JP2001124524A - Apparatus and method of measuring film thickness - Google Patents

Apparatus and method of measuring film thickness

Info

Publication number
JP2001124524A
JP2001124524A JP30873799A JP30873799A JP2001124524A JP 2001124524 A JP2001124524 A JP 2001124524A JP 30873799 A JP30873799 A JP 30873799A JP 30873799 A JP30873799 A JP 30873799A JP 2001124524 A JP2001124524 A JP 2001124524A
Authority
JP
Japan
Prior art keywords
film thickness
wavelength
calculating
reflected light
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30873799A
Other languages
Japanese (ja)
Inventor
Takanao Suzuki
孝尚 鈴木
Sanae Honda
早苗 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP30873799A priority Critical patent/JP2001124524A/en
Publication of JP2001124524A publication Critical patent/JP2001124524A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus and a method of measuring the film thickness which is capable of accurately measuring films having various thicknesses. SOLUTION: This film thickness measuring apparatus comprises a reflected light information collector 3 for collecting reflected light information DI from a film 2 formed on a sample 1 with a light irradiating the film 2 and a film thickness calculator 4 for calculating the film thickness, based on the reflected light information DI collected from the reflected light information collector 3. In the film thickness measuring method, a film thickness calculating wavelength range calculator 4c in the film thickness calculator 4 calculates the film thickness calculating wavelength region, from the relation between an inter-peak-wavelength distance calculated by an inter-peak-wavelength distance calculator 4b and the wavelength resolution of the reflected light information DI, i.e., the wavelength resolution of a spectrophotometer 7, hence if films having various thicknesses are measured, an optimum film thickness calculating wavelength region is always calculated and the film thickness can be measured accurately.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、膜厚を測定する膜
厚測定装置、及び膜厚測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film thickness measuring device and a film thickness measuring method for measuring a film thickness.

【0002】[0002]

【従来の技術】従来、膜の膜厚の測定する方法として
は、段差計、渦電流式膜厚計等の接触式膜厚測定法や、
色彩色差法、干渉法、光吸収法等を用いた非接触式膜厚
測定法が考案されている。
2. Description of the Related Art Conventionally, as a method of measuring a film thickness of a film, a contact type film thickness measuring method such as a step gauge and an eddy current type film thickness meter,
A non-contact type film thickness measurement method using a color difference method, an interference method, a light absorption method or the like has been devised.

【0003】特に、干渉法を用いた膜厚測定は、比較的
平易かつ短時間での測定が可能な事から、例えば、電子
写真感光体における下引き層や電荷輸送層のような透明
膜の膜厚を測定する場合によく用いられている。
In particular, film thickness measurement using an interference method can be performed relatively easily and in a short time. For example, a transparent film such as an undercoat layer or a charge transport layer in an electrophotographic photosensitive member can be measured. Often used for measuring film thickness.

【0004】この光干渉法の原理は以下の通りである。
図6に、試料上に形成された膜厚d、膜の比屈折率nの
透明薄膜に光を入射した場合の模式図を示す。このよう
な膜に光を入射し、その反射光のスペクトルを採取した
場合、スペクトルは、例えば図7のような波形になる。
このような波形で得られる、2つの隣り合った光量極大
となる波長(以下、「PEAK波長」という。)又は2
つの隣り合った光量極小となる波長(以下、「BOTT
OM波長」という)であるλ1、λ2を求め、それらを膜
厚算出式である下記式(1)に代入することにより、膜
厚を求める方法である。
The principle of this optical interference method is as follows.
FIG. 6 is a schematic diagram when light is incident on a transparent thin film having a film thickness d and a relative refractive index n of the film formed on the sample. When light is incident on such a film and the spectrum of the reflected light is collected, the spectrum has, for example, a waveform as shown in FIG.
Two adjacent light-emission maximum wavelengths (hereinafter referred to as “PEAK wavelengths”) or 2 obtained with such a waveform.
The wavelength at which two adjacent light quantities have a minimum (hereinafter referred to as “BOTT
This is a method of obtaining the film thickness by obtaining λ 1 and λ 2 as “OM wavelengths”) and substituting them into the following formula (1), which is a film thickness calculation formula.

【0005】式(1) d=λ1λ2/2n(λ1−λ2Equation (1) d = λ 1 λ 2 / 2n (λ 12 )

【0006】また、図7は、隣り合った2つのPEAK
波長から膜厚を算出する例であるが、波形によっては隣
り合った2つのBOTTOM波長を用いてもよい。
FIG. 7 shows two adjacent PEAKs.
In this example, the film thickness is calculated from the wavelength. However, depending on the waveform, two adjacent BOTTOM wavelengths may be used.

【0007】[0007]

【発明が解決しようとする課題】一方、膜厚測定におい
ては、同一デバイスで、様々な厚さの膜を測定する場合
があり、その代表的なものとして電子写真感光体におけ
る膜厚測定がある。電子写真感光体の塗布膜には、その
使用目的により様々な厚さのものが存在し、例えば、下
引き層のように数百nm〜1μm程度のものや、電荷輸
送層のように、10〜40μm程度のものまでさまざま
である。これらの成膜工程上での膜厚公差については、
所定の範囲を定めて管理を行うのが一般的であり、例え
ば電荷輸送層の場合には最大で4〜5μm程度の範囲を
設けている。
On the other hand, in film thickness measurement, there are cases where films of various thicknesses are measured with the same device, and a typical example is film thickness measurement on an electrophotographic photosensitive member. . Coating films of an electrophotographic photoreceptor have various thicknesses depending on the purpose of use. It varies up to about 40 μm. Regarding the film thickness tolerance in these film forming processes,
In general, a predetermined range is determined and managed. For example, in the case of a charge transport layer, a range of about 4 to 5 μm is provided at the maximum.

【0008】このような、同一デバイスで、様々な厚さ
の膜を測定する場合、光干渉法においては、分光光度計
により採取した反射光の干渉波形からPEAK波長を検
出して膜厚を求めると、測定する膜厚の変動によりPE
AK波長間距離も変動する。例えば、前記式(1)から
明らかなように、膜厚が厚くなるほどPEAK波長間の
距離は狭くなっていく。一方、分光光度計における波長
分解能は使用する装置毎に固定であり、膜厚が厚くなる
につれて、波長分解能に対するPEAK波長間距離の比
が小さくなっていく。
When measuring films of various thicknesses with the same device, in the optical interference method, the PEAK wavelength is detected from the interference waveform of reflected light collected by a spectrophotometer to determine the film thickness. And PE due to the variation of the film thickness to be measured
The distance between AK wavelengths also varies. For example, as is clear from the above equation (1), the distance between the PEAK wavelengths decreases as the film thickness increases. On the other hand, the wavelength resolution in a spectrophotometer is fixed for each device used, and as the film thickness increases, the ratio of the distance between PEAK wavelengths to the wavelength resolution decreases.

【0009】即ち、反射光の干渉波形を採取する分光光
度計が、固定の波長分解能を有することことから、厚膜
化による測定精度の低下が避けられず、同一デバイスに
おける膜厚公差範囲内で、厚膜側の測定精度が不足する
といった問題を生じる。
That is, since the spectrophotometer for collecting the interference waveform of the reflected light has a fixed wavelength resolution, a decrease in the measurement accuracy due to the increase in the thickness of the film is unavoidable, and within a range of the film thickness tolerance in the same device. This causes a problem that the measurement accuracy on the thick film side is insufficient.

【0010】本発明は、上記問題に鑑みてなされたもの
であり、様々な厚さの膜を測定しても、精度よく測定す
ることができる膜厚測定装置、及び膜厚測定方法を提供
することを目的とする。
The present invention has been made in view of the above problems, and provides a film thickness measuring apparatus and a film thickness measuring method capable of accurately measuring a film having various thicknesses. The purpose is to:

【0011】[0011]

【課題を解決するための手段】請求項1に記載の膜厚測
定装置は、膜が形成された試料の膜厚を測定する膜厚測
定装置であって、前記試料に光を照射させて得られる反
射光情報に基いて干渉特性を検出し得る干渉特性検出手
段と、前記干渉特性検出手段にて検出した干渉特性から
ピーク波長を求めて、ピーク波長間距離を算出し得るピ
ーク波長間距離算出手段と前記干渉特性検出手段におけ
る反射光情報の波長分解能、及び前記ピーク波長間距離
算出手段にて算出されたピーク波長間距離の関係から膜
厚算出波長領域を算出し得る膜厚算出波長領域算出手段
と、前記膜厚算出波長領域算出手段にて算出された膜厚
算出波長領域におけるピーク波長間距離から膜厚を算出
し得る膜厚算出手段とを備えることを特徴とする。
A film thickness measuring device according to claim 1 is a film thickness measuring device for measuring a film thickness of a sample on which a film is formed, and is obtained by irradiating the sample with light. Interference characteristic detecting means capable of detecting an interference characteristic based on reflected light information obtained, a peak wavelength is calculated from an interference characteristic detected by the interference characteristic detecting means, and a peak wavelength distance calculation capable of calculating a peak wavelength distance. Means and a wavelength resolution of reflected light information in the interference characteristic detecting means, and a film thickness calculating wavelength area calculation capable of calculating a film thickness calculating wavelength area from the relationship between the peak wavelength distances calculated by the peak wavelength distance calculating means. Means, and a film thickness calculating means for calculating a film thickness from the distance between peak wavelengths in the film thickness calculating wavelength region calculated by the film thickness calculating wavelength region calculating means.

【0012】従って、請求項1に記載の膜厚測定装置で
は、前記膜厚算出波長領域算出手段により、前記干渉特
性検出手段における反射光情報の波長分解能、及び前記
ピーク波長間距離算出手段にて算出されたピーク波長間
距離の関係から、膜厚算出波長領域を算出するため、様
々な厚さの膜を測定しても、常に最適な膜厚算出波長領
域が算出され、精度よく膜厚を測定することができる。
Therefore, in the film thickness measuring device according to the first aspect, the wavelength resolution of the reflected light information in the interference characteristic detecting means and the peak wavelength distance calculating means are used by the film thickness calculating wavelength region calculating means. To calculate the film thickness calculation wavelength region from the calculated relationship between the peak wavelengths, even when measuring films of various thicknesses, the optimum film thickness calculation wavelength region is always calculated, and the film thickness is accurately calculated. Can be measured.

【0013】請求項2に記載の膜厚測定装置は、請求項
1に記載の膜厚測定装置において、前記形成された試料
が、導電性基体上に少なくとも感光層を有する電子写真
感光体であることを特徴とする。
According to a second aspect of the present invention, in the thickness measuring apparatus according to the first aspect, the formed sample is an electrophotographic photosensitive member having at least a photosensitive layer on a conductive substrate. It is characterized by the following.

【0014】従って、請求項2に記載の膜厚測定装置で
は、使用目的により様々な厚さの膜を有する電子写真感
光体の膜厚を測定しても、精度よく膜厚が測定すること
ができる。
Therefore, in the film thickness measuring apparatus according to the second aspect, even if the film thickness of an electrophotographic photosensitive member having films of various thicknesses is measured depending on the purpose of use, the film thickness can be measured accurately. it can.

【0015】請求項3に記載の膜厚測定方法は、膜が形
成された試料の膜厚を測定する膜厚測定方法であって、
前記試料に光を照射させて得られる反射光情報に基いて
干渉特性を検出する干渉特性検出工程と、前記干渉特性
検出工程にて検出した干渉特性からピーク波長を求め
て、ピーク波長間距離を算出するピーク波長間距離算出
工程と前記干渉特性検出工程における反射光情報の波長
分解能、及び前記ピーク波長間距離算出工程にて算出さ
れたピーク波長間距離の関係から膜厚算出波長領域を算
出する膜厚算出波長領域算出工程と、前記膜厚算出波長
領域算出工程にて算出された膜厚算出波長領域における
ピーク波長間距離から膜厚を演算する膜厚演算工程とを
備えることを特徴とする。
According to a third aspect of the present invention, there is provided a film thickness measuring method for measuring a film thickness of a sample on which a film is formed,
An interference characteristic detection step of detecting an interference characteristic based on reflected light information obtained by irradiating the sample with light, a peak wavelength is determined from the interference characteristics detected in the interference characteristic detection step, and a distance between peak wavelengths is determined. A wavelength region for calculating a film thickness is calculated from a relationship between a wavelength resolution of reflected light information in the peak wavelength distance calculating step to be calculated and the interference characteristic detecting step, and a peak wavelength distance calculated in the peak wavelength distance calculating step. A film thickness calculating wavelength region calculating step; and a film thickness calculating step of calculating a film thickness from a distance between peak wavelengths in the film thickness calculating wavelength region calculated in the film thickness calculating wavelength region calculating step. .

【0016】従って、請求項3に記載の膜厚測定方法で
は、前記膜厚算出波長領域算出工程により、前記干渉特
性検出工程における反射光情報の波長分解能、及び前記
ピーク波長間距離算出工程にて算出されたピーク波長間
距離の関係から、膜厚算出波長領域を算出するため、様
々な厚さの膜を測定しても、常に最適な膜厚算出波長領
域が算出され、精度よく膜厚を測定することができる。
Therefore, in the film thickness measuring method according to the third aspect, in the film thickness calculating wavelength region calculating step, the wavelength resolution of reflected light information in the interference characteristic detecting step and the peak wavelength distance calculating step are calculated. To calculate the film thickness calculation wavelength region from the calculated relationship between the peak wavelengths, even when measuring films of various thicknesses, the optimum film thickness calculation wavelength region is always calculated, and the film thickness is accurately calculated. Can be measured.

【0017】請求項4に記載の膜厚測定方法は、前記膜
が形成された試料が、導電性基体上に少なくとも感光層
を有する電子写真感光体であることを特徴とする。
According to a fourth aspect of the present invention, in the method of measuring a film thickness, the sample on which the film is formed is an electrophotographic photosensitive member having at least a photosensitive layer on a conductive substrate.

【0018】従って、請求項2に記載の膜厚測定方法で
は、使用目的により様々な厚さの膜を有する電子写真感
光体の膜厚を測定しても、精度よく膜厚が測定すること
ができる。
Therefore, according to the film thickness measuring method of the present invention, the film thickness can be measured accurately even if the film thickness of the electrophotographic photosensitive member having various thicknesses is measured depending on the purpose of use. it can.

【0019】[0019]

【発明の実施の形態】以下、図面を参照し、本発明の膜
厚測定装置、及び方法について、さらに説明する。 第1の実施の形態 以下に、第1の実施の形態に係る膜厚測定装置を、図1
〜図3を参照して説明する。なお、膜厚測定方法につい
ては、装置と共に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a film thickness measuring apparatus and method according to the present invention will be further described with reference to the drawings. First Embodiment Hereinafter, a film thickness measuring apparatus according to a first embodiment will be described with reference to FIG.
This will be described with reference to FIG. The method for measuring the film thickness will be described together with the apparatus.

【0020】図1は、本発明の第1の実施の形態に係る
膜厚測定装置を示す概略構成図である。図1に示す膜厚
測定装置10は、試料1上に形成された膜2に光を照射
して、その反射光情報D1を採取する反射光情報採取部
3と、該反射光情報採取部3から採取された反射光情報
1に基いて膜厚を算出する膜厚演算部4とを備える。
なお、図示しないが、膜厚演算部4は、算出した膜厚を
表示する表示装置、或いは算出した膜厚を基き塗布膜形
成の制御を行う塗布装置等に接続されてもよい。
FIG. 1 is a schematic configuration diagram showing a film thickness measuring apparatus according to a first embodiment of the present invention. A film thickness measuring device 10 shown in FIG. 1 irradiates a film 2 formed on a sample 1 with light, and collects reflected light information D 1, and a reflected light information collecting unit 3. 3 on the basis of the collected reflected light information D 1 from the and a thickness calculating unit 4 for calculating the film thickness.
Although not shown, the film thickness calculation unit 4 may be connected to a display device that displays the calculated film thickness, or a coating device that controls the formation of a coating film based on the calculated film thickness.

【0021】反射光情報採取部3は、光源5と、プロー
ブ6と、分光光度計7とを備える。光源5とプローブ6
とは光ファイバ8を介して接続されている。プローブ6
と分光光度計7とは光ファイバ9を介して接続されてい
る。光源5は、例えばハロゲン、キセノン等の一般的な
光源を用いることができる。また、分光光度計7は、反
射光Loutを結像し、反射光情報D1、即ち反射光Lout
のスペクトルを採取するものである。ここで反射光情報
1の波長分解能とは、即ち分光光度計7の波長分解能
を示す。なお、反射光情報採取部3は、このような構成
に限られず、従来公知の光学系等から構成されてもよ
い。
The reflected light information collecting section 3 includes a light source 5, a probe 6, and a spectrophotometer 7. Light source 5 and probe 6
Are connected via an optical fiber 8. Probe 6
And the spectrophotometer 7 are connected via an optical fiber 9. As the light source 5, a general light source such as halogen and xenon can be used. Further, the spectrophotometer 7 forms an image of the reflected light L out and reflects the reflected light information D 1 , that is, the reflected light L out.
The spectrum of is collected. Here, the wavelength resolution of the reflected light information D 1 indicates the wavelength resolution of the spectrophotometer 7. The reflected light information collecting unit 3 is not limited to such a configuration, and may be configured by a conventionally known optical system or the like.

【0022】反射光情報採取部3においては、光源5か
ら照射された光が、光ファイバ8を経由してプローブ6
から膜2に、入射光Linとして照射される。そして、膜
2から反射された反射光Loutが、プローブ6で受光さ
れ、光ファイバ9を経由して、分光光度計7により反射
光Loutを結像し、反射光情報D1を採取する。採取され
た反射光情報D1は、膜厚演算部4に入力される。
In the reflected light information collecting section 3, light emitted from the light source 5 is transmitted through the optical fiber 8 to the probe 6.
The film 2 from being irradiated as an incident light L in. Then, the reflected light L out reflected from the film 2 is received by the probe 6, forms an image of the reflected light L out by the spectrophotometer 7 via the optical fiber 9, and collects reflected light information D 1 . . The collected reflected light information D 1 is input to the film thickness calculator 4.

【0023】膜厚演算部4は、干渉特性検出部4aと、
ピーク波長間距離算出部4bと、膜厚算出波長領域算出
部4cと、膜厚算出部4dとを備える。膜厚演算部4
は、コンピューター・システムを利用して、ソフトウェ
ア的に構築されていてもよく、また、専用の電気的回路
として構成されていてもよい。
The film thickness calculating section 4 includes an interference characteristic detecting section 4a,
It includes a peak wavelength-to-peak wavelength calculation unit 4b, a film thickness calculation wavelength region calculation unit 4c, and a film thickness calculation unit 4d. Film thickness calculator 4
May be configured as software using a computer system, or may be configured as a dedicated electric circuit.

【0024】干渉特性検出部4aは、入力された反射光
情報D1に基いて干渉特性を検出するものである。ピー
ク波長間距離算出部4bは、干渉特性検出部4aにて検
出した干渉特性からピーク波長を求めて、ピーク波長間
距離を算出するものである。膜厚算出波長領域算出部4
cは、反射光情報D1の波長分解能、即ち分光光度計7
の波長分解能、及びピーク波長間距離算出部4bにて算
出されたピーク波長間距離の関係から、膜厚算出波長領
域を算出するものである。膜厚算出部4dは、膜厚算出
波長領域算出部4cにて算出された膜厚算出波長領域に
おけるピーク波長間距離から膜厚を算出するものであ
る。
The interference characteristic detection unit 4a is for detecting an interference characteristic based on the inputted reflected light information D 1. The inter-peak wavelength calculating section 4b calculates the inter-peak wavelength distance by obtaining the peak wavelength from the interference characteristics detected by the interference characteristic detecting section 4a. Film thickness calculation wavelength region calculation unit 4
c is the wavelength resolution of the reflected light information D 1, i.e. the spectrophotometer 7
The wavelength region for calculating the film thickness is calculated from the relationship between the wavelength resolution and the distance between the peak wavelengths calculated by the distance between peak wavelengths calculating unit 4b. The film thickness calculator 4d calculates the film thickness from the distance between peak wavelengths in the film thickness calculation wavelength region calculated by the film thickness calculation wavelength region calculator 4c.

【0025】以上、膜厚測定装置10の構成について説
明したが、次に膜厚測定装置10の具体的動作につい
て、図2を参照して説明する。図2は、本発明の第1の
実施の形態に係る膜厚測定装置の具体的動作を示す流れ
図である。
The configuration of the film thickness measuring device 10 has been described above. Next, the specific operation of the film thickness measuring device 10 will be described with reference to FIG. FIG. 2 is a flowchart showing a specific operation of the film thickness measuring apparatus according to the first embodiment of the present invention.

【0026】反射光情報採取部3により採取された反射
光情報D1は、膜厚演算部4に入力される。膜2に照射
され入射光Linは、膜2内を通過して試料表面で反射し
た後、再びプローブ6に到達する反射光Loutと、膜2
表面で反射して再びプローブ6に到達する反射光Lout
とに分かれる。この際、2つの反射光Loutには2nd
(nは膜の比屈折率、dは膜厚である。)の光路差を生
じている。又、試料表面で反射する反射光Loutは、反
射する際に位相が180゜ずれている。従って、下記式
(2)のときに反射光の光量は極大となり、下記式
(3)のときに、反射光の光量が極小となる。従って、
反射光情報D1、即ち反射光のスペクトルは、下記式
(2)及び(3)の関係が成立している。下記式(2)
及び(3)中、nは膜の比屈折率、dは膜厚、λは反射
光の波長、mは干渉次数である。
The reflected light information D 1 collected by the reflected light information collecting unit 3 is input to the film thickness calculating unit 4. The incident light L in is irradiated to the film 2, after being reflected by the sample surface and passes through the inner membrane 2, and the reflected light L out to reach the probe 6 again, film 2
Reflected light L out reflected by the surface and reaching the probe 6 again
Divided into At this time, the two reflected lights L out have 2nd
(N is the relative refractive index of the film, and d is the film thickness). The reflected light L out reflected on the sample surface is 180 ° out of phase when reflected. Therefore, the amount of reflected light becomes maximum in the following equation (2), and the amount of reflected light becomes minimum in the following equation (3). Therefore,
The reflected light information D 1 , that is, the spectrum of the reflected light, satisfies the following equations (2) and (3). The following equation (2)
In (3) and (3), n is the relative refractive index of the film, d is the film thickness, λ is the wavelength of the reflected light, and m is the interference order.

【0027】 式(2) 2nd=mλ (m=1、2、3、・・・) 式(3) 2nd=(2m−1)λ/2 (m=1、2、3、・・・)Equation (2) 2nd = mλ (m = 1, 2, 3,...) Equation (3) 2nd = (2m−1) λ / 2 (m = 1, 2, 3,...)

【0028】干渉特性検出部4aにて、膜厚演算部4に
入力された反射光情報D1に基き、波長と反射光量と
を、2次元データ配列として整列した後、移動平均化処
理による波形のスムージング等の前処理を行い、干渉特
性を検出する(ステップs11)。この処理により得ら
れた干渉特性の波形の例を図3に示す。
Based on the reflected light information D 1 input to the film thickness calculating unit 4, the interference characteristic detecting unit 4 a sorts the wavelength and the reflected light amount as a two-dimensional data array, and then performs a waveform obtained by moving average processing. , And the interference characteristics are detected (step s11). FIG. 3 shows an example of the waveform of the interference characteristic obtained by this processing.

【0029】ピーク波長間距離算出部4bにて、検出さ
れた干渉特性に基き、その波形における光量のピーク点
となる波長を各々求め、隣り合ったピーク波長間距離a
(x)を算出する(ステップs12)。図3に示す干渉
特性の波形では、w(1)〜w(n)の各波長がピーク
点となるため、隣り合ったピーク波長間距離a(x)は
下記式(4)により算出される。
Based on the detected interference characteristics, the wavelength between peak wavelengths is calculated by the peak wavelength distance calculation section 4b, and the distance between peak wavelengths adjacent to each other is calculated.
(X) is calculated (step s12). In the waveform of the interference characteristic shown in FIG. 3, since each wavelength of w (1) to w (n) is a peak point, the distance a (x) between adjacent peak wavelengths is calculated by the following equation (4). .

【0030】 式(4) a(x)=w(x+1)−w(x)Equation (4) a (x) = w (x + 1) −w (x)

【0031】膜厚算出波長領域算出部4cにて、得られ
たピーク波長間の距離a(x)に基き、このピーク波長
間の距離a(x)と分光光度計7の波長分解能Δwとの
比率R(x)を算出し、膜厚算出波長領域、即ち膜厚算
出始端波長w(s)〜膜厚算出終端波長w(e)を算出
する(ステップs13)。
Based on the distance a (x) between the peak wavelengths obtained by the film thickness calculation wavelength region calculation unit 4c, the distance a (x) between the peak wavelengths and the wavelength resolution Δw of the spectrophotometer 7 are calculated. The ratio R (x) is calculated, and a film thickness calculation wavelength region, that is, a film thickness calculation start wavelength w (s) to a film thickness calculation end wavelength w (e) is calculated (step s13).

【0032】ピーク波長間距離a(x)と分光光度計7
の波長分解能Δwとの比率R(x)は、下記式(5)に
より算出される。
The distance a (x) between the peak wavelengths and the spectrophotometer 7
The ratio R (x) with respect to the wavelength resolution Δw is calculated by the following equation (5).

【0033】式(5) R(x)=a(x)/ΔwEquation (5) R (x) = a (x) / Δw

【0034】膜厚算出始端波長w(s)は、比率R
(x)の大きさにより膜厚算出の精度が左右されるた
め、下記式(6)を満たすように算出される。波長ピー
ク波長間距離a(x)は、長波長側になればなるほど広
がるため、比率R(x)が小さすぎる場合には、即ち、
検出対象である隣り合ったピーク波長間距離a(x)に
対し、波長分解能Δwが不充分であれば、測定精度が悪
くなる。一方、比率R(x)の値が大きすぎる場合に
は、限られた波長分解能Δwの中で隣り合ったピーク波
長の組み合せの数が少なくなることから、やはり測定精
度の悪化を招く。このことから、R(x)の値は適度な
大きさが望まれるため、この数値を予め最適波長分解能
比rとして保有しておき(rの数値としては、電子写真
感光体の場合、好ましくは5以上、より好ましくは10
以上であるが、C/2(ここで、Cは分光光度計7の持
つ検出素子のチャンネル数を示す。)を超えると、隣り
合うピーク波長が1組しか存在せず、測定精度が悪化す
る場合があるため好ましくない。)、膜厚算出始端波長
w(s)を算出する。
The film thickness calculation start wavelength w (s) is calculated by the ratio R
Since the accuracy of the film thickness calculation depends on the size of (x), the calculation is performed so as to satisfy the following expression (6). Since the wavelength peak inter-wavelength distance a (x) increases as it goes to the longer wavelength side, if the ratio R (x) is too small, ie,
If the wavelength resolution Δw is insufficient for the distance a (x) between adjacent peak wavelengths to be detected, the measurement accuracy will be poor. On the other hand, if the value of the ratio R (x) is too large, the number of combinations of adjacent peak wavelengths in the limited wavelength resolution Δw is reduced, which also causes deterioration in measurement accuracy. From this, it is desired that the value of R (x) be an appropriate size, and this value is stored in advance as the optimal wavelength resolution ratio r (the value of r is preferably in the case of an electrophotographic photosensitive member. 5 or more, more preferably 10
As described above, when the value exceeds C / 2 (where C indicates the number of channels of the detection element of the spectrophotometer 7), only one set of adjacent peak wavelengths exists, and the measurement accuracy deteriorates. In some cases, this is not preferable. ), And calculate the film thickness calculation start wavelength w (s).

【0035】式(6) R(x)≧rEquation (6) R (x) ≧ r

【0036】膜厚算出終端波長w(e)は、膜厚算出始
端波長w(s)に基き、下記式(7)により算出され
る。ここでWは、波長範囲幅を示す。この波長範囲幅
は、膜厚を算出するために用いる1つ或いは複数の波長
ピーク波長間距離a(x)を検出する波長範囲幅であ
り、予め定められた定数(Wの数値としては、電子写真
感光体の場合、好ましくは100〜400である。)を
用いる。
The film thickness calculation end wavelength w (e) is calculated by the following equation (7) based on the film thickness calculation start wavelength w (s). Here, W indicates a wavelength range width. This wavelength range width is a wavelength range width for detecting one or a plurality of wavelength peak wavelength distances a (x) used for calculating the film thickness, and is a predetermined constant (the value of W is an electron In the case of a photographic photosensitive member, the number is preferably 100 to 400.).

【0037】式(7) w(e)=w(s)+WEquation (7) w (e) = w (s) + W

【0038】このようにして、膜厚算出波長領域を算出
する。
Thus, the wavelength region for calculating the film thickness is calculated.

【0039】膜厚算出部4dにて、膜厚算出波長領域算
出部4cで得られた膜厚算出波長領域領域下でのピーク
波長に基き、膜厚d(x)を下記式(8)により算出
し、各々膜厚d(x)を求めた後、得られた膜厚d
(x)の平均値を膜厚値として算出する(ステップs1
4)。
The film thickness calculating unit 4d calculates the film thickness d (x) by the following equation (8) based on the peak wavelength in the film thickness calculating wavelength region obtained by the film thickness calculating wavelength region calculating unit 4c. After calculating and calculating the film thickness d (x), the obtained film thickness d
The average value of (x) is calculated as a film thickness value (step s1).
4).

【0040】 式(8) d(x)={w(x+1)w(x)}/{2n{w(x+1)−w(x)}} (x=s〜e)Equation (8) d (x) = {w (x + 1) w (x)} / {2n} w (x + 1) −w (x)} (x = s to e)

【0041】以上、第1の実施の形態に係る膜厚測定装
置、及び方法は、膜厚算出波長領域算出部4cにより、
前記分光光度計7の波長分解能、及び前記ピーク波長間
距離算出部4bにて算出されたピーク波長間距離の関係
から、膜厚算出波長領域を算出するため、様々な厚さの
膜を測定しても、常に最適な膜厚算出波長領域が算出さ
れ、精度よく膜厚を測定することができる。
As described above, the film thickness measuring device and method according to the first embodiment are provided by the film thickness calculating wavelength region calculating section 4c.
From the relationship between the wavelength resolution of the spectrophotometer 7 and the peak-to-peak wavelength distance calculated by the peak-to-peak wavelength calculation unit 4b, films of various thicknesses were measured to calculate a film thickness calculation wavelength region. However, the optimum film thickness calculation wavelength region is always calculated, and the film thickness can be accurately measured.

【0042】第2の実施の形態以下に、第2の実施の形
態に係る膜厚測定装置を、図4〜図5を参照して説明す
る。なお、膜厚測定方法については、装置と共に説明す
る。
Second Embodiment A film thickness measuring apparatus according to a second embodiment will be described below with reference to FIGS. The method for measuring the film thickness will be described together with the apparatus.

【0043】図4は、本発明の第1の実施の形態に係る
膜厚測定装置を示す概略構成図である。図4に示す膜厚
測定装置20は、膜厚演算部4に、さらに比屈折率記憶
部4eを備える以外、図1に示す膜厚測定装置10と同
様な構成である。比屈折率記憶部4eは、膜厚算出部4
dにおける、膜厚算出波長領域算出部4cにて算出され
た膜厚算出波長領域におけるピーク波長間距離から膜厚
を算出する際、波長により使用する比屈折率を算出する
ものである。また、膜厚算出部4dは、膜厚算出波長領
域算出部4cにて算出された膜厚算出波長領域における
ピーク波長間距離と、比屈折率記憶部4eにて算出され
た比屈折率とから膜厚を算出するものである。なお、図
1に示す膜厚測定装置10と同様な構成の説明は、省略
する。
FIG. 4 is a schematic configuration diagram showing a film thickness measuring apparatus according to the first embodiment of the present invention. The film thickness measuring device 20 shown in FIG. 4 has the same configuration as the film thickness measuring device 10 shown in FIG. 1 except that the film thickness calculating unit 4 further includes a relative refractive index storage unit 4e. The relative refractive index storage unit 4e includes a film thickness calculation unit 4
When calculating the film thickness from the distance between peak wavelengths in the film thickness calculation wavelength region calculated by the film thickness calculation wavelength region calculation unit 4c in d, the relative refractive index to be used is calculated based on the wavelength. Further, the film thickness calculation unit 4d calculates the distance between the peak wavelengths in the film thickness calculation wavelength region calculated by the film thickness calculation wavelength region calculation unit 4c and the relative refractive index calculated by the relative refractive index storage unit 4e. This is for calculating the film thickness. The description of the same configuration as that of the film thickness measuring apparatus 10 shown in FIG. 1 is omitted.

【0044】以上、膜厚測定装置20の構成について説
明したが、次に膜厚測定装置20の具体的動作につい
て、図5を参照して説明する。図5は、本発明の第2の
実施の形態に係る膜厚測定装置の具体的動作を示す流れ
図である。なお、ステップs21〜s23は、図3にお
けるステップs11〜ステップs13と同様であるた
め、説明は省略する。
The configuration of the film thickness measuring device 20 has been described above. Next, the specific operation of the film thickness measuring device 20 will be described with reference to FIG. FIG. 5 is a flowchart showing a specific operation of the film thickness measuring apparatus according to the second embodiment of the present invention. Steps s21 to s23 are the same as steps s11 to s13 in FIG.

【0045】膜厚算出部4dにて、膜厚算出波長領域算
出部4cで得られる膜厚算出波長領域領域下でのピーク
波長と、比屈折率記憶部4eで得られる比屈折率n
(x)とに基き、膜厚d(x)を算出され、これにより
各々膜厚d(x)を求めた後、得られた膜厚d(x)の
平均値を膜厚値として算出する(ステップs24)。
The film thickness calculation unit 4d calculates the peak wavelength in the film thickness calculation wavelength region obtained by the film thickness calculation wavelength region calculation unit 4c and the relative refractive index n obtained by the film storage unit 4e.
Based on (x), the film thickness d (x) is calculated. With this, the film thickness d (x) is calculated, and the average value of the obtained film thickness d (x) is calculated as the film thickness value. (Step s24).

【0046】比屈折率記憶部4eにて、比屈折率n
(x)は、下記式(9)により算出される。ここで、関
数f({w(x+1)+w(x)}/2)は、波長と比
屈折率との関係を表す関数である。膜厚算出波長領域算
出部4cで得られた膜厚算出波長領域内において、予め
波長と比屈折率の関係を求めておき、膜厚算出の際の波
長により使用する比屈折率を変化させる。
In the relative refractive index storage section 4e, the relative refractive index n
(X) is calculated by the following equation (9). Here, the function f ({w (x + 1) + w (x)} / 2) is a function representing the relationship between the wavelength and the relative refractive index. In the film thickness calculation wavelength region obtained by the film thickness calculation wavelength region calculation section 4c, the relationship between the wavelength and the relative refractive index is obtained in advance, and the relative refractive index used is changed according to the wavelength at the time of film thickness calculation.

【0047】 式(9) n(x)=f({w(x+1)+w(x)}/2)Equation (9) n (x) = f ({w (x + 1) + w (x)} / 2)

【0048】膜厚d(x)は、膜厚算出波長領域領域下
でのピーク波長と、比屈折率記憶部4eで得られる比屈
折率n(x)とに基き、下記式(10)により算出され
る。
The film thickness d (x) is calculated by the following equation (10) based on the peak wavelength in the film thickness calculation wavelength region region and the relative refractive index n (x) obtained by the relative refractive index storage unit 4e. Is calculated.

【0049】 式(10) d(x)={w(x+1)w(x)}/{2n(x)w(x+1)−w(x)} (x=s〜e)Equation (10) d (x) = {w (x + 1) w (x)} / {2n (x) w (x + 1) −w (x)} (x = s to e)

【0050】以上、第2の実施の形態に係る膜厚測定装
置、及び方法は、比屈折率記憶部4eにて、膜厚算出波
長領域算出部4cで得られる膜厚算出波長領域内におい
て、予め波長と比屈折率の関係を求めておき、膜厚算出
部4dにおける膜厚算出の際の波長により使用する比屈
折率を変化させるため、測定する対象膜の比屈折率が波
長により変化する場合でも、より精度よく膜厚を測定す
ることができる。
As described above, in the film thickness measuring apparatus and method according to the second embodiment, in the relative refractive index storage unit 4e, within the film thickness calculation wavelength region obtained by the film thickness calculation wavelength region calculation unit 4c, Since the relationship between the wavelength and the relative refractive index is determined in advance, and the relative refractive index to be used is changed according to the wavelength at the time of calculating the film thickness in the film thickness calculating unit 4d, the relative refractive index of the target film to be measured changes according to the wavelength. Even in this case, the film thickness can be measured more accurately.

【0051】以上、第1及び2の実施の形態に係る膜厚
測定装置、及び方法の構成及び測定動作について説明し
たが、本発明は、この実施の形態に限定されるものでは
ない。
The configuration and measurement operation of the film thickness measuring apparatus and method according to the first and second embodiments have been described above, but the present invention is not limited to this embodiment.

【0052】本発明の膜厚測定装置、及び方法は、電子
写真感光体の膜厚測定に適応させることが好ましい。電
子写真感光体は、その使用目的により様々な厚さの膜を
有するため、精度よく膜厚が測定することができる本発
明の膜厚測定装置、及び方法は、特に効果的である。
The film thickness measuring apparatus and method of the present invention are preferably adapted to the film thickness measurement of an electrophotographic photosensitive member. Since the electrophotographic photosensitive member has various thicknesses depending on the purpose of use, the film thickness measuring apparatus and method of the present invention, which can accurately measure the film thickness, are particularly effective.

【0053】本発明の膜厚測定装置、及び方法におい
て、前記電子写真感光体としては、導電性基体上に少な
くとも感光層を有するものが挙げられ、具体的には、導
電性基体上に下引き層、電荷発生層、電荷輸送層を順次
形成したものなどが挙げられる。前記電子写真感光体を
構成する導電性基体、及び各層の材料等は、従来公知の
ものを用いる。
In the film thickness measuring apparatus and method of the present invention, the electrophotographic photoreceptor may be one having at least a photosensitive layer on a conductive substrate. A layer in which a layer, a charge generation layer, and a charge transport layer are sequentially formed. Conventionally known materials are used for the conductive substrate and the material of each layer constituting the electrophotographic photosensitive member.

【0054】本発明の膜厚測定装置、及び方法におい
て、前記電子写真感光体の下引き層、電荷輸送層等の塗
布膜を塗布する際に、本発明の膜厚測定装置、及び方法
により逐次膜厚を測定し、その測定結果をフィードバッ
クし膜厚を制御することが好ましい。この場合は、例え
ば前記第1或いは2の実施の形態に係る膜厚測定装置
と、該膜厚測定装置における膜厚演算部により算出され
た膜厚の測定結果により、膜厚が制御可能な、従来公知
の塗布装置とから構成される。
In the film thickness measuring apparatus and method of the present invention, when the coating film such as the undercoat layer and the charge transport layer of the electrophotographic photosensitive member is applied, the film thickness measuring apparatus and the method of the present invention sequentially It is preferable to measure the film thickness and feed back the measurement result to control the film thickness. In this case, for example, the film thickness can be controlled by the film thickness measurement device according to the first or second embodiment and the measurement result of the film thickness calculated by the film thickness calculation unit in the film thickness measurement device. It comprises a conventionally known coating device.

【0055】本発明の膜厚測定装置、及び方法におい
て、電子写真感光体の塗布形成における膜厚を制御する
因子として塗布速度等が挙げられる。例えば、浸漬塗布
法における塗布を例にすると、この塗布速度V(ここで
塗布速度とは、基体を塗布液に浸漬し、引き上げるとき
の速度でる。)と膜厚dとの関係は、下記式(11)の
ようになっており、粘度η、塗布液密度ρ一定条件下で
膜厚dは塗布速度Vの0.5乗に比例することがわか
る。下記式(11)中、gは重力加速度、Kは定数(K
は材料等による固有の値である。)を表すため、他の条
件(塗布速度V、粘度η、塗布液密度ρ)を変化させる
ことにより、膜厚dを制御することができる。
In the film thickness measuring apparatus and method according to the present invention, a coating speed and the like can be mentioned as a factor for controlling the film thickness in forming an electrophotographic photosensitive member by coating. For example, when the coating in the dip coating method is taken as an example, the relationship between the coating speed V (here, the coating speed is the speed at which the substrate is immersed in the coating liquid and pulled up) and the film thickness d is expressed by the following equation. As shown in (11), it can be seen that the film thickness d is proportional to the coating speed V to the 0.5th power under the conditions of constant viscosity η and coating liquid density ρ. In the following equation (11), g is the gravitational acceleration, and K is a constant (K
Is a value unique to the material or the like. ), The film thickness d can be controlled by changing other conditions (coating speed V, viscosity η, coating liquid density ρ).

【0056】式(11) d=K(Vη/ρg)0.5 Equation (11) d = K (Vη / ρg) 0.5

【0057】本発明の膜厚測定装置、及び方法におい
て、前記電子写真感光体の下引き層、電荷輸送層等の塗
布膜を塗布する際に、本発明の膜厚測定装置、及び方法
により逐次膜厚を測定し、その測定結果をフィードバッ
クし膜厚を制御することで、電子写真感光体の膜厚を中
間製品の状態で正確に評価することが可能となり、その
工程の変動がいち早く検出でき、工程の安定化、膜厚不
良品の後工程への大量流出を防ぐことができる。
In the film thickness measuring apparatus and method of the present invention, when the coating film such as the undercoat layer and the charge transport layer of the electrophotographic photosensitive member is applied, the film thickness measuring apparatus and the method of the present invention sequentially By measuring the film thickness and feeding back the measurement result to control the film thickness, the film thickness of the electrophotographic photoreceptor can be accurately evaluated in the state of the intermediate product, and fluctuations in the process can be detected quickly. In addition, it is possible to stabilize the process and prevent a large outflow of a defective film thickness product to a subsequent process.

【0058】[0058]

【実施例】本発明を、電子写真感光体の膜厚測定に関す
る実施例により具体的に説明するが、本発明は、これら
実施例に限定されない。
EXAMPLES The present invention will be specifically described with reference to examples relating to the measurement of the film thickness of an electrophotographic photosensitive member, but the present invention is not limited to these examples.

【0059】(実施例)図2に示す膜厚測定装置を備
え、該膜厚測定装置における膜厚演算部4により算出さ
れた膜厚の測定結果により、膜厚が制御可能な浸漬塗布
装置を用い、導電性基体上に電荷輸送層を形成して、電
子写真感光体を6個(6段階の膜厚の異なるもの)作製
したところ、膜厚の測定繰り返し精度σが0.07μm
という良好な結果が得られた。以上により、精度よく膜
厚を測定することができたことがわかる。なお、電子写
真感光体は、電荷輸送層の膜厚が6段階の異なるものと
なるように作製し、この膜厚を制御する因子として塗布
速度をとった。なお、分光光度計7における波長範囲幅
は300〜1100nmであり、波長分解能Δwは1.
56nmであった。膜厚算出波長領域算出部4cにおけ
る波長分解能比rは10以上の値をとるように膜厚算出
波長領域を選択し、ピーク波長間距離a(x)を検出す
る波長範囲幅wは300nmとした。
(Embodiment) An immersion coating apparatus having the film thickness measuring device shown in FIG. 2 and capable of controlling the film thickness based on the film thickness measurement result calculated by the film thickness calculating section 4 in the film thickness measuring device. When a charge transport layer was formed on a conductive substrate and six electrophotographic photosensitive members (thicknesses having six different thicknesses) were prepared, the measurement repeatability σ of the thickness was 0.07 μm.
Good result was obtained. From the above, it can be seen that the film thickness could be measured accurately. The electrophotographic photoreceptor was prepared so that the charge transport layer had six different thicknesses, and the coating speed was determined as a factor for controlling the thickness. Note that the wavelength range width of the spectrophotometer 7 is 300 to 1100 nm, and the wavelength resolution Δw is 1.
It was 56 nm. The film thickness calculation wavelength region is selected so that the wavelength resolution ratio r in the film thickness calculation wavelength region calculation section 4c takes a value of 10 or more, and the wavelength range width w for detecting the peak wavelength distance a (x) is 300 nm. .

【0060】膜厚の測定繰り返し精度σは、各段階の膜
厚の異なる電子写真感光体(6個)毎に5回繰り返して
膜厚測定した結果から、標準偏差を算出し、6個の標準
偏差から統計的方法によって代表値を求めたものであ
る。
The film thickness measurement repeatability σ is calculated by calculating the standard deviation from the results of the film thickness measurement repeated five times for each of the six electrophotographic photosensitive members having different film thicknesses at each stage, and calculating the six standard values. The representative value was obtained from the deviation by a statistical method.

【0061】(比較例)特開平4−336540号公報
に記載の製造方法(図2に示す塗布装置)を用いて、導
電性基体上に電荷輸送層を形成して、電子写真感光体を
6個(6段階の膜厚の異なるもの)作製したところ、測
定繰り返し精度σが0.25μmという結果となり、測
定精度が不充分であった。
(Comparative Example) A charge transport layer was formed on a conductive substrate using the production method described in Japanese Patent Application Laid-Open No. 4-336540 (coating apparatus shown in FIG. 2). As a result, the measurement repeatability σ was 0.25 μm, and the measurement accuracy was insufficient.

【発明の効果】以上の説明から明らかなように、本発明
によれば、前記膜厚算出波長領域算出手段により、前記
干渉特性検出手段における波長分解能、及び前記ピーク
波長間距離算出手段にて算出されたピーク波長間距離の
関係から、膜厚算出波長領域を算出するため、様々な厚
さの膜を測定しても、常に最適な膜厚算出波長領域が算
出され、精度よく膜厚を測定することができる。
As is apparent from the above description, according to the present invention, the film thickness calculation wavelength region calculating means calculates the wavelength resolution in the interference characteristic detecting means and the wavelength resolution in the peak wavelength distance calculating means. In order to calculate the film thickness calculation wavelength region from the calculated peak wavelength distance, even when measuring films of various thicknesses, the optimum film thickness calculation wavelength region is always calculated and the film thickness is accurately measured. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 第1の実施の形態に係る膜厚測定装置を示す
概略構成図である。
FIG. 1 is a schematic configuration diagram showing a film thickness measuring device according to a first embodiment.

【図2】 第1の実施の形態に係る膜厚測定装置の動作
を示す流れ図である。
FIG. 2 is a flowchart showing an operation of the film thickness measuring apparatus according to the first embodiment.

【図3】 第1の実施の形態に係る膜厚測定装置の動作
おける干渉特性の波形の一例である。
FIG. 3 is an example of a waveform of an interference characteristic in an operation of the film thickness measuring apparatus according to the first embodiment.

【図4】 第2の実施の形態に係る膜厚測定装置を示す
概略構成図である。
FIG. 4 is a schematic configuration diagram illustrating a film thickness measuring apparatus according to a second embodiment.

【図5】 第2の実施の形態に係る膜厚測定装置の動作
を示す流れ図である。
FIG. 5 is a flowchart showing an operation of the film thickness measuring apparatus according to the second embodiment.

【図6】 膜厚d、屈折率nの透明薄膜試料に光を入射
した場合の模式図である。
FIG. 6 is a schematic diagram when light is incident on a transparent thin film sample having a thickness d and a refractive index n.

【図7】 膜厚d、屈折率nの透明薄膜試料に光を入射
した場合の反射光のスペクトルの1例である。
FIG. 7 is an example of a spectrum of reflected light when light is incident on a transparent thin film sample having a thickness d and a refractive index n.

【符号の説明】[Explanation of symbols]

1 試料 2 膜 3 反射光情報採取部 4 膜厚演算部 4a 干渉特性検出部 4b ピーク波長間距離算出部 4c 膜厚算出波長領域算出部 4e 比屈折率記憶部 4d 膜厚算出部 5 光源 6 プローブ 7 分光光度計 8 光ファイバ 9 光ファイバ 10 膜厚測定装置 20 膜厚測定装置 D1 反射光情報 Lin 入射光 Lout 反射光Reference Signs List 1 sample 2 film 3 reflected light information collecting section 4 film thickness calculating section 4a interference characteristic detecting section 4b peak wavelength separation calculating section 4c film thickness calculating wavelength region calculating section 4e relative refractive index storage section 4d film thickness calculating section 5 light source 6 probe 7 Spectrophotometer 8 Optical fiber 9 Optical fiber 10 Film thickness measuring device 20 Film thickness measuring device D 1 Reflected light information L in incident light L out reflected light

フロントページの続き Fターム(参考) 2F065 AA30 CC31 FF01 FF51 GG02 GG03 LL02 NN20 PP21 QQ15 QQ25 QQ29 QQ42 2H068 EA41 EA43 Continued on the front page F term (reference) 2F065 AA30 CC31 FF01 FF51 GG02 GG03 LL02 NN20 PP21 QQ15 QQ25 QQ29 QQ42 2H068 EA41 EA43

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 膜が形成された試料の膜厚を測定する膜
厚測定装置であって、 前記試料に光を照射させて得られる反射光情報に基いて
干渉特性を検出し得る干渉特性検出手段と、 前記干渉特性検出手段にて検出した干渉特性からピーク
波長を求めて、ピーク波長間距離を算出し得るピーク波
長間距離算出手段と前記干渉特性検出手段における反射
光情報の波長分解能、及び前記ピーク波長間距離算出手
段にて算出されたピーク波長間距離の関係から膜厚算出
波長領域を算出し得る膜厚算出波長領域算出手段と、 前記膜厚算出波長領域算出手段にて算出された膜厚算出
波長領域におけるピーク波長間距離から膜厚を算出し得
る膜厚算出手段とを備えることを特徴とする膜厚測定装
置。
1. A film thickness measuring device for measuring a film thickness of a sample on which a film is formed, wherein an interference characteristic is detected based on reflected light information obtained by irradiating the sample with light. Means, a peak wavelength is determined from the interference characteristics detected by the interference characteristic detection means, the wavelength resolution of reflected light information in the peak wavelength distance calculation means and the interference characteristic detection means capable of calculating the peak wavelength distance, and A film thickness calculating wavelength region calculating means capable of calculating a film thickness calculating wavelength region from the relationship between the peak wavelength distances calculated by the peak wavelength distance calculating device; and a film thickness calculating wavelength region calculating device. A film thickness calculating means for calculating a film thickness from a distance between peak wavelengths in a film thickness calculating wavelength region.
【請求項2】 前記膜が形成された試料が、導電性基体
上に少なくとも感光層を有する電子写真感光体であるこ
とを特徴とする請求項1に記載の膜厚測定装置。
2. The film thickness measuring apparatus according to claim 1, wherein the sample on which the film is formed is an electrophotographic photosensitive member having at least a photosensitive layer on a conductive substrate.
【請求項3】 膜が形成された試料の膜厚を測定する膜
厚測定方法であって、 前記試料に光を照射させて得られる反射光情報に基いて
干渉特性を検出する干渉特性検出工程と、 前記干渉特性検出工程にて検出した干渉特性からピーク
波長を求めて、ピーク波長間距離を算出するピーク波長
間距離算出工程と前記干渉特性検出工程における反射光
情報の波長分解能、及び前記ピーク波長間距離算出工程
にて算出されたピーク波長間距離の関係から膜厚算出波
長領域を算出する膜厚算出波長領域算出工程と、 前記膜厚算出波長領域算出工程にて算出された膜厚算出
波長領域におけるピーク波長間距離から膜厚を演算する
膜厚演算工程とを備えることを特徴とする膜厚測定方
法。
3. A method for measuring a film thickness of a sample having a film formed thereon, the method comprising: detecting an interference characteristic based on reflected light information obtained by irradiating the sample with light. And determining a peak wavelength from the interference characteristics detected in the interference characteristic detecting step, a wavelength resolution of reflected light information in the peak wavelength distance calculating step and the interference characteristic detecting step of calculating a peak wavelength distance, and the peak A film thickness calculation wavelength region calculation step of calculating a film thickness calculation wavelength region from the relationship between the peak wavelength distances calculated in the wavelength distance calculation step, and a film thickness calculation calculated in the film thickness calculation wavelength region calculation step A film thickness calculation step of calculating a film thickness from a distance between peak wavelengths in a wavelength region.
【請求項4】 前記膜が形成された試料が、導電性基体
上に少なくとも感光層を有する電子写真感光体であるこ
とを特徴とする請求項3に記載の膜厚測定方法。
4. The method according to claim 3, wherein the sample on which the film is formed is an electrophotographic photosensitive member having at least a photosensitive layer on a conductive substrate.
JP30873799A 1999-10-29 1999-10-29 Apparatus and method of measuring film thickness Pending JP2001124524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30873799A JP2001124524A (en) 1999-10-29 1999-10-29 Apparatus and method of measuring film thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30873799A JP2001124524A (en) 1999-10-29 1999-10-29 Apparatus and method of measuring film thickness

Publications (1)

Publication Number Publication Date
JP2001124524A true JP2001124524A (en) 2001-05-11

Family

ID=17984688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30873799A Pending JP2001124524A (en) 1999-10-29 1999-10-29 Apparatus and method of measuring film thickness

Country Status (1)

Country Link
JP (1) JP2001124524A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006072307A (en) * 2004-08-04 2006-03-16 Ricoh Co Ltd Carrier for electrostatic latent image development, and method and apparatus for manufacturing same
JP2006275521A (en) * 2005-03-25 2006-10-12 Fuji Xerox Co Ltd Device and method for measuring thickness of film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006072307A (en) * 2004-08-04 2006-03-16 Ricoh Co Ltd Carrier for electrostatic latent image development, and method and apparatus for manufacturing same
JP4494275B2 (en) * 2004-08-04 2010-06-30 株式会社リコー Method for producing carrier for developing electrostatic latent image
JP2006275521A (en) * 2005-03-25 2006-10-12 Fuji Xerox Co Ltd Device and method for measuring thickness of film

Similar Documents

Publication Publication Date Title
US7554574B2 (en) Abnormal state occurrence predicting method, state deciding apparatus, and image forming system
US7327962B2 (en) Abnormality determining method, abnormality determining apparatus, and image forming apparatus
US7570372B2 (en) Optical device for measuring the thickness of an at least partially transparent medium
CN101514888B (en) Apparatus and method of measuring film thickness
JPH11216938A (en) Printer
JP2853615B2 (en) Apparatus and method for evaluating electrophotographic photoreceptor, apparatus and method for manufacturing electrophotographic photoreceptor
CA2594335A1 (en) Anodizing system with a coating thickness monitor and an anodized product
KR100595348B1 (en) Method of and apparatus for measuring thickness of thin film or thin layer
JP2004325296A (en) Optical moving amount detector, electronic equipment, and conveyance processing system
JP2001124524A (en) Apparatus and method of measuring film thickness
Marciante et al. Optical measurement of depth and duty cycle for binary diffraction gratings with subwavelength features
US20040227955A1 (en) Method and apparatus for measuring thicknesses of layers of multilayer thin film
JP2000131024A (en) Device for measuring thickness profile of material
JP2000131020A (en) Method for processing data measured by interference method
JP2003042722A (en) Film-thickness measuring method
JP2002243415A (en) Film thickness measuring method and sheet manufacturing method
US6687015B1 (en) Method and device for measuring the thickness of a layer
JPH11184104A (en) Device and method for measuring film thickness of electrophotographic photoreceptor and device and method for manufacturing electrophotographic photoreceptor
JP2006162513A (en) Method and instrument for measuring film thickness
US20050117165A1 (en) Semiconductor etching process control
JP3661015B2 (en) Method and apparatus for measuring thickness of resin film sheet
JP2003240515A (en) Film thickness measuring method and manufacturing method for sheet
JP2002005631A (en) Method and apparatus for measuring characteristics of plate
JP3702465B2 (en) Inflation equipment
JP2006275521A (en) Device and method for measuring thickness of film