粒径の大きい不純物低濃度層を形成でき、太
陽電池素子の出力特性を向上させることができるという
効果がある。
As described above, according to the present invention, an intermediate layer having a minute opening is provided between the single crystal silicon substrate and the non-single crystal silicon layer, and the non-single layer is opened from the opening of the intermediate layer. Since the crystalline silicon is allowed to grow into crystals, it is possible to form an impurity low-concentration layer having a large crystal grain size on the light-receiving surface side, and it is possible to improve the output characteristics of the solar cell element.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の太陽電池素子の断面図で
ある。
FIG. 1 is a sectional view of a solar cell element according to a first embodiment of the present invention.

【図2】図1における酸化膜を示す平面図である。FIG. 2 is a plan view showing an oxide film in FIG.

【図3】図1の太陽電池素子の製造方法を示す説明図で
ある。
FIG. 3 is an explanatory view showing a method for manufacturing the solar cell element of FIG.

【図4】本発明の第3実施例の太陽電池素子の断面図で
ある。
FIG. 4 is a sectional view of a solar cell element according to a third embodiment of the present invention.

【図5】図4における酸化膜を示す斜視図である。5 is a perspective view showing an oxide film in FIG.

【符号の説明】[Explanation of symbols]

1 p型Siウエハ 2 酸化膜 3 p型不純物低濃度層領域 4 受光面n層 5 表面クシ型電極 6 裏面電極 7 開口部 8 結晶粒界 1 p-type Si wafer 2 oxide film 3 p-type impurity low-concentration layer region 4 light-receiving surface n layer 5 front surface comb-type electrode 6 back electrode 7 opening 8 crystal grain boundary

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 単結晶シリコン基板の受光面側に不純物
低濃度の非単結晶シリコン層を形成し、この非単結晶シ
リコン層を結晶成長させた基板を用いる太陽電池素子に
おいて、前記単結晶シリコン基板と非単結晶シリコン層
の間に、微小な開口部を有する中間層を設け、前記開口
部より前記非単結晶シリコンが結晶成長するように、前
記開口部を介して前記単結晶シリコン基板と非単結晶シ
リコン層とを接触させたことを特徴とする太陽電池素
子。
1. A solar cell element using a substrate in which a non-single-crystal silicon layer having a low impurity concentration is formed on a light-receiving surface side of a single-crystal silicon substrate, and the non-single-crystal silicon layer is crystal-grown. An intermediate layer having a minute opening is provided between the substrate and the non-single crystal silicon layer, and the single crystal silicon substrate is provided through the opening so that the non-single crystal silicon grows through the opening. A solar cell element, which is in contact with a non-single crystal silicon layer.
JP05100887A 1993-04-27 1993-04-27 Solar cell element Expired - Fee Related JP3094730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05100887A JP3094730B2 (en) 1993-04-27 1993-04-27 Solar cell element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05100887A JP3094730B2 (en) 1993-04-27 1993-04-27 Solar cell element

Publications (2)

Publication Number Publication Date
JPH06310739A true JPH06310739A (en) 1994-11-04
JP3094730B2 JP3094730B2 (en) 2000-10-03

Family

ID=14285844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05100887A Expired - Fee Related JP3094730B2 (en) 1993-04-27 1993-04-27 Solar cell element

Country Status (1)

Country Link
JP (1) JP3094730B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017069588A (en) * 2010-07-02 2017-04-06 サンパワー コーポレイション Method of manufacturing solar cell with tunnel dielectric layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017069588A (en) * 2010-07-02 2017-04-06 サンパワー コーポレイション Method of manufacturing solar cell with tunnel dielectric layer

Also Published As

Publication number Publication date
JP3094730B2 (en) 2000-10-03

Similar Documents

Publication Publication Date Title
JP2740337B2 (en) Photovoltaic element
JP2740284B2 (en) Photovoltaic element
JPH04184979A (en) Solar cell and manufacture of solar cell
JPH04245683A (en) Manufacture of solar cell
US5103851A (en) Solar battery and method of manufacturing the same
JP2005159312A (en) Base material of polycrystalline silicon substrate for solar battery, and the polycrystalline silicon substrate for solar battery
JPH04130671A (en) Photovoltaic device
JPH0864851A (en) Photovoltaic element and fabrication thereof
JPH11135818A (en) Solar cell
JP3094730B2 (en) Solar cell element
JPS62209871A (en) Manufacture of photovoltaic device
Slaoui et al. Crystalline silicon thin films: A promising approach for photovoltaics?
JP3102772B2 (en) Method for producing silicon-based semiconductor thin film
JP2667218B2 (en) Solar cell and method of manufacturing the same
JP2002076396A (en) Multi-junction thin-film solar cell and manufacturing method thereof
JP3197674B2 (en) Photovoltaic device
JP2002217433A (en) Semiconductor device
JP2846704B2 (en) Photoelectric conversion element
JPH0888189A (en) Thin film polycrystalline semiconductor and its manufacture, and photovoltaic device and its manufacture
JP2833924B2 (en) Crystal solar cell and method of manufacturing the same
JPH04230081A (en) Photoelectric conversion device
JPH07135332A (en) Fabrication of photovoltaic power element
JPH04229664A (en) Photoelectromotive force device and its manufacture
JP2001168356A (en) Method of manufacturing solar battery cell
JP2732316B2 (en) Method of forming thin-film polycrystalline silicon

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070804

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees