JPH0727936A - Production of periodic inversion type photorefractive waveguide - Google Patents
Production of periodic inversion type photorefractive waveguideInfo
- Publication number
- JPH0727936A JPH0727936A JP15338693A JP15338693A JPH0727936A JP H0727936 A JPH0727936 A JP H0727936A JP 15338693 A JP15338693 A JP 15338693A JP 15338693 A JP15338693 A JP 15338693A JP H0727936 A JPH0727936 A JP H0727936A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- electrodes
- crystal
- poling
- domain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はフォトリフラクティブ
(photo-refractive ;光屈折)効果により光信号を増幅
する作用を有すると共に、またホログラムの記録等によ
る画像処理にも使用されるチタン酸バリウム(BaTi
O3 )光学単結晶に関し、特にこのチタン酸バリウム光
学単結晶により構成され、周期的に分極方向を反転させ
た構造を有する周期反転型フォトリフラクティブ導波路
の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a function of amplifying an optical signal by a photo-refractive effect and is also used for image processing such as hologram recording.
The present invention relates to an O 3 ) optical single crystal, and more particularly to a method for manufacturing a period-inverted photorefractive waveguide having a structure in which the polarization direction is periodically inverted, which is composed of the barium titanate optical single crystal.
【0002】[0002]
【従来の技術】近年、フォトリフラクティブ(以下、P
Rという)効果を応用した光増幅及びホログラム記録等
の研究が盛んに行われている。その中で、PR導波路と
して有効作用長を長くとり、効率を高めた周期的分極反
転型の導波路が考案されている。LiNbO3 単結晶に
おいては、このような反転構造は、不純物及び欠陥の拡
散により分極が反転する性質を利用して、結晶の一部分
に選択的に不純物を拡散させることによって、任意の反
転周期で得ることができる。2. Description of the Related Art In recent years, photorefractive (hereinafter referred to as P
Researches on optical amplification, hologram recording, and the like, which apply the (R) effect, have been actively conducted. Among them, a periodic polarization inversion type waveguide has been devised as a PR waveguide, which has a long effective working length and improves efficiency. In a LiNbO 3 single crystal, such an inversion structure is obtained at an arbitrary inversion period by selectively diffusing an impurity in a part of the crystal by utilizing the property that polarization is inverted by diffusion of impurities and defects. be able to.
【0003】BaTiO3 単結晶においても、ポーリン
グ時に空間的に反転した電場を印加することによって周
期的分極反転構造を持った導波路が製作されたという報
告がある(伊藤等 Appl. Phys. Lett. Vol.60, No.7, 1
992年)。In BaTiO 3 single crystal as well, there is a report that a waveguide having a periodically poled structure was produced by applying a spatially inverted electric field during poling (Ito et al. Appl. Phys. Lett. Vol.60, No.7, 1
992).
【0004】従来、このようなBaTiO3単結晶の分
極反転型導波路は、図3に示すように、機械的ポーリン
グと、電気的ポーリングを組み合わせて、以下のような
プロセスで作成されている。先ず、所定の寸法に成形加
工されたBaTiO3 単結晶1は図3の上図に示すよう
に90°ドメイン2と 180°ドメイン3を有しているの
で、この単結晶に対して一軸圧縮を加え、90°ドメイン
2を除去する(機械的ポーリング)。Conventionally, such a polarization-inverted waveguide of BaTiO 3 single crystal has been produced by the following process by combining mechanical poling and electrical poling, as shown in FIG. First, the BaTiO 3 single crystal 1 formed into a predetermined size has a 90 ° domain 2 and a 180 ° domain 3 as shown in the upper diagram of FIG. 3, so uniaxial compression is applied to this single crystal. In addition, 90 ° domain 2 is removed (mechanical poling).
【0005】図3の中図に示すように、機械的ポーリン
グを施した後の結晶4には 180°ドメイン5のみが残留
しているが、次にこの結晶の光伝搬方向となる方向に配
列した複数個の電極6を結晶を挟むようにして接触さ
せ、隣接電極間で極性が逆になるように高圧電源を接続
する。こうして、光伝搬方向に交互に反転した電場を結
晶に印加することにより、電場の方向に従って分極方向
が反転したドメイン構造を持つ結晶7を作成することが
できる(図3の下図)。As shown in the middle diagram of FIG. 3, only 180 ° domains 5 remain in the crystal 4 after mechanical poling, but the crystals are arranged in the direction of the light propagation direction of this crystal. The plurality of electrodes 6 are brought into contact with each other with the crystal sandwiched therebetween, and a high voltage power source is connected so that the polarities of the adjacent electrodes are reversed. In this way, by applying to the crystal an electric field that is alternately inverted in the light propagation direction, a crystal 7 having a domain structure in which the polarization direction is inverted according to the direction of the electric field can be created (lower diagram of FIG. 3).
【0006】[0006]
【発明が解決しようとする課題】しかしながら、BaT
iO3 単結晶は脆い材料であるため、機械加工中に破損
し易く、特に、大きな応力を印加する機械的ポーリング
においては、細心の注意が必要である。従来、数mm角の
大きさの結晶の機械的ポーリングを行った場合には、図
4に示すように約半数の結晶にクラック8が発生するの
で、ポーリング後、研磨を行ってクラック8の部分を削
り取っていた。[Problems to be Solved by the Invention] However, BaT
Since the iO 3 single crystal is a brittle material, it is easily broken during machining, and special attention is required especially in mechanical poling applying a large stress. Conventionally, when mechanical poling of a crystal with a size of several mm square is performed, cracks 8 are generated in about half of the crystals as shown in FIG. 4. Therefore, after poling, polishing is performed to polish cracks 8 Was being scraped off.
【0007】このようなクラックの発生は、導波路がよ
り細くなると致命的な不良となりかねない。また、単結
晶の長辺と短辺の比が10:1を超えると図5に示すよ
うに結晶1の軸に沿って圧縮応力9を加えることが困難
になり、もはや機械的ポーリングによって90°ドメイン
を除去することができなくなる。そのため、従来はまず
結晶を寸法比が10:1未満になるように大きめ(太
め)に成形し、機械的ポーリングを行った後、最終寸法
に再研磨する必要があり、導波路の製作に多大な時間を
費やしていた。The occurrence of such a crack may cause a fatal defect when the waveguide becomes thinner. If the ratio of the long side to the short side of the single crystal exceeds 10: 1, it becomes difficult to apply compressive stress 9 along the axis of the crystal 1 as shown in FIG. You will not be able to remove the domain. Therefore, conventionally, it is necessary to first form a crystal to a large size (thickness) so that the size ratio is less than 10: 1, perform mechanical poling, and then re-polish it to the final size, which is very difficult to manufacture a waveguide. Was spending a lot of time.
【0008】本発明はかかる問題点に鑑みてなされたも
のであって、加工中のクラックの発生を防止して不良率
を低下させ、これにより手直し工数を減少させると共
に、結晶の寸法及び寸法比に拘らずポーリングを行うこ
とができ、周期反転導波路を容易に低コストで製造する
ことができ、またその分極パターンの微細化も容易な周
期反転型フォトリフラクティブ導波路の製造方法を提供
することを目的とする。The present invention has been made in view of the above problems, and prevents the occurrence of cracks during processing to reduce the defective rate, thereby reducing the number of repair steps and the size and size ratio of crystals. To provide a method for manufacturing a period-inverted photorefractive waveguide which can perform poling regardless of the above, can easily produce a period-inverted waveguide at low cost, and can easily miniaturize its polarization pattern. With the goal.
【0009】[0009]
【課題を解決するための手段】本発明に係る周期反転型
フォトリフラクティブ導波路の製造方法は、所定の形状
に加工されたBaTiO3 単結晶に対し、この単結晶を
挟むようにその1対の面上に周期的に配列された複数の
電極を接触させ、一方の面上の電極の極性を全て+に
し、他方の面上の電極の極性を−として前記単結晶に一
様な電場を印加して単分域化する工程と、任意の前記電
極の極性を反転して前記単結晶中に部分的に反転分域を
発生させる工程とを有することを特徴とする。A method of manufacturing a periodic reversal type photorefractive waveguide according to the present invention is directed to a pair of BaTiO 3 single crystals processed into a predetermined shape so as to sandwich the single crystal. Applying a uniform electric field to the single crystal by contacting a plurality of electrodes arranged periodically on one surface with all electrodes on one surface having a positive polarity and the electrodes on the other surface having a negative polarity. And a step of forming a single domain, and a step of inverting the polarity of any of the electrodes to partially generate an inversion domain in the single crystal.
【0010】[0010]
【作用】本発明においては、BaTiO3単結晶を所定
の導波路の形状に加工した後、前記単結晶の1対の面に
夫々周期的に配列した電極を接触させる。そして、第1
の電気的ポーリング工程において、一方の面上の電極の
極性を全て+とし、他方の面上の電極の極性を全て−と
して、一様な電場を単結晶に印加する。これにより、9
0°ドメインと180°ドメインとが除去される。次い
で、第2の電気的ポーリング工程において、特定の電極
についてはその電極の極性を反転し、部分的に極性方向
が反転した電場を単結晶に印加する。これにより、反転
ドメイン(180°ドメイン)が発生し、所望の分極反
転構造が形成される。In the present invention, a BaTiO 3 single crystal is processed into a predetermined waveguide shape, and then electrodes arranged periodically are brought into contact with a pair of surfaces of the single crystal. And the first
In the electrical poling step, a uniform electric field is applied to the single crystal by setting all the polarities of the electrodes on one surface as + and all the polarities of the electrodes on the other surface as −. This gives 9
The 0 ° and 180 ° domains are removed. Next, in the second electric poling step, the polarity of the electrode of a particular electrode is reversed, and an electric field in which the polarity direction is partially reversed is applied to the single crystal. As a result, an inversion domain (180 ° domain) is generated and a desired polarization inversion structure is formed.
【0011】こうして、第1の電気的ポーリングによっ
て単分域化した単結晶に、第2の電気的ポーリングによ
って180°ドメインだけを発生させ、所望の周期的反転
ドメイン構造を持つ結晶を得ることができる。これによ
り、機械的ポーリングが不要となり、それに起因するク
ラックの発生及び加工精度上生じてくる結晶寸法への制
約が解消される。また、2回の電気的ポーリングを行う
が、単結晶上への電極の配置は1回で済むため、少ない
工数で、微細な分極パターンを高精度に形成することが
できる。In this way, only a 180 ° domain is generated by the second electric poling in the single crystal divided into the single domains by the first electric poling, and a crystal having a desired periodic inversion domain structure can be obtained. it can. This eliminates the need for mechanical poling, and eliminates the restrictions on the crystal size caused by the occurrence of cracks and processing accuracy. Further, although the electric poling is performed twice, since the electrode need only be arranged once on the single crystal, a fine polarization pattern can be formed with high precision with a small number of steps.
【0012】[0012]
【実施例】以下、本発明の実施例についてその比較例と
比較して具体的に説明する。実施例1 育成したBaTiO3単結晶から直交する結晶主軸に沿
って、図1(a)に示すように0.5mm×0.5mm×6mmの角
柱状の結晶10を切り出した。但し、角柱を構成する結
晶面(100)面又は(001)面から30°以内で傾いていて
も、本発明を適用することができる。この単結晶10は
導波路の材料となるものであり、切りだしたままのポー
リング前の状態では、結晶中に微細なドメイン構造が存
在し、結晶は不透明であった。EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples. Example 1 A 0.5 mm × 0.5 mm × 6 mm prismatic crystal 10 was cut out from the grown BaTiO 3 single crystal along a crystal main axis perpendicular to the crystal, as shown in FIG. However, the present invention can be applied even if it is tilted within 30 ° from the crystal plane (100) plane or (001) plane forming the prism. The single crystal 10 is a material for the waveguide, and in the state before poling as it was cut out, there was a fine domain structure in the crystal and the crystal was opaque.
【0013】次に、図1(b)に示すように、切り出し
た結晶10の対向する一対の表裏面にこの結晶10を挟
むように、所望の分極反転構造を描いたパターン電極1
1を銀ペーストの塗布により形成した。この電極パター
ンは、例えば、電極11の幅が結晶の長手方向に沿って
1.3mm、2.6mm、1.3mmであり、電極11間の間隙が0.4mm
である。なお、この電極11の形成手段としては、上記
銀ペーストの塗布の他に、他の導電性ペーストを塗布す
るとか、印刷するとか、薄膜形成技術により導電性材料
を堆積させる等の手段がある。そして、これらの夫々3
分割された電極11にリード線12を接続した。Next, as shown in FIG. 1B, a pattern electrode 1 having a desired domain-inverted structure is drawn so that the crystal 10 is sandwiched between a pair of opposed front and back surfaces of the cut crystal 10.
1 was formed by applying a silver paste. This electrode pattern has, for example, a width of the electrode 11 along the longitudinal direction of the crystal.
1.3mm, 2.6mm, 1.3mm, the gap between electrodes 11 is 0.4mm
Is. As a means for forming the electrode 11, in addition to the application of the silver paste, there are means for applying another conductive paste, printing, and depositing a conductive material by a thin film forming technique. And each of these 3
The lead wire 12 was connected to the divided electrode 11.
【0014】このようにしてリード線を結線した結晶
を、恒温槽に装入し、140℃まで昇温した後、結晶の一
方の面上の3つの電極11がいずれも+極の同電位とな
るように、また反対側の面上の3つの電極がいずれも−
極の同電位になるように、各リード線12に直流電源を
接続し、結晶に一様な電場13を印加した。印加電圧は
250Vである。The crystal with the lead wire thus connected was placed in a constant temperature bath and heated to 140 ° C., and then the three electrodes 11 on one side of the crystal were all set to the same potential as the + pole. And all three electrodes on the opposite side are
A direct current power source was connected to each lead wire 12 so that the potentials of the poles were the same, and a uniform electric field 13 was applied to the crystal. Applied voltage is
It is 250V.
【0015】しばらくこの状態を保持した後、電圧を印
加したまま、恒温槽の温度を徐々に120℃まで降下さ
せ、その後印加電圧を0に降下させた。この段階で、図
1(c)に示すように、結晶中のドメインは全て消失
し、結晶は透明になった。After maintaining this state for a while, the temperature of the constant temperature bath was gradually lowered to 120 ° C. while applying the voltage, and then the applied voltage was lowered to zero. At this stage, all the domains in the crystal disappeared and the crystal became transparent, as shown in FIG. 1 (c).
【0016】次に、第2のポーリングとして、図2
(a)に示すように、一方の結晶面で隣接する電極11
の極性が相互に逆になるように、リード線と電源との結
線を変更し、100Vの電圧を印加して結晶中に周期的に
反転した電場を発生させた。そして、この状態で120℃
の温度に10時間保持した。Next, as the second polling, as shown in FIG.
As shown in (a), the electrodes 11 adjacent to each other on one crystal plane
The connection between the lead wire and the power source was changed so that the polarities of the two were reversed, and a voltage of 100 V was applied to generate a periodically inverted electric field in the crystal. And in this state 120 ℃
The temperature was maintained for 10 hours.
【0017】このようにして、2段階のポーリングを終
了した結晶を恒温槽から取り出し、偏光顕微鏡観察を行
った。その結果、90°ドメインの残留及び新たな90°ド
メインの発生も認められなかった。180°ドメインの構
造を調べるため、HClエッチングを施したところ、明
確に3つの領域に分割された図2(b)に示す反転構造
が形成されていることが認められた。そこで、電極11
を除去することにより、図2(c)に示すように、2つ
の反転構造領域を有する導波路が得られた。In this way, the crystal, which had been subjected to the two-stage poling, was taken out from the thermostat and observed with a polarizing microscope. As a result, neither the 90 ° domain remained nor the generation of a new 90 ° domain was observed. When HCl etching was performed to examine the structure of the 180 ° domain, it was confirmed that an inverted structure shown in FIG. 2B, which was clearly divided into three regions, was formed. Therefore, the electrode 11
Was removed, a waveguide having two inversion structure regions was obtained as shown in FIG.
【0018】本実施例におけるポーリング加工に必要な
時間は73.5時間であり、このうち作業の段取りに要した
時間は2.5時間であった。また、電極11の塗布及び除
去作業によって発生した欠け不良は1000個中、5個であ
った。The time required for the poling process in this example was 73.5 hours, of which the time required for the work setup was 2.5 hours. Further, the number of chipping defects caused by the application and removal work of the electrode 11 was 5 out of 1000.
【0019】比較例1 第1の電気的ポーリングとして、銀ペーストを結晶の1
対の面に一様に塗布して各結晶面に一面の電極を形成
し、第2の電気的ポーリングにおいては、実施例と同様
に分割パターンの電極を形成し、印加電圧等の条件は実
施例と同様にして、90°ドメイン及び180°ドメインを
除去する第1のポーリングと、180°反転ドメイン構造
を形成する第2のポーリングとを行った。その結果、周
期的反転分極構造は形成されたが、ポーリングに要した
時間は82.5時間であり、そのうち段取り時間は4.5時間
であった。また、欠け不良の発生割合は、1000個中、9
個であった。 Comparative Example 1 As a first electric poling, a silver paste was used as a crystal 1
The electrodes are uniformly applied to the pair of surfaces to form one electrode on each crystal face, and in the second electrical poling, divided pattern electrodes are formed in the same manner as in the embodiment, and the conditions such as applied voltage are set. In the same manner as in the example, the first poling for removing the 90 ° domain and the 180 ° domain and the second poling for forming the 180 ° inverted domain structure were performed. As a result, the periodically inverted polarization structure was formed, but the time required for poling was 82.5 hours, and the setup time was 4.5 hours. The rate of chipping defects is 9 out of 1000.
It was an individual.
【0020】比較例2 実施例の第1の電気的ポーリングと同一の条件で、最初
から極性のみ反転させて反転電場を印加してポーリング
を行なった。その結果、結晶中の電極端部に90°ドメイ
ンとクラックとが発生した。 Comparative Example 2 Under the same conditions as in the first electrical poling of the example, only the polarity was reversed from the beginning and an inversion electric field was applied to perform poling. As a result, 90 ° domains and cracks were generated at the electrode ends in the crystal.
【0021】比較例3 第1の電気的ポーリングを実施せず、第2の電気的ポー
リングのみを実施例と同一の条件で実施した。その結
果、結晶中に90°ドメインが残留していた。 Comparative Example 3 The first electric poling was not carried out, but only the second electric poling was carried out under the same conditions as in the embodiment. As a result, 90 ° domains remained in the crystal.
【0022】[0022]
【発明の効果】以上説明したように、本発明によれば、
所定の形状に加工されたBaTiO3単結晶に対し、1
対の面に周期的に配列した電極を接触させ、第1の電気
的ポーリングで一方の面上の全ての電極を+の同一極性
にし、他方の全ての電極を−の同一極性にして電圧を印
加して単分域化するから、機械的ポーリングを行わなず
に単分域化でき、機械的ポーリング時に発生するクラッ
クによる不良が解消される。また、ポーリングできる結
晶の寸法及び形状による制約がなくなるという利点もあ
る。更に、反転分域を形成する第2のポーリングにおい
ては、電極の極性を部分的に逆にするだけでよいので、
本発明は少ない工数で反転分域構造を得ることができ
る。As described above, according to the present invention,
1 for BaTiO 3 single crystal processed into a predetermined shape
The electrodes arranged periodically are brought into contact with the paired surfaces, and all electrodes on one surface are made to have the same polarity of + and the other electrodes are made to have the same polarity of − to make the voltage by the first electrical poling. Since the voltage is applied to make it into a single domain, it can be made into a single domain without performing mechanical poling, and defects due to cracks generated during mechanical poling are eliminated. Further, there is an advantage that there is no restriction due to the size and shape of the crystal that can be poled. Further, in the second poling forming the inversion domain, it is only necessary to partially reverse the polarities of the electrodes,
The present invention can obtain an inversion domain structure with a small number of steps.
【図1】本発明の実施例方法の工程を工程順に示す図で
ある。FIG. 1 is a diagram showing steps of a method according to an embodiment of the present invention in the order of steps.
【図2】本発明の実施例方法の次の工程を工程順に示す
図である。FIG. 2 is a diagram showing the next step of the method according to the embodiment of the present invention in the order of steps.
【図3】従来の方法の1工程を示す図である。FIG. 3 is a diagram showing one step of a conventional method.
【図4】同じくその従来の方法の欠点を説明する図であ
る。FIG. 4 is a diagram for explaining the drawback of the conventional method.
【図5】同じく、従来方法の欠点を説明する図である。FIG. 5 is a diagram for explaining a drawback of the conventional method.
1,4,7,10;単結晶 2;90°ドメイン 3,5,13;180°ドメイン 6,11;電極 12;リード線 1,4,7,10; single crystal 2; 90 ° domain 3,5,13; 180 ° domain 6,11; electrode 12; lead wire
───────────────────────────────────────────────────── フロントページの続き (72)発明者 味村 彰治 東京都江東区木場1丁目5番1号 株式会 社フジクラ内 (72)発明者 黒坂 昭人 東京都江東区木場1丁目5番1号 株式会 社フジクラ内 (72)発明者 冨永 晴夫 東京都江東区木場1丁目5番1号 株式会 社フジクラ内 (72)発明者 北山 研一 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 (72)発明者 伊藤 文彦 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shoji Ajimura 1-5-1, Kiba, Koto-ku, Tokyo Inside Fujikura Ltd. (72) Inventor Akito Kurosaka 1-1-5, Kiba, Koto-ku, Tokyo Fujikura stock company (72) Inventor Haruo Tominaga 1-5-1, Kiba, Koto-ku, Tokyo Stock company Fujikura stock (72) Inventor Kenichi Kitayama 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Incorporated (72) Inventor Fumihiko Ito 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation
Claims (1)
結晶に対し、この単結晶を挟むようにその1対の面上に
周期的に配列された複数の電極を接触させ、一方の面上
の電極の極性を全て+にし、他方の面上の電極の極性を
−として前記単結晶に一様な電場を印加して単分域化す
る工程と、任意の前記電極の極性を反転して前記単結晶
中に部分的に反転分域を発生させる工程とを有すること
を特徴とする周期反転型フォトリフラクティブ導波路の
製造方法。1. A BaTiO 3 single crystal processed into a predetermined shape is brought into contact with a plurality of electrodes periodically arranged on a pair of surfaces so as to sandwich the single crystal, and one surface of the BaTiO 3 single crystal is brought into contact therewith. The polarity of all the electrodes of +, and the polarity of the electrode on the other surface is-to apply a uniform electric field to the single crystal to make a single domain, and reverse the polarity of any of the electrodes. And a step of partially generating an inversion domain in the single crystal. A method of manufacturing a periodic inversion type photorefractive waveguide, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15338693A JPH0727936A (en) | 1993-06-24 | 1993-06-24 | Production of periodic inversion type photorefractive waveguide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15338693A JPH0727936A (en) | 1993-06-24 | 1993-06-24 | Production of periodic inversion type photorefractive waveguide |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0727936A true JPH0727936A (en) | 1995-01-31 |
Family
ID=15561352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15338693A Pending JPH0727936A (en) | 1993-06-24 | 1993-06-24 | Production of periodic inversion type photorefractive waveguide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0727936A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0960222A1 (en) * | 1997-02-12 | 1999-12-01 | THE STATE of ISRAEL Atomic Energy Commission Soreq Nuclear Research Center | Fabrication of an invertedly poled domain structure from a ferroelectric crystal |
-
1993
- 1993-06-24 JP JP15338693A patent/JPH0727936A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0960222A1 (en) * | 1997-02-12 | 1999-12-01 | THE STATE of ISRAEL Atomic Energy Commission Soreq Nuclear Research Center | Fabrication of an invertedly poled domain structure from a ferroelectric crystal |
EP0960222A4 (en) * | 1997-02-12 | 2000-05-03 | Israel State | Fabrication of an invertedly poled domain structure from a ferroelectric crystal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH10503602A (en) | Fabrication of patterned polarized dielectric structures and devices | |
US7230753B2 (en) | Method for forming domain-inverted structure and optical element with domain-inverted structure | |
US8064129B2 (en) | Process for poling a ferroelectric material doped with a metal | |
WO2005091066A1 (en) | Optical device and method for forming polarization-reversed region | |
JPS63279228A (en) | Liquid crystal display device | |
JPH0727936A (en) | Production of periodic inversion type photorefractive waveguide | |
JP2561735B2 (en) | Liquid crystal display manufacturing method | |
JPH06308340A (en) | Production of periodic inversion type photorefractive waveguide | |
JPH06289442A (en) | Production of period inversion type photorefractive waveguide | |
JP2007033489A (en) | Manufacturing method of ferroelectric crystal and electrooptical element | |
JPS6111725A (en) | Liquid crystal display device and its manufacture | |
JPH0728108A (en) | Manufacture of photo-refractive waveguide path of period inversion type | |
JPH07140488A (en) | Liquid crystal display panel blank and production of liquid crystal display panel | |
JPWO2006041176A1 (en) | Method for manufacturing domain-inverted structure and domain-inverted structure | |
JP2002031826A (en) | Method for manufacturing polarization reversal part | |
JPH10246900A (en) | Production of microstructure of ferroelectric single crystal substrate | |
JP4639963B2 (en) | Manufacturing method of optical wavelength conversion element | |
JPH06199599A (en) | Production of barium titanate optical single crystal | |
US20080160175A1 (en) | Method for Preparing a Periodically Poled Structure | |
US20010055144A1 (en) | Production method of light wavelength converting element | |
JP3456108B2 (en) | Piezoelectric element and method of manufacturing the same | |
WO2005124447A1 (en) | Production method for polarization inversion unit | |
Lu et al. | Electro-optic effect and its applications in periodically poled optical superlattice LiNbO/sub 3 | |
JP2000284335A (en) | Method for forming periodical polarization inversion structure of ferroelectric material and optical wavelength converting device | |
JP2915714B2 (en) | Manufacturing method of piezoelectric ceramic |