JP2015098410A - Method of producing lithium tantalate single crystal substrate for elastic surface wave element and lithium tantalate single crystal substrate for elastic surface wave element - Google Patents
Method of producing lithium tantalate single crystal substrate for elastic surface wave element and lithium tantalate single crystal substrate for elastic surface wave element Download PDFInfo
- Publication number
- JP2015098410A JP2015098410A JP2013238497A JP2013238497A JP2015098410A JP 2015098410 A JP2015098410 A JP 2015098410A JP 2013238497 A JP2013238497 A JP 2013238497A JP 2013238497 A JP2013238497 A JP 2013238497A JP 2015098410 A JP2015098410 A JP 2015098410A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- single crystal
- lithium tantalate
- tantalate single
- crystal substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
Description
本発明は、周波数の温度特性が改善され、かつ焦電性除去処理がなされた弾性表面波素子用タンタル酸リチウム単結晶基板の製造方法及びその弾性表面波素子用タンタル酸リチウム単結晶基板に関する。
ここで、焦電性除去処理された弾性表面波素子用タンタル酸リチウム単結晶基板とは、導電率が1×10−13Ω−1・cm−1以上、1×10−11Ω−1・cm−1以下の値を持ち、焦電性が抑制されたものをいう。
The present invention relates to a method for producing a lithium tantalate single crystal substrate for a surface acoustic wave device, which has improved temperature characteristics of frequency and has been subjected to pyroelectric removal treatment, and a lithium tantalate single crystal substrate for the surface acoustic wave device.
Here, the pyroelectric property-removed lithium tantalate single crystal substrate for a surface acoustic wave element has a conductivity of 1 × 10 −13 Ω −1 · cm −1 or more and 1 × 10 −11 Ω −1 · It has a value of cm −1 or less and pyroelectricity is suppressed.
近年、携帯電話の通信システムは、複数の通信規格をサポートし、各々の通信規格は、複数の周波数バンドから構成される形態へと進展している。このような携帯電話の周波数調整又は選択用の部品として、例えば圧電基板上に弾性表面波を励起するための櫛形電極が形成された弾性表面波(Surface
Acoustic Wave、略称「SAW」)デバイスが用いられている。
In recent years, mobile phone communication systems support a plurality of communication standards, and each communication standard has progressed to a form composed of a plurality of frequency bands. As a part for frequency adjustment or selection of such a cellular phone, for example, a surface acoustic wave (Surface) in which a comb-shaped electrode for exciting a surface acoustic wave is formed on a piezoelectric substrate.
(Acoustic Wave, abbreviated as “SAW”) device.
この弾性表面波デバイスは、小型で挿入損失が小さく、不要波を通さない性能が要求され、タンタル酸リチウム:LiTaO3(以下、「LT」とも記す)やニオブ酸リチウム:LiNbO3(以下、「LN」とも記す)などの圧電材料が用いられている。そして、現状のものより大きな電気機械結合係数を持った材料の方が挿入損失などの性能が改善されるために好ましいとされている。 This surface acoustic wave device is required to have a small size, a small insertion loss, and a performance that does not allow unnecessary waves to pass. Lithium tantalate: LiTaO 3 (hereinafter, also referred to as “LT”) and lithium niobate: LiNbO 3 (hereinafter, “ Piezoelectric materials such as “LN” are also used. A material having a larger electromechanical coupling coefficient than the current one is preferred because performance such as insertion loss is improved.
非特許文献1には、2重ルツボによる引き上げ法により作製された定比組成の38.5°回転YカットLiTaO3(以下、「ストイキオメトリー組成LT又はSLT」と記す)は、通常の引き上げ法による溶融組成LiTaO3(以下、「コングルーエント組成LT又はCLT」と記す)に比べて、電気機械結合係数が20%も高いので好ましいとの記載がある。また、特許文献1には、銅を含むIDT電極を用いる弾性波デバイスでは、気相法により得られるストイキオメトリー組成LTを圧電体として使用すれば、IDT電極にブレークダウンモードが発生しにくくなるために好ましいとの記載がある。さらに、特許文献2には、気相法により得られるストイキオメトリー組成LTに関する詳細な記載はあるが、これら文献には、気相法により得られるストイキオメトリー組成LTを焦電性除去処理したタンタル酸リチウム結晶基板に関する記載はなく、その製造方法についても検討されていない。 In Non-Patent Document 1, a 38.5 ° rotated Y-cut LiTaO 3 (hereinafter referred to as “stoichiometric composition LT or SLT”) having a specific composition prepared by a pulling method using a double crucible is a normal pulling. There is a description that it is preferable because the electromechanical coupling coefficient is 20% higher than the melt composition LiTaO 3 obtained by the method (hereinafter referred to as “congruent composition LT or CLT”). Further, in Patent Document 1, in an acoustic wave device using an IDT electrode containing copper, if a stoichiometric composition LT obtained by a vapor phase method is used as a piezoelectric body, a breakdown mode is hardly generated in the IDT electrode. Therefore, there is a description that it is preferable. Furthermore, Patent Document 2 has a detailed description of the stoichiometric composition LT obtained by the gas phase method, but these documents have pyroelectric removal treatment of the stoichiometric composition LT obtained by the gas phase method. There is no description about the lithium tantalate crystal substrate, and the manufacturing method thereof has not been studied.
一方、近年、弾性表面波素子に使われるタンタル酸リチウム単結晶基板に焦電性除去処理が施された基板が用いられつつある中で、特許文献3には、タンタル酸リチウム結晶を還元処理して、タンタル酸リチウム結晶の導電率を高めることで焦電性に起因して発生する火花放電による電極パターンの破壊を防止する製造方法が記載されている。しかし、この製造方法は、コングルーエント組成のタンタル酸リチウム結晶を還元処理する製造方法であり、ストイキオメトリー組成LTのタンタル酸リチウム結晶を焦電性除去処理する弾性表面波素子用タンタル酸リチウム単結晶基板の製造方法に関するものではなく、このような製造方法は、充分に検討されていないのが実情である。 On the other hand, in recent years, a substrate obtained by performing pyroelectric removal treatment on a lithium tantalate single crystal substrate used for a surface acoustic wave device is being used. In Patent Document 3, a lithium tantalate crystal is reduced. Thus, there is described a manufacturing method for preventing destruction of an electrode pattern due to spark discharge generated due to pyroelectricity by increasing the conductivity of a lithium tantalate crystal. However, this manufacturing method is a manufacturing method in which a lithium tantalate crystal having a congruent composition is reduced, and the lithium tantalate for a surface acoustic wave device in which the lithium tantalate crystal having a stoichiometric composition LT is subjected to pyroelectric removal treatment. It is not related to a method for manufacturing a single crystal substrate, and such a manufacturing method has not been sufficiently studied.
そこで、本発明は、上記実情に鑑み、気相法により処理したタンタル酸リチウム単結晶基板に焦電性除去処理を施して擬似ストイキオメトリー組成LTを有する弾性表面波素子用タンタル酸リチウム単結晶基板を製造する方法及びその弾性表面波素子用タンタル酸リチウム単結晶基板を提供することである。 Therefore, in view of the above circumstances, the present invention provides a lithium tantalate single crystal for a surface acoustic wave device having a pseudo stoichiometric composition LT by subjecting the lithium tantalate single crystal substrate processed by the vapor phase method to pyroelectric removal treatment. A method of manufacturing a substrate and a lithium tantalate single crystal substrate for a surface acoustic wave device are provided.
本発明者らは、Liイオンをコングルーエント組成の基板に拡散させることで、コングルーエント組成から擬似ストイキオメトリー組成に変化させることができると共に、このような基板に焦電性除去処理を施すことで、組成が均一で、かつ焦電性除去処理がなされた実用的な弾性表面波素子用タンタル酸リチウム単結晶基板を製造することができることを知見し、先に特願2013−20381号として出願したが、その後、さらに検討を重ねたところ、基板の面粗さが粗い方がより改質(組成変化)が進むと共に、深さ方向への拡散も進み易いことを見出し、本発明に至ったものである。 The present inventors can change the congruent composition to the pseudo stoichiometric composition by diffusing Li ions to the substrate having the congruent composition, and subject the substrate to pyroelectric removal treatment. It has been found that a practical lithium tantalate single crystal substrate for a surface acoustic wave device having a uniform composition and pyroelectric removal treatment can be produced by applying this method. As a result of further investigation, it was found that the rougher the surface roughness of the substrate, the better the modification (composition change) and the easier the diffusion in the depth direction. It has come.
すなわち、本発明の製造方法は、Li2O蒸気にコングルーエント組成で両面の面粗さが100nm以上500nm以下の面粗さを有する基板を晒して、該基板の表面から中心部へLiを拡散させて、コングルーエント組成から疑似ストイキオメトリー組成に組成変化させる第1の工程と、該基板のZ軸方向に電圧を印加する第2の工程と、該基板を還元雰囲気下に晒して焦電性除去処理を施す第3の工程と、該基板を研磨加工する第4の工程と、を含むことを特徴とすると共に、この製造方法によって作製された疑似ストイキオメトリー組成LTを有する弾性表面波素子用タンタル酸リチウム単結晶基板を特徴とするものである。 That is, the manufacturing method of the present invention exposes a substrate having a surface roughness of 100 nm or more and 500 nm or less with a congruent composition to Li 2 O vapor, and Li is transferred from the surface of the substrate to the center. A first step of changing the composition from a congruent composition to a pseudo stoichiometric composition by diffusion, a second step of applying a voltage in the Z-axis direction of the substrate, and exposing the substrate to a reducing atmosphere A third step of performing a pyroelectric removal treatment and a fourth step of polishing the substrate, and an elastic material having a pseudo stoichiometric composition LT produced by this production method It is characterized by a lithium tantalate single crystal substrate for a surface wave device.
また、本発明は、第2の工程では、印加電圧を15V/cm以上25V/cm以下にすることを特徴とし、第3の工程では、一度焦電性除去処理したものを400度以上600度未満の温度で大気中で熱処理した後に、再度焦電性除去処理を施すことを特徴とし、第4の工程では、研磨代が20μm以下、好ましくは15μm以下であることを特徴とするものである。 Further, the present invention is characterized in that the applied voltage is set to 15 V / cm or more and 25 V / cm or less in the second step, and in the third step, the pyroelectric removal treatment once performed is performed at 400 degrees to 600 degrees. After the heat treatment in the air at a temperature lower than that, the pyroelectric removal treatment is performed again. In the fourth step, the polishing allowance is 20 μm or less, preferably 15 μm or less. .
本発明によれば、基板表面が均一な疑似ストイキオメトリー組成を有し、周波数の温度特性が改善され、かつ焦電性防止対策がなされた実用的な弾性表面波素子用タンタル酸リチウム単結晶基板を提供することができる。また、表面の改質だけでなく、深さ方向への拡散も進み易いために、表層から深さ方向にかけて均一に処理された弾性表面波素子用タンタル酸リチウム単結晶基板を提供することもできる。 According to the present invention, a practical lithium surface tantalate single crystal for a surface acoustic wave element having a uniform pseudo-stoichiometric composition on the substrate surface, improved frequency temperature characteristics, and measures for preventing pyroelectricity A substrate can be provided. Further, since not only surface modification but also diffusion in the depth direction is easy to proceed, it is possible to provide a lithium tantalate single crystal substrate for a surface acoustic wave device that is uniformly processed from the surface layer to the depth direction. .
以下、本発明の一実施形態について具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, although one embodiment of the present invention is described concretely, the present invention is not limited to these.
本発明の製造方法は、主な4つの工程から構成されている。その第1の工程では、Li2O蒸気にコングルーエント組成の基板を晒してLiを該基板の表面から拡散させることでコングルーエント組成から疑似ストイキオメトリー組成に変化させる工程である。
ここで、本発明でいう「疑似ストイキオメトリー組成」とは、弾性表面波素子用タンタル酸リチウム単結晶基板の表面のLi/(Li+Ta)組成が0.49〜0.51の組成をいう。
そして、この気相法で処理されたタンタル酸リチウム単結晶基板では、Liイオンが基板表面から内部にかけて拡散されるために、基板表面ほどLiイオン濃度が高く、中心部へ行くに従ってLi濃度が減少する傾向がある。
The manufacturing method of the present invention is composed of four main steps. The first step is a step of changing a congruent composition to a pseudo stoichiometric composition by exposing a substrate having a congruent composition to Li 2 O vapor and diffusing Li from the surface of the substrate.
Here, the “pseudo stoichiometric composition” in the present invention refers to a composition having a Li / (Li + Ta) composition of 0.49 to 0.51 on the surface of a lithium tantalate single crystal substrate for a surface acoustic wave device.
And in the lithium tantalate single crystal substrate processed by this vapor phase method, Li ions are diffused from the substrate surface to the inside, so that the Li ion concentration is higher toward the substrate surface, and the Li concentration decreases toward the center. Tend to.
そのため、本発明では、この焦電性除去処理においても還元処理が均一になされるように2回の焦電性除去処理を施す方が好ましいが、一回の焦電性除去処理でもその目的を達成することができる。
すなわち、本発明の第3の工程では、一度還元雰囲気下でかつキュリー温度以下で焦電性除去処理を施すが、この焦電性除去処理は、特許文献3に記載されている方法で実施する。具体的には、本発明の基板を還元処理したセラミックス、金属などの還元物質に還元雰囲気下で、600℃以下、好ましくは400℃〜600℃の温度で、1〜50時間の間接触させて焦電性除去処理を実施する。そして、その後に400度以上600度未満でかつ大気中で熱処理した後に、再度還元雰囲気下で焦電性除去処理を施すことが好ましい。
Therefore, in the present invention, it is preferable to perform the pyroelectric removal process twice so that the reduction process is uniformly performed in the pyroelectric removal process, but the purpose of the pyroelectric removal process is also one. Can be achieved.
That is, in the third step of the present invention, pyroelectric removal treatment is performed once under a reducing atmosphere and at a Curie temperature or lower, and this pyroelectric removal treatment is performed by the method described in Patent Document 3. . Specifically, the substrate of the present invention is contacted with a reducing material such as ceramics or metal subjected to reduction treatment in a reducing atmosphere at a temperature of 600 ° C. or lower, preferably 400 ° C. to 600 ° C. for 1 to 50 hours. Perform pyroelectric removal process. Then, it is preferable to perform pyroelectric removal treatment again under a reducing atmosphere after heat treatment in the atmosphere at 400 ° C. or more and less than 600 ° C.
次に、本発明の第4の工程では、研磨代を20μm以下、好ましくは15μm以下とするのがよい。これは、気相法で処理したタンタル酸リチウム単結晶基板の処理層では、処理温度及び処理時間によって拡散されたLiイオン量は異なるが、一般にその基板表面ではLiイオンが多く、中心部に行くに従って未処理層が出てくるために、表面層をなるべく研磨せずにそのまま残しておく方がコストを抑えて生産性良く作製するうえで好ましいからである。しかし、単結晶体からスライス加工等によって基板を作製する段階で生じる加工歪の除去を考慮すると、研磨代が20μm以下、好ましくは15μm以下とするのがよい。 Next, in the fourth step of the present invention, the polishing allowance is 20 μm or less, preferably 15 μm or less. This is because, in the treatment layer of a lithium tantalate single crystal substrate treated by the vapor phase method, the amount of Li ions diffused varies depending on the treatment temperature and treatment time, but generally there are many Li ions on the substrate surface and go to the center. Therefore, it is preferable to leave the surface layer as it is without polishing as much as possible in order to reduce the cost and to produce with good productivity. However, in consideration of removal of processing strain generated at the stage of manufacturing a substrate from a single crystal by slicing or the like, the polishing allowance is 20 μm or less, preferably 15 μm or less.
そして、本発明の研磨代を20μm以下、好ましくは15μm以下とする条件を達成するためには、気相処理に供されるコングルーエント組成の基板の加工歪層を予め少なくしておく方が好ましいので、研磨面側の基板表面は、気相処理前の段階から鏡面のような状態であるのが好ましい。
しかし、実際には、基板表面に若干の表面粗さがあった方がより改質(組成変化)が進むと共に、深さ方向へのLiイオンの拡散も進み易いために、本発明では、処理される基板の両面の面粗さを100nm以上500nm以下とする。
And, in order to achieve the condition that the polishing allowance of the present invention is 20 μm or less, preferably 15 μm or less, it is better to reduce the processing strain layer of the substrate having a congruent composition used for the vapor phase treatment in advance. Therefore, it is preferable that the substrate surface on the polishing surface side is in a mirror-like state from the stage before the vapor phase treatment.
However, in actuality, when the surface of the substrate has a slight surface roughness, the modification (composition change) proceeds more easily, and the diffusion of Li ions in the depth direction also proceeds more easily. The surface roughness of both surfaces of the substrate to be formed is 100 nm to 500 nm.
また、本発明では、基板の両面とも同じ面粗さ状態のウェハ(両面ラップウェハ)とするので、改質時のソリを抑制することができるというメリットもある。 Further, in the present invention, since both surfaces of the substrate are wafers having the same surface roughness (double-sided wrap wafer), there is also an advantage that warping during modification can be suppressed.
<実施例1>
次に、本発明の実施例1について説明する。実施例1では、先ず、引き上げ法により、コングルーエント組成の4インチ(10cm)径36°回転Yカットタンタル酸リチウム単結晶を作製した。この単結晶を単一分極化せずにスライスし、その両面にラップ加工を施して、表裏両面の面粗さRaが120nmになるように仕上げて、厚さ0.35mmの基板形状に仕上げた。
<Example 1>
Next, Example 1 of the present invention will be described. In Example 1, first, a 4 inch (10 cm) diameter 36 ° rotated Y-cut lithium tantalate single crystal having a congruent composition was produced by a pulling method. This single crystal was sliced without single polarization, lapped on both sides, finished so that the surface roughness Ra on both sides was 120 nm, and finished into a substrate shape with a thickness of 0.35 mm. .
また、一方で、気相法で使用する焼成原料としては、Li2CO3、Ta2O5を6:4のモル比で混合し、この混合物を1350℃で10時間の間焼成してリチウムリッチな混合焼成原料を作製した。 On the other hand, Li 2 CO 3 and Ta 2 O 5 are mixed at a molar ratio of 6: 4 as a firing raw material used in the vapor phase method, and this mixture is fired at 1350 ° C. for 10 hours to form lithium. A rich mixed firing material was produced.
続いて、本発明の第1工程である気相法について説明する。この第1の工程では、Li2O蒸気にコングルーエント組成の基板を晒してLiを該基板表面から中心部へ拡散させてコングルーエント組成から疑似ストイキオメトリー組成に変化させた。 具体的には、Li2O蒸気源として上記のリチウムリッチな混合焼成原料を準備し、この混合焼成原料をルツボのようなPt容器の底に敷き詰め、その上にタンタル酸リチウム単結晶基板をPtのスペーサーを介して積層して容器内にセットした。その後、このPt容器を850℃の温度で、大気雰囲気中で96時間の間加熱する気相処理を施して、コングルーエント組成の基板から疑似ストイキオメトリー組成に組成変化させたところ、表裏の両面とも、その改質度が49.8%であった。また、表側面の深さ方向の改質度を調べたところ、図1に示すような改質度分布であった。
この図1の結果から、基板の面粗さが粗い方がより改質が進むと共に、深さ方向への改質も進み易いことが確認された。
Next, the vapor phase method that is the first step of the present invention will be described. In this first step, a substrate having a congruent composition was exposed to Li 2 O vapor to diffuse Li from the surface of the substrate to the central portion, thereby changing the congruent composition to a pseudo stoichiometric composition. Specifically, the above lithium-rich mixed fired raw material is prepared as a Li 2 O vapor source, this mixed fired raw material is spread on the bottom of a Pt container such as a crucible, and a lithium tantalate single crystal substrate is placed on the Pt container. Were stacked through a spacer and set in a container. Thereafter, the Pt container was subjected to a gas phase treatment for 96 hours in an air atmosphere at a temperature of 850 ° C. to change the composition from a congruent composition substrate to a pseudo stoichiometric composition. The degree of modification was 49.8% on both sides. Further, when the degree of modification in the depth direction of the front side surface was examined, a modification degree distribution as shown in FIG. 1 was obtained.
From the results shown in FIG. 1, it was confirmed that when the surface roughness of the substrate is rougher, the reforming progresses more and the reforming in the depth direction easily progresses.
次に、本発明のZ軸方向に電圧を印加する第2の工程では、気相処理されたタンタル酸リチウム単結晶基板のオリフラを揃えて基板が密着するように積層し、Z軸方向の相対する面にタンタル酸リチウム多結晶を主成分とするペーストを介して電極を貼り付け、750℃に加熱し印加電圧を18V/cmになるようにして単一分極処理を実施した。 Next, in the second step of applying a voltage in the Z-axis direction of the present invention, the orientation flats of vapor-phase processed lithium tantalate single crystal substrates are aligned and laminated so that the substrates are in close contact with each other. An electrode was attached to the surface to be bonded via a paste mainly composed of lithium tantalate polycrystal, heated to 750 ° C., and the applied voltage was 18 V / cm, and a single polarization treatment was performed.
また、本発明の基板を還元雰囲気下に晒して焦電性除去処理を施す第3の工程では、特許文献3に記載されている方法で焦電性除去処理を施した。具体的には、本発明の基板を還元処理したセラミックスに還元雰囲気下、570℃で10時間の間接触させて焦電性除去処理を実施した。 In the third step of subjecting the substrate of the present invention to a pyroelectric removal treatment by exposing it to a reducing atmosphere, the pyroelectric removal treatment was performed by the method described in Patent Document 3. Specifically, the pyroelectric removal treatment was carried out by bringing the substrate of the present invention into contact with the ceramic subjected to the reduction treatment in a reducing atmosphere at 570 ° C. for 10 hours.
最後に、このような焦電性除去処理が施されたタンタル酸リチウム単結晶基板を研磨加工する第4の工程では、コロイダルシリカを用いて3μm研磨して最終品を作製した。この作製した基板を検査したところ、基板表面が均一な組成でかつ焦電性除去処理がなされていることが確認された。 Finally, in the fourth step of polishing the lithium tantalate single crystal substrate that has been subjected to such pyroelectric removal treatment, the final product was produced by polishing 3 μm using colloidal silica. When the produced substrate was inspected, it was confirmed that the substrate surface had a uniform composition and was subjected to pyroelectric removal treatment.
<実施例2>
実施例2では、基板表面側ほどLiイオン濃度が高く、中心部へ行くに従ってLi濃度が減少する傾向があるために、1回の焦電性除去処理では還元処理が均一になされない場合があることから、焦電性除去処理を2回施し、それ以外は、実施例1と同じ条件で処理を実施した。すなわち、還元雰囲気下で、かつキュリー温度以下で一度焦電性除去処理を施した基板を500度の温度で、かつ大気中で熱処理した後に、還元雰囲気下で再度焦電性除去処理を実施したところ、均一な組成でかつ焦電性除去処理がなされていることが確認された。
<Example 2>
In Example 2, since the Li ion concentration is higher toward the substrate surface side and the Li concentration tends to decrease toward the center, the reduction process may not be performed uniformly in one pyroelectric removal process. Therefore, the pyroelectric removal treatment was performed twice, and the treatment was performed under the same conditions as in Example 1 except that. That is, after pyroelectric removal treatment was performed once at a temperature of 500 ° C. in the atmosphere under a reducing atmosphere and below the Curie temperature, the pyroelectric removal treatment was performed again in a reducing atmosphere. However, it was confirmed that the pyroelectric removal treatment was performed with a uniform composition.
<実施例3>
実施例3では、プレ研磨されず、両面にラップ加工で面粗さが120nmに仕上げられた基板を用い、第4の研磨加工ではコロイダルシリカを用いて研磨代20μmで研磨し、それ以外は、実施例1と同じ条件で処理を実施した。
その結果、120nmの面を研磨加工して加工歪を除去しようとすると、最大で20μmで研磨すればよいことが確認された。処理面が研磨代の20μmを超えて研磨すると、第1の工程で組成変化して改質した擬似ストイキオメトリー層が多めに除去されてしまうために、擬似ストイキオメトリー層の厚さが不十分となり、改質前の基板組成とあまり変わらないからである。
<Example 3>
In Example 3, using a substrate that was not pre-polished and lapped on both sides and finished with a surface roughness of 120 nm, in the fourth polishing process, it was polished using a colloidal silica with a polishing allowance of 20 μm, otherwise, The treatment was performed under the same conditions as in Example 1.
As a result, it was confirmed that if the surface of 120 nm was polished to remove the processing strain, the polishing should be performed at a maximum of 20 μm. If the surface to be processed exceeds 20 μm as the polishing allowance, the pseudo stoichiometry layer modified by the composition change in the first step is removed excessively, so that the thickness of the pseudo stoichiometry layer is not sufficient. This is because it is sufficient and does not change much from the substrate composition before modification.
<比較例1>
比較例1では、先の出願の実施例と同じく、基板の表側面の面粗さRaが15nm、裏側面の面粗さRaが120nmの準鏡面になるように仕上げ、それ以外は、実施例1と同じ条件で処理を実施したところ、この準鏡面の表側面の改質度が48.7%であり、裏側面の改質度が49.8%であった。また、表側面の深さ方向の改質度を調べたところ、図1に示すような改質度分布であった。
この図1の結果から、基板の面を準鏡面仕上げすると、改質度が低く深さ方向への改質度も低いことが確認された。
<Comparative Example 1>
In Comparative Example 1, the surface roughness Ra on the front side surface of the substrate is 15 nm and the surface roughness Ra on the back side surface is 120 nm, as in the previous application example. When the treatment was carried out under the same conditions as in No. 1, the modification degree of the front side surface of this quasi-mirror surface was 48.7%, and the modification degree of the back side surface was 49.8%. Further, when the degree of modification in the depth direction of the front side surface was examined, a modification degree distribution as shown in FIG. 1 was obtained.
From the results shown in FIG. 1, it was confirmed that when the surface of the substrate was semi-mirror finished, the degree of modification was low and the degree of modification in the depth direction was low.
第2の工程では、印加電圧を特開昭54−10998号公報に記載されている印加電圧と同じ5V/cmで実施し、それ以外の工程では、実施例1と同じ条件で処理を実施した。
その結果、研磨時に研磨速度の相違が原因の研磨ムラの発生が確認された。この原因としては、印加電圧が5V/cmという本発明の範囲外であったために、面内を均一に単一分極処理ができなかったためではないかと考えられる。
In the second step, the applied voltage was 5 V / cm which is the same as the applied voltage described in JP-A No. 54-10998, and in the other steps, the treatment was performed under the same conditions as in Example 1. .
As a result, it was confirmed that polishing unevenness was caused by the difference in polishing rate during polishing. This is probably because the applied voltage was outside the range of the present invention of 5 V / cm, so that the single polarization treatment could not be performed uniformly in the surface.
<比較例2>
比較例2では、第2の工程の印加電圧を30V/cmで実施し、それ以外の工程では、実施例1と同じ条件で処理を実施した。
その結果、単一分極処理後に基板にクラックが発生していることが確認された。この原因としては、印加電圧が30V/cmという本発明の範囲外であったために、大きな電圧がかかったことによりクラックが発生したものと考えられる。
<Comparative Example 2>
In Comparative Example 2, the applied voltage in the second step was 30 V / cm, and in the other steps, the treatment was performed under the same conditions as in Example 1.
As a result, it was confirmed that cracks occurred in the substrate after the single polarization treatment. The reason for this is considered to be that cracks were generated due to the application of a large voltage because the applied voltage was outside the scope of the present invention of 30 V / cm.
<比較例3>
比較例3では、準備された基板の一方の基板面をプレ研磨加工により完全に鏡面加工(面粗さ0.2nm)に仕上げ、それ以外の工程では、実施例1と同じ条件で処理を実施した。
その結果、基板の面粗さが完全に鏡面化された状態であるためにLiイオンが均一に拡散されていないことが確認された。その理由は定かでないが、処理される表面の状態が多少粗くなっている方が表面状態が活性化され、Liイオンが拡散されやすいのに対し、鏡面化された表面状態ではLiイオンが拡散されにくいためではないかと考えられる。
<Comparative Example 3>
In Comparative Example 3, one substrate surface of the prepared substrate is finished to a mirror finish (surface roughness of 0.2 nm) by pre-polishing, and the other processes are performed under the same conditions as in Example 1. did.
As a result, it was confirmed that Li ions were not uniformly diffused because the surface roughness of the substrate was completely mirror-finished. The reason is not clear, but the surface state to be treated is somewhat rough, the surface state is activated and Li ions are more easily diffused, whereas in the mirrored surface state, Li ions are diffused. It may be because it is difficult.
Claims (5)
を含むことを特徴とする弾性表面波素子用タンタル酸リチウム単結晶基板の製造方法。 By exposing a substrate having a surface roughness of 100 nm or more and 500 nm or less with a congruent composition to Li 2 O vapor to diffuse Li from the surface of the substrate to the central portion, A first step of changing the composition to a pseudo stoichiometric composition; a second step of applying a voltage in the Z-axis direction of the substrate; and a third step of subjecting the substrate to a reducing atmosphere to perform pyroelectric removal treatment And a fourth step of polishing the substrate;
A method for producing a lithium tantalate single crystal substrate for a surface acoustic wave device, comprising:
A lithium tantalate single crystal substrate for a surface acoustic wave device, produced by the manufacturing method according to any one of claims 1 to 4 and having a pseudo stoichiometric composition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013238497A JP6025179B2 (en) | 2013-11-19 | 2013-11-19 | Method for producing lithium tantalate single crystal substrate for surface acoustic wave device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013238497A JP6025179B2 (en) | 2013-11-19 | 2013-11-19 | Method for producing lithium tantalate single crystal substrate for surface acoustic wave device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015098410A true JP2015098410A (en) | 2015-05-28 |
JP6025179B2 JP6025179B2 (en) | 2016-11-16 |
Family
ID=53375309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013238497A Active JP6025179B2 (en) | 2013-11-19 | 2013-11-19 | Method for producing lithium tantalate single crystal substrate for surface acoustic wave device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6025179B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016204041A1 (en) * | 2015-06-18 | 2016-12-22 | 住友金属鉱山株式会社 | Lithium niobate single crystal substrate and method for producing same |
WO2017051747A1 (en) * | 2015-09-26 | 2017-03-30 | 信越化学工業株式会社 | Bonded substrate, method for producing same and surface acoustic wave device using said bonded substrate |
JP2017098719A (en) * | 2015-11-20 | 2017-06-01 | 信越化学工業株式会社 | Joined substrate, and elastic surface wave device using the same |
CN107204750A (en) * | 2016-03-18 | 2017-09-26 | 太阳诱电株式会社 | Acoustic wave device |
JP2018080088A (en) * | 2016-11-17 | 2018-05-24 | 信越化学工業株式会社 | Method for manufacturing lithium tantalate single crystal substrate and lithium tantalate single crystal substrate |
CN114006590A (en) * | 2021-11-03 | 2022-02-01 | 北京超材信息科技有限公司 | Method for manufacturing piezoelectric oxide single crystal substrate and SAW filter |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005119950A (en) * | 2003-09-26 | 2005-05-12 | Shin Etsu Chem Co Ltd | Method for manufacturing monopolarized lithium tantalate crystal and monopolarized lithium tantalate crystal |
JP2011135245A (en) * | 2009-12-24 | 2011-07-07 | Panasonic Corp | Elastic wave device, manufacturing method thereof, and electronic device using the same |
-
2013
- 2013-11-19 JP JP2013238497A patent/JP6025179B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005119950A (en) * | 2003-09-26 | 2005-05-12 | Shin Etsu Chem Co Ltd | Method for manufacturing monopolarized lithium tantalate crystal and monopolarized lithium tantalate crystal |
JP2011135245A (en) * | 2009-12-24 | 2011-07-07 | Panasonic Corp | Elastic wave device, manufacturing method thereof, and electronic device using the same |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016204041A1 (en) * | 2015-06-18 | 2016-12-22 | 住友金属鉱山株式会社 | Lithium niobate single crystal substrate and method for producing same |
JP2017007883A (en) * | 2015-06-18 | 2017-01-12 | 住友金属鉱山株式会社 | Lithium niobate single crystal substrate, and manufacturing method thereof |
KR20180019542A (en) * | 2015-06-18 | 2018-02-26 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Lithium niobate single crystal substrate and manufacturing method thereof |
US10301742B2 (en) | 2015-06-18 | 2019-05-28 | Sumitomo Metal Mining Co., Ltd. | Lithium niobate single crystal substrate and method of producing the same |
KR102601411B1 (en) | 2015-06-18 | 2023-11-13 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Lithium niobate single crystal substrate and manufacturing method thereof |
WO2017051747A1 (en) * | 2015-09-26 | 2017-03-30 | 信越化学工業株式会社 | Bonded substrate, method for producing same and surface acoustic wave device using said bonded substrate |
JPWO2017051747A1 (en) * | 2015-09-26 | 2018-06-14 | 信越化学工業株式会社 | Bonded substrate, manufacturing method thereof, and surface acoustic wave device using the bonded substrate |
US11057014B2 (en) | 2015-09-26 | 2021-07-06 | Shin-Etsu Chemical Co., Ltd. | Bonded substrate and a manufacturing method thereof, and a surface acoustic wave device using the said bonded substrate |
JP2017098719A (en) * | 2015-11-20 | 2017-06-01 | 信越化学工業株式会社 | Joined substrate, and elastic surface wave device using the same |
CN107204750A (en) * | 2016-03-18 | 2017-09-26 | 太阳诱电株式会社 | Acoustic wave device |
JP2018080088A (en) * | 2016-11-17 | 2018-05-24 | 信越化学工業株式会社 | Method for manufacturing lithium tantalate single crystal substrate and lithium tantalate single crystal substrate |
CN114006590A (en) * | 2021-11-03 | 2022-02-01 | 北京超材信息科技有限公司 | Method for manufacturing piezoelectric oxide single crystal substrate and SAW filter |
Also Published As
Publication number | Publication date |
---|---|
JP6025179B2 (en) | 2016-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6025179B2 (en) | Method for producing lithium tantalate single crystal substrate for surface acoustic wave device | |
JP5611915B2 (en) | Method for manufacturing piezoelectric substrate for surface acoustic wave device | |
TWI570284B (en) | Piezoelectric oxide single crystal substrate | |
TWI597392B (en) | Lithium tantalate single crystal substrate, bonding substrate and method for manufacturing the same, and elastic surface acoustic wave device using the same | |
WO2018066653A1 (en) | Composite substrate and method of manufacturing composite substrate | |
TWI603582B (en) | A lithium tantalate single crystal substrate for a surface acoustic wave device and the use thereof Device of the substrate and its manufacturing method and inspection method | |
JP5892552B2 (en) | Method for manufacturing lithium tantalate single crystal substrate for surface acoustic wave device and lithium tantalate single crystal substrate for surface acoustic wave device | |
TWI629869B (en) | Bonded substrate, manufacturing method thereof, and surface acoustic wave device using the same | |
JP2019077607A (en) | Lithium tantalate single crystal substrate, substrate bonded therewith, method for manufacturing bonded substrate, and surface acoustic wave device using bonded substrate | |
JP6598378B2 (en) | Method for producing lithium tantalate single crystal substrate | |
JP6174061B2 (en) | Method for manufacturing piezoelectric oxide single crystal substrate | |
KR102624401B1 (en) | Method for manufacturing thin layers of alkaline-based ferroelectric materials | |
TWI607625B (en) | Method for producing oxide single crystal substrate for surface acoustic wave device | |
JP2014040339A (en) | Method for manufacturing piezoelectric oxide single crystal wafer | |
CN108624961A (en) | A kind of recycling method of lithium tantalate black-film | |
JP2013236277A (en) | Lithium tantalate single crystal of stoichiometric composition for surface acoustic wave element, method for manufacturing the same and composite piezoelectric substrate for surface acoustic wave element | |
JPH0218612B2 (en) | ||
JP2022068748A (en) | Oxide single-crystal wafer, wafer for composite substrate, composite substrate, method for processing oxide single-crystal wafer, method for producing oxide single-crystal wafer, method for producing wafer for composite substrate, and method for producing composite substrate | |
JP2000082931A (en) | Piezoelectric single crystal wafer, its manufacture and surface acoustic wave device | |
JP2019064880A (en) | Production method of composite substrate | |
JP2022150692A (en) | Method of manufacturing piezoelectric oxide single crystal substrate | |
JPH1027929A (en) | Ferroelectrics oxide single crystalline wafer and its manufacturing method as well as saw device substrate using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151027 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160627 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160630 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160713 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161005 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161005 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6025179 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |