JPH06308072A - Water content rate sensor - Google Patents

Water content rate sensor

Info

Publication number
JPH06308072A
JPH06308072A JP12314693A JP12314693A JPH06308072A JP H06308072 A JPH06308072 A JP H06308072A JP 12314693 A JP12314693 A JP 12314693A JP 12314693 A JP12314693 A JP 12314693A JP H06308072 A JPH06308072 A JP H06308072A
Authority
JP
Japan
Prior art keywords
water content
measured
electrostatic
measurement
recording paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12314693A
Other languages
Japanese (ja)
Other versions
JP3133862B2 (en
Inventor
Yoshihisa Usami
由久 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP05123146A priority Critical patent/JP3133862B2/en
Publication of JPH06308072A publication Critical patent/JPH06308072A/en
Application granted granted Critical
Publication of JP3133862B2 publication Critical patent/JP3133862B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To provide a water content rate sensor which is suitable for measurement of a water content rate of the surface of a specimen of a heat sensitive record paper and the like or measurement of water content rate distribution of the direction of its depth and with which feedback of obtained data is conducted for a printing condition of a printer and the like, sensitive change caused by the water content rate is corrected and good printing is performed. CONSTITUTION:A parallel electrode 10 is mounted on the same surface of a specimen of a heat sensitive record paper 50 and the like or arranged in a distance-separated state, alternating current is supplied to the parallel electrode 10 from an alternating current generation means 20 and electrostatic parameters of an electrostatic capacity and the like of a specimen surface are measured. Printing concentration is measured in parallel with the measurement of the electrostatic parameters, a correlation between the electrostatic parameters and the sensitivity of the heat sensitive record paper is found and feedback of its data is performed for a printing condition of a printer. In the case of measurement of water content rate distribution, because an electrode interval corresponds to measuring depth, similar measurement is conducted as the electrode interval of the parallel electrode 10 is changed and electrostatic parameter distribution is obtained in the direction of depth.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、含水率センサに関し、
特に感熱記録紙表面の含水率の測定並びに含水率の深さ
方向の分布の測定に好適な含水率センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a moisture content sensor,
In particular, the present invention relates to a water content sensor suitable for measuring the water content on the surface of thermosensitive recording paper and the distribution of the water content in the depth direction.

【0002】[0002]

【従来の技術】従来より支持体上に感熱発色層が設けら
れた感熱記録紙を用いて、熱エネルギーや光エネルギー
により感熱発色材料を発色させて画像を形成する方法が
知られており、熱転写プリンターやレーザープリンター
等の各種感熱画像形成装置が実用化されている。
2. Description of the Related Art Conventionally, there has been known a method of forming an image by coloring a thermosensitive coloring material by heat energy or light energy using a thermosensitive recording paper having a thermosensitive coloring layer provided on a support. Various thermal image forming apparatuses such as printers and laser printers have been put into practical use.

【0003】ところで感熱記録紙の感度特性は、感熱発
色層を構成する感熱材料の種類の他に、感熱発色層の含
水率により変化することが知られている。この感熱発色
層の含水率は、支持体から浸透してくる水分によっても
変化するため、支持体の含水量によっても感熱記録紙の
感度特性が変化する。また、感熱発色層や支持体の厚み
方向における含水率が不均一であると、感熱記録紙が湾
曲したり波打ちするなどの変形を起こし、用紙搬送経路
で紙詰まりを起こす原因となっている。
By the way, it is known that the sensitivity characteristic of the heat-sensitive recording paper changes depending on the water content of the heat-sensitive color forming layer in addition to the type of heat-sensitive material constituting the heat-sensitive color forming layer. Since the water content of the thermosensitive color developing layer also changes depending on the water content permeating from the support, the sensitivity characteristic of the thermosensitive recording paper also changes depending on the water content of the support. In addition, if the moisture content in the thickness direction of the thermosensitive coloring layer or the support is not uniform, the thermosensitive recording paper may be deformed such as curved or corrugated, which may cause a paper jam in the paper conveyance path.

【0004】このように、感熱記録紙と含水率との間に
は密接な関係があり、形成画像の画質の向上や安定した
用紙搬送のために、感熱発色層(感熱記録紙表面)の含
水率あるいは支持体を含めた厚み方向の含水率分布を正
確に求める必要がある。感熱記録紙表面の含水率の測定
方法として、従来より種々の方法が提案されている。例
えば、電気抵抗率が水分量により変化することを利用し
て含水率を求める方法がある。この方法は、同心円状の
3個の電極を用いて、感熱記録紙表面に主電極及び対電
極を、他方の面にガード電極を当接させ、これら電極に
直流電圧を印加し、その時に流れる電流値を測定して表
面抵抗率を求め、予め含水率と電気抵抗率との関係を求
めておいた検量線から測定電気抵抗率に対応する感熱記
録紙表面の含水率を求める方法である。
As described above, there is a close relationship between the thermosensitive recording paper and the water content, and in order to improve the image quality of the formed image and to stably convey the paper, the water content of the thermosensitive coloring layer (surface of the thermosensitive recording paper). It is necessary to accurately determine the water content distribution in the thickness direction including the rate or the support. Various methods have heretofore been proposed as a method for measuring the water content on the surface of a thermosensitive recording paper. For example, there is a method of obtaining the water content by utilizing the fact that the electrical resistivity changes depending on the water content. This method uses three concentric electrodes, a main electrode and a counter electrode are brought into contact with the surface of the thermosensitive recording paper, and a guard electrode is brought into contact with the other surface, and a DC voltage is applied to these electrodes, which flow at that time. This is a method in which a current value is measured to obtain a surface resistivity, and a moisture content on the surface of the thermosensitive recording paper corresponding to the measured electrical resistivity is determined from a calibration curve in which the relationship between the moisture content and the electrical resistivity is previously determined.

【0005】また、水はその比誘電率が大きいために、
水分量の変化を静電容量の変化として取り扱うことがで
きる。この静電容量を測定する方法は、2枚の対向平板
電極で感熱記録紙を挟持した状態、あるいは所定間隔で
対向して配置された2枚の平板電極間に感熱記録紙を挿
入した状態で、電極に交流電圧を印加して発生する電位
差から静電容量を求め、予め含水率と静電容量との関係
を求めておいた検量線から測定静電容量に対応する感熱
記録紙表面の含水率を求める方法である。
Further, since water has a large relative dielectric constant,
A change in water content can be treated as a change in capacitance. This method of measuring the capacitance is performed in a state where the thermal recording paper is sandwiched between two opposing flat plate electrodes, or a thermal recording paper is inserted between two flat plate electrodes that are opposed to each other at a predetermined interval. , The capacitance is calculated from the potential difference generated by applying an AC voltage to the electrodes, and the relationship between the moisture content and the capacitance is determined in advance from the calibration curve. It is a method of obtaining the rate.

【0006】前記のような電気的測定方法の他に、赤外
線センサを用いて含水率を測定する方法もある。この方
法は、赤外線を感熱記録紙に照射してその反射光量を測
定して感熱記録紙の赤外線吸収率を求め、基準湿度で同
様の方法により測定した赤外線吸収率との比から測定感
熱記録紙表面の含水率を得るものである。その他にも、
感熱記録紙と周囲の湿度が平衡状態にあると仮定して、
感熱記録紙近傍の湿度から含水率を推定する方法や、感
熱記録紙の反り量から含水率を求める方法、摩擦係数を
測定することにより含水率を求める方法等、種々の方法
により感熱記録紙表面の含水率が測定されている。
In addition to the above-mentioned electrical measuring method, there is also a method of measuring the water content using an infrared sensor. This method radiates infrared rays to a thermosensitive recording paper and measures the amount of reflected light to obtain the infrared absorption rate of the thermosensitive recording paper, and the thermosensitive recording paper is measured from the ratio to the infrared absorption rate measured by the same method at standard humidity. The water content of the surface is obtained. Besides,
Assuming that the thermal recording paper and the surrounding humidity are in equilibrium,
The surface of the thermosensitive recording paper can be estimated by various methods, such as the method of estimating the water content from the humidity in the vicinity of the thermosensitive recording paper, the method of determining the water content from the amount of warp of the thermosensitive recording paper, or the method of determining the water content by measuring the friction coefficient. The water content of is measured.

【0007】[0007]

【発明が解決しようとする課題】既述したように、感熱
発色層や支持体の含水率が感熱記録紙の感度特性や形状
に影響して、画質の劣化や紙詰まりを発生させる要因と
なっている。そのため、感熱記録紙表面の含水率やその
厚み方向の含水率分布をできるだけ正確に求め、それら
の値を補正パラメータとして画像形成条件にフィードバ
ックすることが望まれている。
As described above, the water content of the thermosensitive coloring layer and the support affects the sensitivity characteristics and shape of the thermosensitive recording paper, which causes deterioration of image quality and paper jam. ing. Therefore, it is desired to obtain the water content on the surface of the thermal recording paper and the water content distribution in the thickness direction as accurately as possible, and feed back these values to the image forming conditions as correction parameters.

【0008】しかしながら、前記の含水率測定方法のう
ち、感熱記録紙近傍の湿度や感熱記録紙の反り量、摩擦
係数を測定して含水率を求める方法は、再現性や精度が
劣るため好ましくない。また、赤外線センサを用いる方
法では、センサ部品が高価である装置全体として高価に
なってしまう。表面電気抵抗率や静電容量から含水率を
求める方法は、電気的な測定であるために再現性や測定
精度に優れ、しかも測定装置の構造が簡素で、測定方法
も容易である等の利点を備えているものの、表面電気抵
抗率を測定する場合には高い印加電圧を必要とし、また
静電容量を測定する場合には感熱記録紙を電極で挟持し
たり、電極間に挿入して測定するため、目的とする感熱
発色層だけでなく、支持体をも含めた感熱記録紙全体の
含水率を測定してしまう。
However, among the above-mentioned methods for measuring the water content, the method of determining the water content by measuring the humidity in the vicinity of the heat-sensitive recording paper, the warp amount of the heat-sensitive recording paper, and the friction coefficient is not preferable because the reproducibility and accuracy are poor. . Further, in the method using the infrared sensor, the cost of the entire device, which is expensive for the sensor parts, becomes high. The method of obtaining the water content from the surface electrical resistivity or capacitance is excellent in reproducibility and measurement accuracy because it is an electrical measurement, and the structure of the measuring device is simple and the measuring method is easy. However, when measuring the surface electrical resistivity, a high applied voltage is required, and when measuring the capacitance, the thermal recording paper is sandwiched between electrodes or inserted between the electrodes for measurement. Therefore, not only the desired thermosensitive coloring layer but also the water content of the entire thermosensitive recording paper including the support is measured.

【0009】このように、感熱発色層の含水率あるいは
支持体を含めた感熱記録紙の含水率分布を正確に測定す
る方法は未だ確立されておらず、そのための装置も開発
されていない。本発明は、上記事情に鑑みてなされたも
のであり、感熱記録紙の感熱発色層の含水率並びに支持
体を含めた感熱記録紙の厚み方向における含水率分布を
正確に測定することができ、しかも測定結果をプリンタ
ー等の画像形成装置の印字条件にフィードバックして画
像の劣化や紙詰まりを防止することが可能な含水率セン
サを提供することを目的とする。
As described above, a method for accurately measuring the water content of the thermosensitive color developing layer or the water content distribution of the thermosensitive recording paper including the support has not been established yet, and an apparatus therefor has not been developed. The present invention has been made in view of the above circumstances, and it is possible to accurately measure the water content distribution in the thickness direction of the thermosensitive recording paper including the support and the water content of the thermosensitive coloring layer of the thermosensitive recording paper, Moreover, it is an object of the present invention to provide a water content sensor capable of feeding back the measurement result to the printing conditions of an image forming apparatus such as a printer to prevent image deterioration and paper jam.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に本発明は、含水率センサを、平行電極を測定対象物の
同一表面に接触、あるいは離間させた状態で、平行電極
に交番電流を供給することにより測定対象物表面の静電
パラメータを測定する構成とした。また、同様の目的を
達成するために本発明は、含水率センサを、測定静電パ
ラメータを画像形成装置の印字条件にフィードバックす
る構成とした。
In order to achieve the above object, the present invention provides a water content sensor with an alternating current applied to parallel electrodes in a state where the parallel electrodes are in contact with or separated from the same surface of an object to be measured. It is configured to measure the electrostatic parameter of the surface of the measurement object by supplying it. Further, in order to achieve the same object, the present invention has a configuration in which the moisture content sensor feeds back the measured electrostatic parameter to the printing condition of the image forming apparatus.

【0011】更に、同様の目的を達成するために本発明
は、含水率センサを、平行電極を測定対象物の同一表面
に接触、あるいは離間させた状態で、平行電極の間隔
(以下ギャップ幅と称する、)を変えながら交番電流を
供給することにより測定対象物の深さ方向における静電
パラメータを測定する構成とした。本発明に係る上記手
段によれば、平行電極が測定対象物の同一表面側にあ
り、しかも供給される電流が交番電流であるため小さな
電圧で表面の静電パラメータを測定することができる。
Further, in order to achieve the same object, the present invention provides a water content sensor, in which the parallel electrodes are in contact with or separated from the same surface of the object to be measured, or the interval between the parallel electrodes (hereinafter referred to as the gap width). The electrostatic parameter in the depth direction of the object to be measured is measured by supplying an alternating current while changing (). According to the above means of the present invention, since the parallel electrodes are on the same surface side of the object to be measured and the supplied current is an alternating current, the electrostatic parameter of the surface can be measured with a small voltage.

【0012】また、測定された静電パラメータをプリン
ター等の画像形成装置の印字条件にフィードバックする
ことにより、感熱記録紙の含水量に起因する感度の変化
や形状変化を抑制するとともに適当な補正を行い、画質
の劣化や紙詰まりを防止して安定した画像形成を行うこ
とができる。更に、ギャップ幅が測定深さに対応するた
め、このギャップ幅を変えながら交番電流を供給するこ
とにより、支持体を含めた感熱記録紙の厚み方向の静電
パラメータを連続的に測定することができ、含水率分布
を求めることができる。
Further, by feeding back the measured electrostatic parameter to the printing condition of the image forming apparatus such as a printer, it is possible to suppress the change of the sensitivity and the change of the shape due to the water content of the thermal recording paper and to make an appropriate correction. By doing so, stable image formation can be performed by preventing deterioration of image quality and paper jam. Further, since the gap width corresponds to the measurement depth, the electrostatic parameter in the thickness direction of the thermal recording paper including the support can be continuously measured by supplying the alternating current while changing the gap width. It is possible to obtain the water content distribution.

【0013】以下に本発明に係る含水率センサを、添付
の図面を参照しながら説明する。図1に示されるよう
に、含水率センサ1は平行電極10、平行電極10に交
番電流を供給する交番電流発生手段20、静電パラメー
タ測定手段30及びコントローラ40から構成される。
感熱記録紙50は、感熱発色層が平行電極10と対向す
るようにテーブル60上に載置される。この時、感熱記
録紙50と平行電極10とは接触した状態でもよいし、
あるいは一定距離離間して対向した状態ても構わない。
尚、感熱記録紙50と平行電極10とを接触させて測定
する場合には、平行電極10上に重り(図示省略)を載
置するなどして平行電極10全体を押圧して両者を均一
に密着させることにより、より大きな値の静電パラメー
タを得ることができるため、測定精度あるいは再現性の
点から好ましい。この時の押圧力は、図2に示される荷
重依存データ(Yellow発色感熱紙を23℃、湿度
65%の環境に置き、有効電極長6.3m、電極間距離
150μmの平行電極に1MHzの交流電流を供給し
て、押圧力を変えて静電容量を測定)から明らかなよう
に、あまり大きくてもその効果に変化はなく、概ね10
g/cm2 以上であれば実用上問題がない。
A water content sensor according to the present invention will be described below with reference to the accompanying drawings. As shown in FIG. 1, the water content sensor 1 includes a parallel electrode 10, an alternating current generating means 20 for supplying an alternating current to the parallel electrode 10, an electrostatic parameter measuring means 30 and a controller 40.
The thermosensitive recording paper 50 is placed on the table 60 so that the thermosensitive coloring layer faces the parallel electrodes 10. At this time, the thermal recording paper 50 and the parallel electrode 10 may be in contact with each other,
Alternatively, they may face each other with a certain distance therebetween.
When the thermosensitive recording paper 50 and the parallel electrode 10 are brought into contact with each other for measurement, a weight (not shown) is placed on the parallel electrode 10 to press the parallel electrode 10 as a whole so that both are evenly distributed. By bringing them into close contact, a larger value of the electrostatic parameter can be obtained, which is preferable from the viewpoint of measurement accuracy or reproducibility. The pressing force at this time is the load-dependent data shown in FIG. As is clear from measuring the electrostatic capacity by supplying a current and changing the pressing force), the effect does not change even if it is too large, and it is about 10
If it is g / cm 2 or more, there is no practical problem.

【0014】平行電極10は、線状の電極を所定間隔で
平行に配置して構成したものでも構わないが、電極長が
長いほど大きな値の静電パラメータが得られるため、測
定精度の点から電極長をできるだけ長くすることが好ま
しい。例えば、23℃、湿度65%の環境にYello
w発色感熱紙を置き、電極長を変えた電極間距離150
μmの平行電極に1MHzの交流電流を供給して静電容
量を測定したところ、図3に示されるように、電極長が
1cmの場合数pF程度の測定値であったものが、電極
長が30cmでは10pF、100cmでは15pF、
700cmでは45pFと増加しており、平行電極10
の電極長が長くなるのに伴って静電容量の値も大きくな
ることが認められた。
The parallel electrode 10 may be formed by arranging linear electrodes in parallel at a predetermined interval. However, since a larger value of the electrostatic parameter can be obtained as the electrode length becomes longer, measurement accuracy is improved. It is preferable to make the electrode length as long as possible. For example, in an environment of 23 ° C and humidity of 65%, Yellow
w Distance between electrodes 150 with color thermosensitive paper and different electrode length
When the capacitance was measured by supplying an alternating current of 1 MHz to the parallel electrodes of μm, as shown in FIG. 3, when the electrode length was 1 cm, the measured value was about several pF, but the electrode length was 10pF at 30cm, 15pF at 100cm,
It increased to 45 pF at 700 cm, and the parallel electrode 10
It was confirmed that the capacitance value increases with the increase of the electrode length.

【0015】しかし、電極長が長くなると電極の面積も
大きくなり、測定値を印字条件としてフィードバックす
るためにプリンター等の画層形成装置に搭載する際に設
置が困難になること、あるいは測定機器の測定性能等を
考慮すると電極長が1cm以上、好ましくは10cm以
上であれば実用上問題がない。平行電極10を例えば図
4に示されるように、一対の櫛型電極を互いに対向させ
た形状(同図(a))、あるいは一対の矩形波状の電極
を振幅軸方向にずらして重畳させたような形状(同図
(b))に配置して構成することにより、小さな占有面
積で電極長を長くすることができる。但し、この場合隣
接する電極同士は、同一間隔になるように形成しなけれ
ばならない。
However, if the electrode length becomes long, the area of the electrode also becomes large, and the measurement value is fed back as a printing condition, so that it becomes difficult to install it in an image forming apparatus such as a printer, or it becomes difficult to install it. Considering measurement performance and the like, there is no practical problem if the electrode length is 1 cm or more, preferably 10 cm or more. As shown in FIG. 4, for example, the parallel electrode 10 has a shape in which a pair of comb-shaped electrodes are opposed to each other ((a) in FIG. 4), or a pair of rectangular-wave electrodes are offset in the amplitude axis direction and overlapped. By arranging and arranging in such a shape ((b) in the figure), the electrode length can be increased with a small occupied area. However, in this case, adjacent electrodes must be formed with the same interval.

【0016】また、静電パラメータの測定においては、
平行電極10のギャップ幅も大きなパラメータであり、
最適ギャップ幅を設定して測定することが好ましい。そ
のためには、先ず高湿度中及び低湿度中で湿度調整した
感熱記録紙を測定環境に取り出して、ギャップ幅の異な
る種々の平行電極を用いて所定時間経過後の静電パラメ
ータを測定し、高湿度及び低湿度の感熱記録紙の測定値
の比をギャップ幅に対してプロットしてギャップ幅対静
電パラメータ比曲線を作成する。これに対し、高湿度及
び低湿度の感熱記録紙に実際に印字を行い、その印字濃
度から感熱記録紙の感度を測定して両感熱記録紙の感度
比を求め、この値をギャップ幅対静電パラメータ比曲線
の静電パラメータ比に代入して対応するギャップ幅を求
めて最適ギャップ幅とする。
In measuring electrostatic parameters,
The gap width of the parallel electrode 10 is also a large parameter,
It is preferable to set and measure the optimum gap width. To do so, first take out the thermosensitive recording paper whose humidity is adjusted in high humidity and low humidity into the measurement environment, measure the electrostatic parameters after a lapse of a predetermined time using various parallel electrodes with different gap widths, and The ratio of the measured values of humidity and low humidity thermal recording paper is plotted against the gap width to create a gap width vs. electrostatic parameter ratio curve. On the other hand, actual printing is performed on high- and low-humidity thermal recording papers, the sensitivity of the thermal recording papers is measured from the print density, and the sensitivity ratio of both thermal recording papers is calculated. The optimum gap width is obtained by substituting it into the electrostatic parameter ratio of the electric parameter ratio curve to find the corresponding gap width.

【0017】例えば、図5は高湿度中(23℃、湿度8
0%)及び低湿度中(23℃、湿度15%)で湿潤調整
したYellow発色感熱紙を23℃、湿度60%の測
定環境に取り出して、ギャップ幅が40μm、70μ
m、150μm及び300μmの平行電極を用いて10
0分経過後の静電容量を測定し、静電容量比をギャップ
幅に対してプロットしたギャップ幅対静電容量比曲線で
あるが、このギャップ幅対静電容量比曲線の静電容量比
に、同様の高湿度及び低湿度のYellow発色感熱紙
の印字濃度を測定して求めた感度比(1.1)を代入す
ることにより、その値に対応するギャップ幅150μm
が得られる。
For example, FIG. 5 shows high humidity (23 ° C., humidity 8).
(0%) and low humidity (23 ° C, humidity 15%) wet-adjusted Yellow color thermosensitive paper was taken out to a measurement environment of 23 ° C, humidity 60%, and the gap width was 40 μm, 70 μm.
m, 150 μm and 300 μm using parallel electrodes
It is a gap width-capacitance ratio curve in which the capacitance after 0 minutes is measured and the capacitance ratio is plotted against the gap width. By substituting the sensitivity ratio (1.1) obtained by measuring the print density of the yellow color thermal paper having the same high humidity and low humidity, the gap width corresponding to the value is 150 μm.
Is obtained.

【0018】以上説明したような平行電極10は、ガラ
スエポキシ等の基板上に公知の導電材料、例えば銅や
錫、銀合金を蒸着やメッキ、塗布などの方法により薄膜
状に形成した後、所定の電極間距離になるようにエッチ
ングによりパターニングして得られる。平行電極10に
は、交番電流発生手段20から交番電流が供給される。
この交番電流は、交流電流が取扱性の点から便利である
が、パルス電流でも構わない。また、供給電流の周波数
も特に限定されず、数万Hz〜数MHz程度の高周波交
流を用いることができる。
The parallel electrode 10 as described above is formed into a thin film by forming a known conductive material such as copper, tin or silver alloy on a substrate such as glass epoxy by a method such as vapor deposition, plating or coating and then predetermined. It is obtained by patterning by etching so as to have a distance between electrodes. An alternating current is supplied from the alternating current generating means 20 to the parallel electrodes 10.
The alternating current is convenient because an alternating current is convenient in terms of handleability, but may be a pulse current. Further, the frequency of the supply current is not particularly limited, and a high frequency alternating current of about tens of thousands Hz to several MHz can be used.

【0019】平行電極10に交番電流を供給して電極間
に電界を発生させ、静電パラメータ測定手段30により
感熱記録紙50の静電パラメータを測定する。この静電
パラメータ測定手段30は公知のLCR回路からなり、
前記静電容量の他にも誘電損失やQ値、L(リアクタン
ス)、R(レジスタンス)、Z(インピーダンス)等の
各種静電パラメータを測定することができる。
An alternating current is supplied to the parallel electrodes 10 to generate an electric field between the electrodes, and the electrostatic parameter measuring means 30 measures the electrostatic parameters of the thermal recording paper 50. The electrostatic parameter measuring means 30 comprises a known LCR circuit,
In addition to the electrostatic capacitance, various electrostatic parameters such as dielectric loss, Q value, L (reactance), R (resistance) and Z (impedance) can be measured.

【0020】以上のギャップ幅の設定や交番電流の供
給、あるいは静電パラメータの測定値の記録やデータ処
理等は、コントローラ40を用いて行われる。また、一
般に感熱記録紙の含水率が高くなると、それに伴って印
字される文字や画像の濃度も高くなることが知られてい
る。そこで、様々な湿度の下に置かれた感熱記録紙の静
電パラメータと印字濃度とを測定して静電パラメータ対
印字濃度(感度)曲線を作成しておき、印字開始直前に
使用感熱記録紙の静電パラメータを測定して同曲線から
対応する感度を求め、この感度を基に印字ヘッドへの供
給電圧や印字速度等を調整して印字することにより、高
画質の画像を形成することができる。
The controller 40 is used to set the gap width, supply the alternating current, record the measured value of the electrostatic parameter, and process the data. Further, it is generally known that the higher the water content of the thermal recording paper, the higher the density of the characters or images printed. Therefore, the electrostatic parameters and the print density of the thermosensitive recording paper placed under various humidities are measured to create a curve of the electrostatic parameter vs. the print density (sensitivity), and the thermosensitive recording paper used immediately before the printing is started. It is possible to form a high-quality image by measuring the electrostatic parameters of the above and obtaining the corresponding sensitivity from the same curve, and adjusting the supply voltage to the print head and the printing speed based on this sensitivity before printing. it can.

【0021】この場合、感熱記録紙の種類により印字濃
度が異なるために、様々な感熱記録紙について同様の静
電パラメータ対印字濃度曲線を作成しておき、使用感熱
記録紙に対応した同曲線を選択しなければならない。ま
た、感熱記録紙の種類により最適ギャップ幅が変わって
くるため、前記のギャップ幅設定のための一連の操作を
行い、最適ギャップ幅を設定してから測定を行う必要が
ある。
In this case, since the printing density differs depending on the type of the thermal recording paper, similar electrostatic parameter-printing density curves are prepared for various thermal recording papers, and the same curve corresponding to the thermal recording paper used is prepared. You have to choose. Further, since the optimum gap width changes depending on the type of thermal recording paper, it is necessary to perform the series of operations for setting the above-mentioned gap width and set the optimum gap width before performing the measurement.

【0022】このように静電パラメータを測定して、そ
れをプリンター等の画像形成装置の印字条件にフィード
バックすることにより高画質の画像を得ることができ
る。ところで、平行電極により形成される電界強度は、
概ね電極からの距離の2乗に比例して減少し、その電界
分布は、隣接する電極間距離を直径とする円筒形を示
す。従って、平行電極を用いて静電パラメータを測定す
る場合、実際の測定値は、測定対象物の表面からギャッ
プ幅と略等しい深さまでの静電パラメータの積分値とな
る。
By thus measuring the electrostatic parameter and feeding it back to the printing conditions of the image forming apparatus such as a printer, a high quality image can be obtained. By the way, the electric field strength formed by the parallel electrodes is
The electric field distribution decreases in proportion to the square of the distance from the electrodes, and the electric field distribution thereof exhibits a cylindrical shape having a diameter between adjacent electrodes. Therefore, when the electrostatic parameter is measured using the parallel electrodes, the actual measured value is the integrated value of the electrostatic parameter from the surface of the measuring object to a depth approximately equal to the gap width.

【0023】そこで、平行電極のギャップ幅を連続的に
変化させて測定することにより、感熱記録紙の厚さ方向
における静電パラメータ分布を求めることができる。こ
の静電パラメータ分布の測定手段及び測定方法に関し
て、再び図1を参照して説明する。基本的な構成は、前
記表面静電パラメータの測定手段に電極移動手段を付加
した構成である。
Therefore, the electrostatic parameter distribution in the thickness direction of the thermosensitive recording paper can be obtained by continuously changing and measuring the gap width of the parallel electrodes. The electrostatic parameter distribution measuring means and measuring method will be described with reference to FIG. 1 again. The basic configuration is a configuration in which an electrode moving means is added to the surface electrostatic parameter measuring means.

【0024】平行電極10のギャップ幅を連続に変化さ
せる機構としては、平行電極10を構成する一対の電極
をそれぞれ別の基板上に形成し、これらの電極基板を移
動ステージ(図示省略)に取り付けることにより、移動
可能とすることができる。この移動ステージは、各種モ
ータを用いて駆動される。使用されるモータは特に限定
されないが、位置制御が容易で、微小ピッチで電極基板
を駆動できるものが好ましく、例えばパルスモータやD
Cモータ、ピエゾアクチュエータ等を使用できる。ま
た、電極を平行移動に加えて上下方向に移動させること
により、感熱記録紙50の静電パラメータを3次元的に
測定することも可能である。
As a mechanism for continuously changing the gap width of the parallel electrodes 10, a pair of electrodes forming the parallel electrodes 10 are formed on different substrates, and these electrode substrates are attached to a moving stage (not shown). As a result, it can be made movable. This moving stage is driven by using various motors. The motor used is not particularly limited, but it is preferable that the position control is easy and the electrode substrate can be driven at a fine pitch, such as a pulse motor or a D motor.
A C motor, a piezo actuator, etc. can be used. Further, the electrostatic parameters of the thermal recording paper 50 can be three-dimensionally measured by moving the electrodes in the vertical direction in addition to the parallel movement.

【0025】また、ギャップ幅の変化量をより微小にし
て測定することにより、緻密な静電パラメータ分布を得
ることができる。例えばパルスモータを用いて電極の移
動を行う場合、モータを1パルス毎に回転させて、その
都度静電パラメータを測定することにより、より緻密な
静電パラメータ分布を得ることができる。このギャップ
幅は、一対の電極を接した状態、即ちギャップ幅ゼロか
ら連続的に変化させることが可能である。上限に関して
は、測定される感熱記録紙50の紙面の大きさまで可能
であるが、感熱記録紙50の厚さ方向の静電パラメータ
分布の測定においては、その厚さ程度(約数百μm)ま
でギャップ幅を広げれば充分である。
Further, a fine electrostatic parameter distribution can be obtained by making the change amount of the gap width smaller and measuring it. For example, when the electrodes are moved using a pulse motor, the motor is rotated every pulse and the electrostatic parameter is measured each time, so that a more precise electrostatic parameter distribution can be obtained. The gap width can be continuously changed from a state where the pair of electrodes are in contact with each other, that is, the gap width is zero. The upper limit can be up to the size of the surface of the thermal recording paper 50 to be measured, but in the measurement of the electrostatic parameter distribution in the thickness direction of the thermal recording paper 50, up to the thickness (about several hundreds of μm). It is enough to widen the gap width.

【0026】測定に際して、感熱記録紙50と平行電極
10とは接触した状態でもよいし、あるいは一定距離離
間して対向した状態ても構わない。尚、感熱記録紙50
と平行電極10とを接触させて測定する場合には、既述
した理由により平行電極10上に10g/cm2 程度の
重りを載置して両者を均一に密着させることが好まし
い。また、平行電極10の形状は限定されないが、針状
電極を用いて感熱記録紙50の表面に点接触させて、あ
るいは所定距離離間させて測定することが好ましい。
At the time of measurement, the thermal recording paper 50 and the parallel electrode 10 may be in contact with each other, or may be in a state of facing each other with a certain distance therebetween. The thermal recording paper 50
When the measurement is performed by contacting the parallel electrode 10 with the parallel electrode 10, it is preferable to place a weight of about 10 g / cm 2 on the parallel electrode 10 for the above-mentioned reason so as to bring them into close contact with each other uniformly. Further, the shape of the parallel electrode 10 is not limited, but it is preferable to use a needle-shaped electrode to make a point contact with the surface of the thermal recording paper 50 or to separate it by a predetermined distance.

【0027】また、コントローラ40、交番電流発生手
段20及び静電パラメータ測定手段30は、前記表面静
電パラメータ測定に用いられるものをそのまま使用する
ことができる。従って、測定される静電パラメータも同
様であり、静電容量や誘電損失、Q値、L(リアクタン
ス)、R(レジスタンス)、Z(インピーダンス)等の
各種静電パラメータが測定される。
As the controller 40, the alternating current generating means 20, and the electrostatic parameter measuring means 30, those used for the surface electrostatic parameter measurement can be used as they are. Therefore, the measured electrostatic parameters are also the same, and various electrostatic parameters such as electrostatic capacitance, dielectric loss, Q value, L (reactance), R (resistance), and Z (impedance) are measured.

【0028】測定は、先ず感熱記録紙50をテーブル6
0に載置しない状態で、後述される手順と同様にしてブ
ランクのデータを測定しておく。このブランク値は、実
際に得られる測定値から外乱因子(ノイズ)を取り除く
ためのものであり、測定値はこのブランク値が差し引か
れて処理される。次いで、感熱記録紙50をテーブル6
0に載置して、移動ステージを駆動して平行電極10を
微小距離、例えばモータの1パルス分移動させる。移動
後、平行電極10を感熱記録紙50に当接して(あるい
は一定距離離間させて)、交番電流発生手段20から交
番電流を供給して、静電パラメータを測定する。
In the measurement, first, the thermosensitive recording paper 50 is placed on the table 6
Blank data is measured in the same manner as the procedure described later in a state where the blank data is not placed. This blank value is for removing the disturbance factor (noise) from the actually obtained measured value, and the measured value is processed by subtracting this blank value. Next, the thermal recording paper 50 is placed on the table 6
Then, the parallel electrode 10 is moved by a minute distance, for example, one pulse of the motor by driving the moving stage. After the movement, the parallel electrodes 10 are brought into contact with the thermal recording paper 50 (or separated from each other by a certain distance), and an alternating current is supplied from the alternating current generating means 20 to measure the electrostatic parameter.

【0029】測定される静電パラメータは、表面からギ
ャップ幅に相当する深度までの積分値であるから、各深
度における測定値は、それより狭いギャップ幅における
測定値との差を取ることで求められる。また、電界強度
はギャップ幅の2乗に比例して減少するため、深度が深
くなるほど測定値が小さくなる。そこで、ギャップ幅の
値をその時の測定値に乗じて重み付けして処理する。
Since the measured electrostatic parameter is an integrated value from the surface to the depth corresponding to the gap width, the measured value at each depth is obtained by taking the difference from the measured value at a narrower gap width. To be Further, since the electric field strength decreases in proportion to the square of the gap width, the measured value decreases as the depth increases. Therefore, the value of the gap width is multiplied by the measured value at that time and weighted for processing.

【0030】このような電極移動と測定とを、ギャップ
幅が感熱記録紙50の厚さ以上になるまで繰り返し行う
ことにより、感熱記録紙50の厚さ方向の静電パラメー
タ分布が得られる。
By repeating such electrode movement and measurement until the gap width becomes equal to or larger than the thickness of the thermosensitive recording paper 50, the electrostatic parameter distribution in the thickness direction of the thermosensitive recording paper 50 can be obtained.

【0031】[0031]

【実施例】本発明に係る含水率センサを実施例に基づい
てより詳細に説明する。但し、本実施例は一例であり、
これに限定されるものではない。 〔実施例1〕実際の測定に先立ち、高湿度(23℃、湿
度80%)及び低湿度(23℃、湿度15%)で湿度調
整した感熱紙の静電容量及び感度を測定し、その静電容
量比及び感度比から最適ギャップ幅150μmを得た。
そこで、ガラスエポキシ基板上に、40本の全長80m
mの銅電極からなる一対の櫛型電極をギャップ幅150
μmになるように図2(a)と同様の形状に配置して平
行電極とした。
EXAMPLES A water content sensor according to the present invention will be described in more detail based on examples. However, this embodiment is an example,
It is not limited to this. [Example 1] Prior to the actual measurement, the capacitance and sensitivity of the thermal paper whose humidity was adjusted at high humidity (23 ° C, 80% humidity) and low humidity (23 ° C, 15% humidity) were measured, and the static value was measured. The optimum gap width of 150 μm was obtained from the capacitance ratio and the sensitivity ratio.
Therefore, 40 pieces with a total length of 80 m are mounted on the glass epoxy substrate.
A pair of comb-shaped electrodes made of copper electrodes with a gap width of 150
The electrodes were arranged in the same shape as in FIG.

【0032】次いで、前記と同様に湿度調整された感熱
紙を測定環境(温度23℃、湿度65%)に取り出し
て、前記平行電極を載置し、更にその上に10g/cm
2 の押圧力となるように平板状の重りを載置した状態
で、1MHzの周波数の交流波形を供給し、ヒューレッ
トパッカード社製4284A型LCRメータを用いて電
極載置直後からの静電容量及び誘電損失の経時変化を測
定した。
Then, the thermal paper whose humidity was adjusted in the same manner as above was taken out to a measurement environment (temperature 23 ° C., humidity 65%), the parallel electrodes were placed thereon, and further 10 g / cm 2 was placed thereon.
With a flat weight placed so that a pressing force of 2 is applied, an AC waveform with a frequency of 1 MHz is supplied, and a capacitance and a capacitance immediately after the electrode placement is performed by using a Hewlett Packard 4284A type LCR meter. The change with time of the dielectric loss was measured.

【0033】静電容量及び誘電損失の測定と並行して、
同一の感熱紙にヘッド温度30℃、電圧27Vの条件で
印字して、X−rite測定器(Grandville
社製)を用いて印字濃度を測定した。得られた静電容量
対印字濃度曲線を図6に、誘電損失対印字濃度曲線を図
7にそれぞれ示す。これらの図から明らかなように、印
字濃度即ち感熱記録紙の感度と静電パラメータとの間に
は相関が認められる。
In parallel with the measurement of capacitance and dielectric loss,
Print on the same thermal paper under the conditions of head temperature of 30 ° C. and voltage of 27 V, and use an X-rite measuring device (Grandville).
The print density was measured by using a product manufactured by K.K. The obtained capacitance vs. print density curve is shown in FIG. 6, and the dielectric loss vs. print density curve is shown in FIG. 7, respectively. As is clear from these figures, there is a correlation between the print density, that is, the sensitivity of the thermal recording paper and the electrostatic parameter.

【0034】静電容量対印字濃度データを補正データと
してサーマルプリンター(富士写真フィルム社製:FT
I210)にフィードバックして、含水率10%の高含
水感熱記録紙並びに含水率3%の低含水率感熱記録紙に
印字したところ、両感熱記録紙とも階調も良好で高画質
の画像が得られた。 〔比較例〕実施例1と同様の湿度調整された感熱紙を2
枚の平板銅電極で挟持して、1Vの交流波形を印加し
て、静電容量の経時変化を測定した。
Thermal printer (Fuji Photo Film Co., Ltd .: FT
I210) and fed back to a high water content thermal recording paper with a water content of 10% and a low water content thermal recording paper with a water content of 3%, both thermal recording papers have good gradation and high quality images are obtained. Was given. [Comparative Example] The same humidity-sensitive thermal paper as in Example 1 was used.
The plate was sandwiched by a pair of flat plate copper electrodes, an AC waveform of 1 V was applied, and the change in capacitance with time was measured.

【0035】この測定値を実施例1の印字濃度データに
対してプロットして静電容量対印字濃度曲線を作成した
ところ、相関は認められなかった。 〔実施例2〕ガラス板に、第1層としてCR−C(信越
化学社製)0.25gをフッ素アルコール5ccに溶解
させた溶液(誘電率大)を塗布し、その上に第2層とし
てスミライザー(住友化学社製)0.125gを1−メ
トキシ−2−プロパノール5ccに溶解させた溶液(誘
電率小)を塗布し、更に第3層として第1層と同一の溶
液を塗布して誘電率の異なる3層構造の試料を作成し
た。この試料をパルスステージ(中央精機社PS−30
E)上に載置し、コントローラ(中央精機社CPC−3
DN)により2μmずつ帯状並行電極の間隔を広げなが
ら、100kHzの周波数の交流波形を供給して静電容
量を測定した。測定結果を図8に示す。尚、ギャップ幅
(W)が大きくなるに従って、静電容量(C)の値が小
さくなるために、静電容量の変化率に測定時のギャップ
幅を乗じてデータ処理を行った。図中、ピーク(a)及
び(b)は、誘電率の大きな第1層及び第3層に相当し
ており、試料の表面から30μm程度までの間と、表面
からの距離が60μm程度の位置から80μm程度まで
の間にこれらの層が存在することが判る。また、それ以
上大きなギャップ幅の領域は支持体であることが判る。
When the measured values were plotted against the print density data of Example 1 to prepare a capacitance vs. print density curve, no correlation was observed. Example 2 A glass plate was coated with a solution (large dielectric constant) in which 0.25 g of CR-C (manufactured by Shin-Etsu Chemical Co., Ltd.) was dissolved in 5 cc of fluoroalcohol as a first layer, and a second layer was formed thereon. A solution (small dielectric constant) of 0.125 g of Sumilizer (Sumitomo Chemical Co., Ltd.) dissolved in 5 cc of 1-methoxy-2-propanol was applied, and the same solution as the first layer was applied as the third layer to induce dielectric. Three-layer structure samples with different rates were prepared. A pulse stage (PS-30 of Chuo Seiki Co., Ltd.
E) Place it on the controller (CPC-3, Chuo Seiki Co., Ltd.)
The capacitance was measured by supplying an AC waveform with a frequency of 100 kHz while widening the interval between the strip parallel electrodes by 2 μm by DN). The measurement result is shown in FIG. Since the value of the electrostatic capacitance (C) becomes smaller as the gap width (W) becomes larger, data processing was performed by multiplying the rate of change of the electrostatic capacitance by the gap width at the time of measurement. In the figure, peaks (a) and (b) correspond to the first and third layers having a large dielectric constant, and are located between the surface of the sample and about 30 μm and at a position where the distance from the surface is about 60 μm. It can be seen that these layers are present in the range from 1 to 80 μm. Further, it can be seen that the region having a larger gap width than that is the support.

【0036】尚、上記実施例においては静電パラメータ
として静電容量と誘電損失を測定したが、これらに限ら
ず他の静電パラメータ、例えばQ値やL(リアクタン
ス)、R(レジスタンス)、Z(インピーダンス)等を
測定し、これらの値を基に同様の処理を行うことができ
る。更に、測定対象物も感熱記録紙に限らず、種々材料
の含水率を測定することができる。
In the above embodiment, the capacitance and the dielectric loss were measured as the electrostatic parameters, but not limited to these, other electrostatic parameters such as Q value, L (reactance), R (resistance) and Z. (Impedance) and the like can be measured, and similar processing can be performed based on these values. Further, the measurement object is not limited to the thermal recording paper, and the water content of various materials can be measured.

【0037】[0037]

【発明の効果】以上説明したように本発明に係る含水率
センサによれば、測定対象物の表面のみの含水率を測定
できるとともに、その厚さ方向の含水率分布も測定する
ことができる。しかも、その方法も単にギャップ幅を設
定したり、あるいはギャップ幅を連続的に変化させるだ
けでよいため、極めて容易に測定を行うことができる。
As described above, according to the water content sensor of the present invention, the water content of only the surface of the object to be measured can be measured, and the water content distribution in the thickness direction can also be measured. Moreover, in that method, the gap width may be simply set or the gap width may be continuously changed, so that the measurement can be performed extremely easily.

【0038】また、交番電流を用いて測定するために、
測定対象物の材質に何ら影響を与えることなく測定する
ことができる。更に、従来のセンサでは得られなかった
表面部分だけの含水率データが得られるために、このデ
ータをプリンター等の画像形成装置の印字条件としてフ
ィードバックすることにより、より適格な印字調整を行
うことができる。
Further, in order to perform measurement using an alternating current,
It is possible to perform the measurement without affecting the material of the measurement object. Further, since water content data only for the surface portion, which cannot be obtained by the conventional sensor, can be obtained, by feeding back this data as the printing condition of the image forming apparatus such as a printer, more proper printing adjustment can be performed. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る含水率センサの構成を示す図で
ある。
FIG. 1 is a diagram showing a configuration of a water content sensor according to the present invention.

【図2】 本発明に係る含水率センサの使用時における
電極押圧力の影響を説明するための図である。
FIG. 2 is a diagram for explaining the influence of electrode pressing force when the water content sensor according to the present invention is used.

【図3】 本発明に係る含水率センサの使用時における
電極長の影響を説明するための図である。
FIG. 3 is a diagram for explaining the influence of the electrode length when the water content sensor according to the present invention is used.

【図4】 本発明に係る含水率センサの電極形状の例を
示す図である。
FIG. 4 is a diagram showing an example of an electrode shape of a water content sensor according to the present invention.

【図5】 本発明に係る含水率センサの使用時における
最適ギャップ幅を説明するための図である。
FIG. 5 is a diagram for explaining an optimum gap width when the water content sensor according to the present invention is used.

【図6】 実施例1において得られた静電容量対印字濃
度曲線である。
6 is a capacitance vs. print density curve obtained in Example 1. FIG.

【図7】 実施例1において得られた誘電損失対印字濃
度曲線である。
7 is a dielectric loss vs. print density curve obtained in Example 1. FIG.

【図8】 実施例2において得られた含水率分布であ
る。
8 is a water content distribution obtained in Example 2. FIG.

【符号の説明】[Explanation of symbols]

1 含水率センサ 10 平行電極 20 交番電流発生手段 30 静電パラメータ測定手段 40 コントローラ 50 感熱記録紙 60 テーブル 1 Water Content Sensor 10 Parallel Electrode 20 Alternating Current Generating Means 30 Electrostatic Parameter Measuring Means 40 Controller 50 Thermosensitive Recording Paper 60 Table

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 平行電極を測定対象物の同一表面に接
触、あるいは離間させた状態で、該平行電極に交番電流
を供給することにより測定対象物表面の静電パラメータ
を測定することを特徴とする含水率センサ。
1. An electrostatic parameter of a surface of a measurement object is measured by supplying an alternating current to the parallel electrode in a state where the parallel electrode is in contact with or separated from the same surface of the measurement object. Moisture content sensor.
【請求項2】 測定静電パラメータを画像形成装置の印
字条件にフィードバックすることを特徴とする請求項1
に記載の含水率センサ。
2. The measured electrostatic parameter is fed back to the printing condition of the image forming apparatus.
The water content sensor described in 1.
【請求項3】 平行電極を測定対象物の同一表面に接
触、あるいは離間させた状態で、該平行電極の間隔を変
えながら交番電流を供給することにより測定対象物の深
さ方向における静電パラメータを測定することを特徴と
する含水率センサ。
3. An electrostatic parameter in the depth direction of a measurement object by supplying an alternating current while changing the distance between the parallel electrodes in a state where the parallel electrodes are in contact with or separated from the same surface of the measurement object. A water content sensor characterized by measuring.
JP05123146A 1993-04-28 1993-04-28 Measurement method of moisture content of recording paper Expired - Fee Related JP3133862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05123146A JP3133862B2 (en) 1993-04-28 1993-04-28 Measurement method of moisture content of recording paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05123146A JP3133862B2 (en) 1993-04-28 1993-04-28 Measurement method of moisture content of recording paper

Publications (2)

Publication Number Publication Date
JPH06308072A true JPH06308072A (en) 1994-11-04
JP3133862B2 JP3133862B2 (en) 2001-02-13

Family

ID=14853335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05123146A Expired - Fee Related JP3133862B2 (en) 1993-04-28 1993-04-28 Measurement method of moisture content of recording paper

Country Status (1)

Country Link
JP (1) JP3133862B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10955374B2 (en) 2018-01-05 2021-03-23 Ricoh Company, Ltd. Characteristic detector, medium supply device, and image forming apparatus incorporating same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10955374B2 (en) 2018-01-05 2021-03-23 Ricoh Company, Ltd. Characteristic detector, medium supply device, and image forming apparatus incorporating same

Also Published As

Publication number Publication date
JP3133862B2 (en) 2001-02-13

Similar Documents

Publication Publication Date Title
EP2445650A1 (en) Improved film thickness measurement
JP6184887B2 (en) An active bias electrode that reduces the electric field directly below the print head in the electrostatic media transport
US20140028750A1 (en) Active Biased Electrodes for Reducing Electrostatic Fields Underneath Print Heads in an Electrostatic Media Transport
JP3133862B2 (en) Measurement method of moisture content of recording paper
US4254424A (en) Electrostatic recording apparatus
JPH0772716A (en) Image formation device and image formation element for said image formation device
JPS62122102A (en) Heat sensitive recording head and manufacture of the same
US9068913B2 (en) Photolithographic structured thick layer sensor
EP0342995A2 (en) Recording head
CN111936662B (en) Film manufacturing apparatus and method for manufacturing double-sided laminated film
JP3797173B2 (en) Screen printing method
JP2645759B2 (en) Method for manufacturing thermal head for uniformizing surface temperature of heating resistor protective layer with high accuracy
JP4377957B2 (en) Heat discharge type print head and driving method thereof
US4056823A (en) Analog chart recorder employing thermal printing means
JP2529267B2 (en) Film forming equipment
JP2947948B2 (en) Resistor trimming method for thin film thermal head
JPH06324584A (en) Heater, manufacture of heater and fixing device
JPH05258843A (en) Fixing heater and its manufacture
JP3754545B2 (en) Paper transport device
JP3106533B2 (en) Thermal head device
JP2001124524A (en) Apparatus and method of measuring film thickness
JPH10805A (en) Electrostatic ink-jet recording device
JPS60171178A (en) Thermal head
JPS6292414A (en) Manufacture of thick film thermal head
JPS61189959A (en) Thick film thermal recording head

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20071124

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20071124

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071124

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20081124

LAPS Cancellation because of no payment of annual fees