JPH06308340A - Production of periodic inversion type photorefractive waveguide - Google Patents

Production of periodic inversion type photorefractive waveguide

Info

Publication number
JPH06308340A
JPH06308340A JP9972293A JP9972293A JPH06308340A JP H06308340 A JPH06308340 A JP H06308340A JP 9972293 A JP9972293 A JP 9972293A JP 9972293 A JP9972293 A JP 9972293A JP H06308340 A JPH06308340 A JP H06308340A
Authority
JP
Japan
Prior art keywords
single crystal
electric field
crystal
poling
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9972293A
Other languages
Japanese (ja)
Inventor
Satoru Nakao
知 中尾
Kazuhiko Tomomatsu
和彦 友松
Shoji Mimura
彰治 味村
Akito Kurosaka
昭人 黒坂
Haruo Tominaga
晴夫 冨永
Kenichi Kitayama
研一 北山
Fumihiko Ito
文彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Fujikura Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Nippon Telegraph and Telephone Corp filed Critical Fujikura Ltd
Priority to JP9972293A priority Critical patent/JPH06308340A/en
Publication of JPH06308340A publication Critical patent/JPH06308340A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Holo Graphy (AREA)

Abstract

PURPOSE:To provide the process for production of the periodic inversion type photorefractive waveguide capable of preventing the generation of cracks during working and lowering a defective rate, thereby decreasing the man-hours for mending, executing poling regardless of the sizes and size ratios of crystals and easily producing periodic inversion waveguides at low cost. CONSTITUTION:A BaTiO3 single crystal 10 worked to a prescribed shape is heated to >=130 deg.C in silicone oil 14 and is cooled while a uniform electric field is impressed thereto until the temp. passes the Curie point in a first electrical poling treatment stage. The single crystal is then brought into contact with periodically arranged plural electrodes and alternately inverted electric fields is impressed thereto between the adjacent electrodes at >=80 to <130 deg.C, by which the polarization directions of the single crystal are periodically inverted and the polarization inversion structure based on the electric field pattern is obtd. in a second electrical poling treatment stage. As a result, the periodic inversion type photorefractive waveguide is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はフォトリフラクティブ
(photo-refractive ;光屈折)効果により光信号を増幅
する作用を有すると共に、またホログラムの記録等によ
る画像処理にも使用されるチタン酸バリウム(BaTi
3 )光学単結晶に関し、特にこのチタン酸バリウム光
学単結晶により構成され、周期的に分極方向を反転させ
た構造を有する周期反転型フォトリフラクティブ導波路
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a function of amplifying an optical signal by a photo-refractive effect and is also used for image processing such as hologram recording.
The present invention relates to an O 3 ) optical single crystal, and more particularly to a method for manufacturing a period-inverted photorefractive waveguide having a structure in which the polarization direction is periodically inverted, which is composed of the barium titanate optical single crystal.

【0002】[0002]

【従来の技術】近年、フォトリフラクティブ(以下、P
Rという)効果を応用した光増幅及びホログラム記録等
の研究が盛んに行われている。その中で、PR導波路と
して有効作用長を長くとり、効率を高めた周期的分極反
転型の導波路が考案されている。LiNbO3 単結晶に
おいては、このような反転構造は、不純物及び欠陥の拡
散により分極が反転する性質を利用して、結晶の一部分
に選択的に不純物を拡散させることによって、任意の反
転周期で得ることができる(例えば、遠藤ら 1992年春
応物講演予稿集31a-G-6及びWebjorn et al. IEEE Photo
nics Technology Letters Vol.1, No.10, 1989年)。
2. Description of the Related Art In recent years, photorefractive (hereinafter referred to as P
Researches on optical amplification, hologram recording, and the like, which apply the (R) effect, have been actively conducted. Among them, a periodic polarization inversion type waveguide has been devised as a PR waveguide, which has a long effective working length and improves efficiency. In a LiNbO 3 single crystal, such an inversion structure is obtained at an arbitrary inversion period by selectively diffusing an impurity in a part of the crystal by utilizing the property that polarization is inverted by diffusion of impurities and defects. (For example, Endo et al., 1992 Spring Symposium Proceedings 31a-G-6 and Webjorn et al. IEEE Photo
nics Technology Letters Vol.1, No.10, 1989).

【0003】BaTiO3 単結晶においても、ポーリン
グ時に空間的に反転した電場を印加することによって周
期的分極反転構造を持った導波路が製作されたという報
告がある(伊藤等 Appl. Phys. LeH. Vol.60, No.7, 19
92年)。
In BaTiO 3 single crystal as well, it has been reported that a waveguide having a periodically poled structure was produced by applying a spatially inverted electric field during poling (Ito et al. Appl. Phys. LeH. Vol.60, No.7, 19
1992).

【0004】従来、このようなBaTiO3単結晶の分
極反転型導波路は、図6(a)乃至(c)に示すよう
に、機械的ポーリングと、電気的ポーリングを組み合わ
せて、以下のようなプロセスで作成されている。先ず、
所定の寸法に成形加工されたBaTiO3 単結晶1は図
6(a)に示すように90°ドメイン2と 180°ドメイン
3を有しているので、この単結晶1に対して、図8
(a)に示すように、一軸圧縮応力9を加え、90°ドメ
イン2を除去する(機械的ポーリング)。
Conventionally, such a polarization-inverted waveguide of BaTiO 3 single crystal, as shown in FIGS. 6 (a) to 6 (c), combines mechanical poling and electrical poling to obtain the following structure. Created in process. First,
The BaTiO 3 single crystal 1 formed into a predetermined size has 90 ° domains 2 and 180 ° domains 3 as shown in FIG. 6 (a).
As shown in (a), a uniaxial compressive stress 9 is applied to remove the 90 ° domain 2 (mechanical poling).

【0005】図6(b)に示すように、機械的ポーリン
グを施した後の結晶4には 180°ドメイン5のみが残留
しているが、次にこの結晶の光伝搬方向となる方向に配
列した複数個の電極6を結晶を挟むようにして接触さ
せ、隣接電極間で極性が逆になるように高圧電源を接続
する。こうして、光伝搬方向に交互に反転した電場を結
晶に印加することにより、図6(c)に示すように、電
場の方向に従って分極方向が反転したドメイン構造を持
つ結晶7を作成することができる。
As shown in FIG. 6 (b), only 180 ° domains 5 remain in the crystal 4 after mechanical poling, but the crystals are arranged in the direction of the light propagation direction of this crystal. The plurality of electrodes 6 are brought into contact with each other with the crystal sandwiched therebetween, and a high voltage power source is connected so that the polarities of the adjacent electrodes are reversed. In this way, by applying an electric field that is alternately inverted in the light propagation direction to the crystal, a crystal 7 having a domain structure in which the polarization direction is inverted according to the direction of the electric field can be created as shown in FIG. 6C. .

【0006】[0006]

【発明が解決しようとする課題】しかしながら、BaT
iO3 単結晶は脆い材料であるため、機械加工中に破損
し易く、特に、大きな応力を印加する機械的ポーリング
においては、細心の注意が必要である。従来、数mm角の
大きさの結晶の機械的ポーリングを行った場合には、図
7に示すように約半数の結晶にクラック8が発生するの
で、ポーリング後、研磨を行ってクラック8の部分を削
り取っていた。
[Problems to be Solved by the Invention] However, BaT
Since the iO 3 single crystal is a brittle material, it is easily broken during machining, and special attention is required especially in mechanical poling applying a large stress. Conventionally, when mechanical poling of crystals having a size of several mm square is performed, cracks 8 are generated in about half of the crystals as shown in FIG. 7. Therefore, after poling, polishing is performed to make cracks 8 Was being scraped off.

【0007】このようなクラックの発生は、導波路がよ
り細くなると致命的な不良となりかねない。また、単結
晶の長辺と短辺の比が10:1を超えると、図8(b)
に示すように結晶がたわむため、結晶1の軸に沿って圧
縮応力9を加えることが困難になり、もはや機械的ポー
リングによって90°ドメインを除去することができなく
なる。そのため、従来はまず結晶を寸法比が10:1未
満になるように大きめ(太め)に成形し、機械的ポーリ
ングを行った後、最終寸法に再研磨する必要があり、導
波路の製作に多大な時間を費やしていた。
The occurrence of such a crack may cause a fatal defect when the waveguide becomes thinner. Moreover, when the ratio of the long side to the short side of the single crystal exceeds 10: 1, FIG.
The bending of the crystal makes it difficult to apply a compressive stress 9 along the axis of the crystal 1 and the 90 ° domains can no longer be removed by mechanical poling. Therefore, conventionally, it is necessary to first form a crystal to a large size (thickness) so that the size ratio is less than 10: 1, perform mechanical poling, and then re-polish it to the final size, which is very difficult to manufacture a waveguide. Was spending a lot of time.

【0008】本発明はかかる問題点に鑑みてなされたも
のであって、加工中のクラックの発生を防止して不良率
を低下し、これにより手直し工数を減少させると共に、
結晶の寸法及び寸法比に拘らずポーリングを行うことが
でき、周期反転導波路を容易に低コストで製造すること
ができる周期反転型フォトリフラクティブ導波路の製造
方法を提供することを目的とする。
The present invention has been made in view of the above problems, and prevents the occurrence of cracks during processing to reduce the defective rate, thereby reducing the number of repairing steps and
An object of the present invention is to provide a method for manufacturing a period-inverted photorefractive waveguide that can perform poling regardless of the size and size ratio of a crystal and can easily manufacture a period-inverted waveguide at low cost.

【0009】[0009]

【課題を解決するための手段】本発明に係る周期反転型
フォトリフラクティブ導波路の製造方法は、所定の形状
に加工されたBaTiO3 単結晶を130℃以上に加熱し
て一様な電場を印加し冷却してキューリー点を通過させ
る第1の電気的ポーリング処理工程と、周期的に配列さ
れた複数の電極を接触させ、80℃以上130℃未満の温度
で隣接電極間で交互に反転した電場を印加することによ
り、前記単結晶の分極方向を周期的に反転させ電場パタ
ーンに基く分極反転構造を形成する第2の電気的ポーリ
ング処理工程とを有することを特徴とする。
According to the method of manufacturing a periodic inversion type photorefractive waveguide according to the present invention, a BaTiO 3 single crystal processed into a predetermined shape is heated to 130 ° C. or higher and a uniform electric field is applied. Then, the first electric poling treatment step of cooling and passing through the Curie point is brought into contact with a plurality of electrodes arranged periodically, and an electric field is alternately inverted between adjacent electrodes at a temperature of 80 ° C or higher and lower than 130 ° C. Is applied to periodically invert the polarization direction of the single crystal to form a domain-inverted structure based on an electric field pattern.

【0010】[0010]

【作用】BaTiO3単結晶を所定の導波路の形状に加
工した後、第1の電気的ポーリング処理工程において、
130℃以上に加温することにより90°ドメインと180°ド
メインの壁の移動度を向上させておき、一様な直流電場
を結晶全体に印加する。そして、一様な直流電場中で、
結晶を臨界温度Tc以上の温度からゆっくり冷却するこ
とにより、90°ドメインと180°ドメインの双方を除去
し、全てのドメインを電場方向に揃える。この冷却速度
としては、1℃/時が適当である。
After processing the BaTiO 3 single crystal into a predetermined waveguide shape, in the first electrical poling treatment step,
The wall mobility of the 90 ° domain and the 180 ° domain is improved by heating above 130 ° C, and a uniform DC electric field is applied to the entire crystal. And in a uniform DC electric field,
By slowly cooling the crystal from a temperature equal to or higher than the critical temperature Tc, both the 90 ° domain and the 180 ° domain are removed, and all the domains are aligned in the electric field direction. A suitable cooling rate is 1 ° C./hour.

【0011】こうして、第1の電気的ポーリングによっ
て単分域化した単結晶に、80℃以上130℃未満の温度で
反転電場を印加する。この温度域では180°ドメイン壁
のみが動き易く、この温度域で反転電場を印加すること
により、局所的に180°ドメインを発生させて分極方向
を逆転し、所望の周期的反転ドメイン構造を持つ結晶を
得ることができる。このように、90°ドメインと180°
ドメイン、及び180°ドメインのみを分離して電気的に
ポーリングする技術と、それらの組み合わせにより、機
械的ポーリングが不用となり、それによるクラックの発
生及び加工精度上からの結晶寸法への制約という問題を
解消することができる。また、本発明方法の温度条件で
電気的ポーリングすることにより、有害な90°ドメイン
を発生又は残留させることなく、理想的な反転構造を持
つBaTiO3単結晶導波路を製造できる。
In this way, an inversion electric field is applied to the single crystal that has been single-domained by the first electric poling at a temperature of 80 ° C. or higher and lower than 130 ° C. In this temperature range, only the 180 ° domain wall is easy to move, and by applying an inversion electric field in this temperature range, the 180 ° domain is locally generated and the polarization direction is reversed, and it has the desired periodic inversion domain structure. Crystals can be obtained. Thus, 90 ° domain and 180 °
The technique of electrically poling only the domain and 180 ° domain separately, and the combination of them, makes mechanical poling unnecessary, resulting in cracks and constraints on crystal size due to processing accuracy. It can be resolved. Further, by electrically poling under the temperature condition of the method of the present invention, a BaTiO 3 single crystal waveguide having an ideal inversion structure can be manufactured without generating or leaving harmful 90 ° domains.

【0012】[0012]

【実施例】以下、本発明の実施例についてその比較例と
比較して具体的に説明する。実施例1 育成したBaTiO3単結晶から直交する結晶主軸に沿
って、図1に示すように0.5mm×0.5mm×6mmの角柱状の
結晶10を切り出した。但し、角柱を構成する面が結晶
面(100)又は(001)面から30°以内で傾いていても、
本発明を適用することができる。切り出したままの結晶
中には細かいドメイン構造が存在し、結晶は不透明であ
った。先ず、図2に示すように、第1のポーリング工程
として切出した結晶10の1対の表裏面に両側から電極
11を接触させ、両電極11にリード12を接続した
後、図3に示すように、シリコンオイル14中に浸漬し
てポーリングを行った。シリコンオイル14をヒータ1
5により140℃迄加熱し、結晶10を挟む電極11間に2
50Vの電圧を印加した。次いで、そのままシリコンオイ
ルの温度をゆっくり降下させ、120℃に降温したところ
でヒータ15の電源を切り、続いて電極11間の電圧を
0に戻した。結晶10を室温まで冷却した後、結晶10
を取り出し、偏光顕微鏡で観察したところ、結晶中の90
°ドメイン構造は消滅し、結晶10は透明になってい
た。
EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples. Example 1 A 0.5 mm × 0.5 mm × 6 mm prismatic crystal 10 was cut out from the grown BaTiO 3 single crystal along the orthogonal crystal main axis as shown in FIG. However, even if the planes that make up the prism are tilted within 30 ° from the crystal plane (100) or (001) plane,
The present invention can be applied. There was a fine domain structure in the as-cut crystal, and the crystal was opaque. First, as shown in FIG. 2, electrodes 11 are contacted from both sides to a pair of front and back surfaces of a crystal 10 cut out as a first poling step, leads 12 are connected to both electrodes 11, and then as shown in FIG. Then, it was dipped in silicone oil 14 to perform poling. Heat the silicon oil 14 to the heater 1
It is heated up to 140 ℃ by 5 and 2 between the electrodes 11 that sandwich the crystal 10.
A voltage of 50V was applied. Then, the temperature of the silicone oil was slowly lowered as it was, and when the temperature was lowered to 120 ° C., the power of the heater 15 was turned off, and then the voltage between the electrodes 11 was returned to zero. After cooling the crystal 10 to room temperature, the crystal 10
It was taken out and observed with a polarizing microscope.
The domain structure disappeared and the crystal 10 became transparent.

【0013】次に、第2のポーリング工程として、周期
的反転分極構造を形成するため3個の分割電極を結晶表
面に配置した。電極の寸法は結晶の長さ方向に対して、
1.3mm,2.6mm,1.3mmで、隣接する電極の間隔は0.4mmであ
る。これらの分割電極は金をスパッタリングすることに
より形成した。そして、各電極にリード線を接続した
後、シリコンオイル中に浸漬し、125℃に加温した、各
電極間に隣接する電極同士で極性が反転した電場が発生
するように電極に電源を接続し電圧を印加した。最大10
0Vの電圧を10時間印加した後、室温に降温させて結晶
を取り出した。HClエッチング法によりポーリング後
の結晶の180°ドメイン構造を調べたところ、明確に3
つの領域に分割された反転構造が形成されていることを
確認した。また、偏光顕微鏡で観察したところ、結晶内
に視認可能な90°ドメインは発生していなかった。
Next, as a second poling step, three divided electrodes were arranged on the crystal surface in order to form a periodically inverted polarization structure. The dimensions of the electrodes are
1.3mm, 2.6mm, 1.3mm, the distance between adjacent electrodes is 0.4mm. These divided electrodes were formed by sputtering gold. Then, after connecting the lead wire to each electrode, soak it in silicone oil and heat it to 125 ℃, connect the power supply to the electrodes so that the electric field with the polarity reversed between adjacent electrodes between each electrode is generated. Then, a voltage was applied. Up to 10
After applying a voltage of 0 V for 10 hours, the temperature was lowered to room temperature and the crystals were taken out. When the 180 ° domain structure of the crystal after poling was examined by the HCl etching method, it was clearly found that
It was confirmed that an inversion structure divided into two regions was formed. Also, when observed with a polarizing microscope, no visible 90 ° domain was generated in the crystal.

【0014】また、実際に2光波混合の実験を行い増幅
率を調べたところ、同一の材料から切り出したバルク結
晶で得られた増幅率とほぼ同等の3.0cm-1と極めて高い
値が得られた。なお、この光増幅率Г(cm-1)の値は下
記数式1により定義されるもので、以下のように測定し
て求めた。また、このときの信号光とポンプ光の結晶内
での交差角θは18°とした。
Further, when the two-wave mixing experiment was actually conducted to examine the amplification factor, an extremely high value of 3.0 cm −1, which is almost the same as the amplification factor obtained with the bulk crystal cut out from the same material, was obtained. It was The value of this optical amplification factor Γ (cm −1 ) is defined by the following mathematical formula 1, and was determined by the following measurement. Further, the intersection angle θ of the signal light and the pump light in the crystal at this time was set to 18 °.

【0015】[0015]

【数1】Γ(cm-1)=ln(I/I0)/L 但し、I0:信号光の入射強度 I:増幅された信号光強度 L:光伝搬方向の結晶の長さ。[Number 1] Γ (cm -1) = ln ( I / I 0) / L where, I 0: incident intensity of the signal light I: amplified signal light intensity L: length of the optical propagation direction of the crystal.

【0016】先ず、図4に示すように、導波路16に信
号光17を入射し、導波路結晶を通過して出てきた光の
強度を検出器18で受光し、入射光強度I0を測定す
る。次に、図5に示すように、ポンプ光19を導波路に
入射して、PR効果により結晶中でポンプ光と結合して
強められた信号光、即ち、増幅された信号光の強度Iを
測定し、前記式1により導波路の長さLを6mmとして光
増幅率Γを求めた。
First, as shown in FIG. 4, the signal light 17 is incident on the waveguide 16, and the intensity of the light that has passed through the waveguide crystal is received by the detector 18 to determine the incident light intensity I 0 . taking measurement. Next, as shown in FIG. 5, the pump light 19 is incident on the waveguide, and the intensity I of the amplified signal light, that is, the intensity I of the amplified signal light is increased by combining with the pump light in the crystal due to the PR effect. The measurement was performed, and the optical amplification factor Γ was obtained by the above equation 1 with the length L of the waveguide set to 6 mm.

【0017】(比較例1)第1のポーリング工程とし
て、シリコンオイルの加熱温度を125℃としたこと以外
は実施例1と同一条件でポーリングを行った後、偏光顕
微鏡で観察したところ、結晶中に90°ドメインが残留し
ており、その後、第2のポーリングを実施例1と同一条
件で行ったが、第1のポーリングで残留した90°ドメイ
ンは消えなかった。2光波混合による光増幅率を測定し
たところ、光増幅率Γは約0cm-1であった。このよう
に、光増幅率が極めて小さいのは、90°ドメインが存在
したため伝搬する光が大部分散乱されたためと考えられ
る。
(Comparative Example 1) As a first poling step, poling was carried out under the same conditions as in Example 1 except that the heating temperature of the silicon oil was 125 ° C., and then observed with a polarizing microscope. The 90 ° domain remained in the first poling, but the second poling was performed under the same conditions as in Example 1, but the 90 ° domain remaining in the first poling did not disappear. When the optical amplification factor by the two-wave mixing was measured, the optical amplification factor Γ was about 0 cm −1 . Thus, the reason why the optical amplification factor is extremely small is considered to be that most of the propagating light was scattered due to the existence of the 90 ° domain.

【0018】(比較例2)第2のポーリング工程におい
て、シリコンオイルの加熱温度を135℃とし、他は実施
例1と同一条件でポーリングを行ったところ、隣接する
電極と電極との間の結晶中に90°ドメインが発生した。
(Comparative Example 2) In the second poling step, when the heating temperature of the silicon oil was set to 135 ° C and poling was carried out under the same conditions as in Example 1, except that crystals between adjacent electrodes were formed. A 90 ° domain occurred inside.

【0019】この結晶の2光波混合による増幅率Γは約
0cm-1であった。 (比較例3)第2のポーリング工程において、シリコン
オイルの加熱温度を60℃とし、他は実施例1と同一条件
でポーリングを行った。HClエッチング法により180
°ドメイン構造を調べたところ、細かいドメインが多く
存在しており、狙い通りの完全な3分割構造にはなって
いなかった。この結晶の光増幅率を2光波混合によって
測定した結果Γ=1.8cm-1で実施例に比してかなり小さ
な値になった。
The amplification factor Γ of this crystal by two-wave mixing is about
It was 0 cm -1 . (Comparative Example 3) In the second poling step, poling was performed under the same conditions as in Example 1 except that the heating temperature of the silicone oil was 60 ° C. 180 by HCl etching method
° When we investigated the domain structure, we found that there were many fine domains, and it did not have the perfect three-part structure. The optical amplification factor of this crystal was measured by two-wave mixing, and was Γ = 1.8 cm −1 , which was considerably smaller than that of the example.

【0020】[0020]

【発明の効果】以上説明したように、本発明によれば、
第1の電気的ポーリング処理工程では180°ドメイン及
び90°ドメインの双方を除去し、又は発生させることが
でき、第2の電気的ポーリング処理工程では180°ドメ
インだけを除去し、又は発生させることができるため、
効率よく180°ドメインによる分極反転構造を確実に形
成することができる。そして、機械的ポーリングを行わ
ないため、機械的ポーリング時に発生するクラックによ
る不良が解消される。また、ポーリングできる結晶の寸
法及び形状による制約がなくなるという利点もある。
As described above, according to the present invention,
Both the 180 ° domain and the 90 ° domain can be removed or generated in the first electrical poling step, and only the 180 ° domain can be removed or generated in the second electrical poling step. Because you can
A domain-inverted structure with 180 ° domains can be formed reliably and efficiently. Since mechanical polling is not performed, defects due to cracks generated during mechanical polling are eliminated. Further, there is an advantage that there is no restriction due to the size and shape of the crystal that can be poled.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例方法の1工程を示す図である。FIG. 1 is a diagram showing one step of an embodiment method of the present invention.

【図2】本発明の実施例方法の次の1工程を示す図であ
る。
FIG. 2 is a diagram showing the next one step of the method according to the embodiment of the present invention.

【図3】本発明の実施例方法の更に次の1工程を示す図
である。
FIG. 3 is a diagram showing a further next step of the method according to the embodiment of the present invention.

【図4】光増幅率Pの測定方法を示す図である。FIG. 4 is a diagram showing a method for measuring an optical amplification factor P.

【図5】同じく光増幅率Pの測定方法を示す図である。FIG. 5 is a diagram showing a method of measuring the optical amplification factor P of the same.

【図6】従来の方法の1工程を示す図である。FIG. 6 is a diagram showing one step of a conventional method.

【図7】従来技術の欠点を説明する図である。FIG. 7 is a diagram illustrating a drawback of the conventional technique.

【図8】同じく従来技術の欠点を説明する図である。FIG. 8 is a diagram for explaining a drawback of the conventional technique.

【符号の説明】[Explanation of symbols]

1,4,7,10;単結晶 2;90°ドメイン 3,5;180°ドメイン 6,11;電極 14;シリコンオイル 15;ヒータ 16;導波路 17;信号光 19;ポンプ光 1, 4, 7, 10; Single crystal 2; 90 ° domain 3, 5; 180 ° domain 6, 11; Electrode 14; Silicon oil 15; Heater 16; Waveguide 17; Signal light 19; Pump light

───────────────────────────────────────────────────── フロントページの続き (72)発明者 味村 彰治 東京都江東区木場1丁目5番1号 株式会 社フジクラ内 (72)発明者 黒坂 昭人 東京都江東区木場1丁目5番1号 株式会 社フジクラ内 (72)発明者 冨永 晴夫 東京都江東区木場1丁目5番1号 株式会 社フジクラ内 (72)発明者 北山 研一 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 (72)発明者 伊藤 文彦 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shoji Ajimura 1-5-1, Kiba, Koto-ku, Tokyo Fujikura Stock Company (72) Inventor Akito Kurosaka 1-5-1, Kiba, Koto-ku, Tokyo In Fujikura, Ltd. (72) Haruo Tominaga, Inventor Haruo Tominaga 1-5-1, Kiba, Koto-ku, Tokyo In-house Fujikura (72) Kenichi Kitayama 1-1-6, Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Incorporated (72) Inventor Fumihiko Ito 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 所定の形状に加工されたBaTiO3
結晶を130℃以上に加熱して一様な電場を印加し冷却し
てキューリー点を通過させる第1の電気的ポーリング処
理工程と、周期的に配列された複数の電極を接触させ、
80℃以上130℃未満の温度で隣接電極間で交互に反転し
た電場を印加することにより、前記単結晶の分極方向を
周期的に反転させ電場パターンに基く分極反転構造を形
成する第2の電気的ポーリング処理工程とを有すること
を特徴とする周期反転型フォトリフラクティブ導波路の
製造方法。
1. A first electrical poling treatment step in which a BaTiO 3 single crystal processed into a predetermined shape is heated to 130 ° C. or higher, a uniform electric field is applied and cooled to pass a Curie point, and a cycle. A plurality of electrodes arranged in an array,
A second electric field for periodically reversing the polarization direction of the single crystal by applying an electric field which is alternately inverted between adjacent electrodes at a temperature of 80 ° C. or higher and lower than 130 ° C. to form a polarization inversion structure based on the electric field pattern. And a periodic inversion type photorefractive waveguide manufacturing method.
JP9972293A 1993-04-26 1993-04-26 Production of periodic inversion type photorefractive waveguide Pending JPH06308340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9972293A JPH06308340A (en) 1993-04-26 1993-04-26 Production of periodic inversion type photorefractive waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9972293A JPH06308340A (en) 1993-04-26 1993-04-26 Production of periodic inversion type photorefractive waveguide

Publications (1)

Publication Number Publication Date
JPH06308340A true JPH06308340A (en) 1994-11-04

Family

ID=14254973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9972293A Pending JPH06308340A (en) 1993-04-26 1993-04-26 Production of periodic inversion type photorefractive waveguide

Country Status (1)

Country Link
JP (1) JPH06308340A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0960222A1 (en) * 1997-02-12 1999-12-01 THE STATE of ISRAEL Atomic Energy Commission Soreq Nuclear Research Center Fabrication of an invertedly poled domain structure from a ferroelectric crystal
EP0867539A3 (en) * 1997-03-28 2000-05-17 Litton Systems, Inc. Method for poling a ferroelectric crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0960222A1 (en) * 1997-02-12 1999-12-01 THE STATE of ISRAEL Atomic Energy Commission Soreq Nuclear Research Center Fabrication of an invertedly poled domain structure from a ferroelectric crystal
EP0960222A4 (en) * 1997-02-12 2000-05-03 Israel State Fabrication of an invertedly poled domain structure from a ferroelectric crystal
EP0867539A3 (en) * 1997-03-28 2000-05-17 Litton Systems, Inc. Method for poling a ferroelectric crystal

Similar Documents

Publication Publication Date Title
CN1083112C (en) Fabrication of patterned poled dielectric structures and devices
JP4667932B2 (en) Light modulator
EP1015936B1 (en) Method of poling of optical crystals
US20120152892A1 (en) Method for manufacturing optical element
Tasson et al. Piezoelectric study of poling mechanism in lithium niobate crystals at temperature close to the curie point
KR100302203B1 (en) A method of manufacturing thin film of polycrystalline silicon
JP2015098410A (en) Method of producing lithium tantalate single crystal substrate for elastic surface wave element and lithium tantalate single crystal substrate for elastic surface wave element
JPS61252532A (en) Ferroelectric smectic liquid crystal electrooptic device
US20080002120A1 (en) Liquid crystal display device and orientation processing method
JPH06308340A (en) Production of periodic inversion type photorefractive waveguide
JP2561735B2 (en) Liquid crystal display manufacturing method
JP2007033489A (en) Manufacturing method of ferroelectric crystal and electrooptical element
JPH0727936A (en) Production of periodic inversion type photorefractive waveguide
JPH06289442A (en) Production of period inversion type photorefractive waveguide
JPH06199599A (en) Production of barium titanate optical single crystal
US20010055144A1 (en) Production method of light wavelength converting element
RU2411561C1 (en) Method of forming domain structure in single-crystal wafer of nonlinear optical ferroelectric material
JPH0815707A (en) Liquid crystal display element and its production
JPH10330200A (en) Polling of mobile ion distribution in lithium niobate
WO2005124447A1 (en) Production method for polarization inversion unit
RU2233354C1 (en) Process for making piezoelectric multidomain -structure monocrystals for precise positioning devices
RU2827310C1 (en) Method of forming domain structure with 180-degree walls in monocrystalline plate of multiaxial nonlinear optical ferroelectric
JPH0728108A (en) Manufacture of photo-refractive waveguide path of period inversion type
Lu et al. Electro-optic effect and its applications in periodically poled optical superlattice LiNbO/sub 3
US20080160175A1 (en) Method for Preparing a Periodically Poled Structure