JPH06307809A - Method and device for interference measurement - Google Patents

Method and device for interference measurement

Info

Publication number
JPH06307809A
JPH06307809A JP10274293A JP10274293A JPH06307809A JP H06307809 A JPH06307809 A JP H06307809A JP 10274293 A JP10274293 A JP 10274293A JP 10274293 A JP10274293 A JP 10274293A JP H06307809 A JPH06307809 A JP H06307809A
Authority
JP
Japan
Prior art keywords
detector
elements
pitch
smaller
interferometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10274293A
Other languages
Japanese (ja)
Inventor
Masaru Otsuka
勝 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10274293A priority Critical patent/JPH06307809A/en
Publication of JPH06307809A publication Critical patent/JPH06307809A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To sense accurately an interferential fringe finer than the picture element pitch in measuring the interference using a simple configuration. CONSTITUTION:The interferential fringe obtained by an interferometer is sensed by a detector 8 having elements installed in the two-dimensional array arrangement, where a mask means 7 provided with pinholes at the same pitch as the pitch, at which elements are arranged, and having a size smaller than the element is installed in front of the light receiving surface of a detector 8 or in any position equivalent thereto, and the mask means and detector are moved in the direction perpendicular to the optical axis while the specific relation is held, and thereby the sensing of interferential fringe is conducted at displacement intervals which is smaller than the element arrangement pitch.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は干渉測定方法及び装置に
関し、特に非球面レンズの形状計測などに用いられる高
分解能測定を行う為の光波干渉計に良好に適用できるも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interferometric measuring method and apparatus, and is particularly applicable to a light wave interferometer for high resolution measurement used for measuring the shape of an aspherical lens.

【0002】[0002]

【従来の技術】従来の光波干渉計において非球面形状を
画素ピッチよりも高分解能で測定しようとする場合、参
照波面として単純な球面波を用いる為に、例えばSPI
E Vol.645(1986)p.101〜106に
K.Creathらが発表しているような2波長による
測定技術があった。同文献によれば、λ1 、λ2 の2波
長光を別々に干渉計に入射し、測定したそれぞれの位相
分布をφ1 、φ2 とするとき、2組のデータの差φ=φ
1 −φ2 は以下に示す(1)式で表される合成波長λeq
で測定したときの位相分布と見なせることを利用し、画
素ピッチよりも細かい干渉縞を検出しようとしている。
2. Description of the Related Art In a conventional light wave interferometer, when an aspherical shape is to be measured with a resolution higher than a pixel pitch, a simple spherical wave is used as a reference wavefront.
E Vol. 645 (1986) p. 101 to 106. There was a measurement technique using two wavelengths as announced by Creath et al. According to this document, when two wavelength lights of λ 1 and λ 2 are separately incident on the interferometer and the measured phase distributions are φ 1 and φ 2 , respectively, the difference between the two sets of data φ = φ
1- φ 2 is the synthetic wavelength λ eq expressed by the following equation (1)
By utilizing the fact that it can be regarded as the phase distribution measured in, the attempt is made to detect interference fringes finer than the pixel pitch.

【0003】 λeq=λ1 ・λ2 /|λ1 −λ2 | (1) また同文献においては、フリンジスキヤンによる光分解
能位相検出が細かいピッチの縞に対しても行えるよう
に、ピンホール系5μm、ピッチ60μmのマスクをア
レイ状ディテクタの前に配置している。
Λ eq = λ 1 · λ 2 / | λ 1 −λ 2 | (1) Further, in the same document, a pinhole is provided so that optical resolution phase detection by fringe scan can be performed even for fine pitch stripes. A mask having a system of 5 μm and a pitch of 60 μm is arranged in front of the array detector.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来例では2波長の光に対して収差を押さえた光学部材が
必要であり、干渉計の製作が非常に困難になるという問
題があった。また、より高分解能を達成すべく合成波長
を長くすれば、測定のS/Nが劣化し、わずかなノイズ
や空気の揺らぎがあったときにも位相とび等で測定誤差
が生じる可能性があった。
However, in the above-mentioned conventional example, there is a problem that an optical member which suppresses aberrations with respect to light of two wavelengths is required, which makes it very difficult to manufacture an interferometer. Further, if the synthetic wavelength is increased to achieve higher resolution, the measurement S / N will deteriorate, and even if there is a slight noise or air fluctuation, there is a possibility that a measurement error will occur due to phase skipping or the like. It was

【0005】本願発明は上記従来例の欠点に鑑み、単波
長であっても高精度で測定が可能であり、かつ誤差発生
の少ない高分解能干渉測定を可能にする測定方法及び装
置を提供することを目的とする。
In view of the above-mentioned drawbacks of the conventional example, the present invention provides a measuring method and apparatus capable of performing high-resolution interferometric measurement with high accuracy even with a single wavelength and with less error. With the goal.

【0006】[0006]

【課題を解決するための手段】前述の問題を解決すべ
く、本願発明の干渉測定方法は、干渉計によって得られ
た干渉縞をアレイ状配列された素子を有するディテクタ
で検出する際に、素子の配列ピッチと同ピッチで且つ素
子の大きさよりも小さな透過部を形成したマスク手段を
前記ディテクタの受光面の前側位置ないし該位置と等価
な位置に配置し、該マスク手段と前記ディテクタとを所
定の関係で光軸垂直方向に移動させ、前記素子の配列ピ
ッチよりも小さな変位毎に干渉縞の検出を行う様にして
いる。
In order to solve the above-mentioned problems, an interferometric measuring method of the present invention is designed to detect interference fringes obtained by an interferometer with a detector having an array of elements. The mask means, which has the same pitch as the arrangement pitch and has a transmissive portion smaller than the size of the element, is arranged at the front side of the light receiving surface of the detector or at a position equivalent to the position, and the mask means and the detector are predetermined. Therefore, the interference fringes are detected for each displacement smaller than the arrangement pitch of the elements by moving the element in the direction perpendicular to the optical axis.

【0007】又、本願発明の干渉測定装置は、干渉計
と、アレイ状配列された素子で前記干渉計によって得ら
れる干渉縞を検出するディテクタと、前記素子の配列ピ
ッチと同ピッチで且つ前記素子の大きさよりも小さな透
過部が形成され且つ前記ディテクタの受光面の前側位置
ないし該位置と等価な位置に配置されたマスク手段と、
該マスク手段と前記ディテクタとを所定の関係で光軸垂
直方向に移動させる駆動手段と、該駆動手段による前記
素子の配列ピッチよりも小さな変位毎に干渉縞の検出を
実行する測定手段とを有する様にしている。
Further, the interferometer of the present invention comprises an interferometer, a detector for detecting interference fringes obtained by the interferometer with elements arranged in an array, and the same pitch as the arrangement pitch of the elements and the elements. A mask means having a transmission part smaller than the size of the detector and arranged at the front position of the light receiving surface of the detector or at a position equivalent to the position.
It has a driving means for moving the mask means and the detector in a direction perpendicular to the optical axis in a predetermined relationship, and a measuring means for detecting an interference fringe for each displacement smaller than the arrangement pitch of the elements by the driving means. I am doing it.

【0008】[0008]

【実施例】図1に本発明をフィゾー型干渉計に応用した
実施例の構成図を示す。図中1はレーザー光源、2は光
を広げる為のレンズ、3はハーフミラー、4は集光レン
ズ、4’は被測定物に測定用波面を出射するとともに出
射側面が参照波面を形成するTSレンズ、5は被測定
物、6は結像レンズ、7はピンホールアレイマスク、8
はCCDカメラ、9はフリンジスキヤン用電歪素子、1
0はフリンジスキヤン用電歪素子用ドライバー、11は
CCDカメラスキヤン用電歪素子、12はCCDカメラ
スキヤン用電歪素子用ドライバー、13はCCDの移動
をガイドする板ばね機構、14はコンピュータである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a block diagram of an embodiment in which the present invention is applied to a Fizeau interferometer. In the figure, 1 is a laser light source, 2 is a lens for spreading light, 3 is a half mirror, 4 is a converging lens, 4'is a TS for emitting a measurement wavefront to the DUT and an emission side surface forming a reference wavefront. A lens, 5 is an object to be measured, 6 is an imaging lens, 7 is a pinhole array mask, 8
Is a CCD camera, 9 is an electrostrictive element for fringe scan, 1
0 is a driver for electrostrictive elements for fringe scan, 11 is an electrostrictive element for CCD camera scanning, 12 is a driver for electrostrictive elements for CCD camera scanning, 13 is a leaf spring mechanism for guiding the movement of CCD, and 14 is a computer. .

【0009】光源1から出たコヒーレントな単波長レー
ザー光は、レンズ2により発散光となり、ハーフミラー
3を透過してレンズ4、TSレンズ4’に入射する。レ
ンズ4、TSレンズ4’は光源波長に合わせて反射防止
膜がコーティングされているが、TSレンズ4’の出射
側面だけはコーティングを施していない為一部が参照光
として反射して光源側に戻り、ハーフミラー3で反射さ
れ、CCDカメラ8の方へ向かう。一方TSレンズ4’
を通過した光は測定光として被測定物5の被検面で反射
され、再びTSレンズ4’、レンズ4を透過してハーフ
ミラー3で反射されかつ結像レンズ6を通って、CCD
カメラ8の撮像面上で前述の参照光との干渉により干渉
縞を形成する。
The coherent single-wavelength laser light emitted from the light source 1 becomes divergent light by the lens 2, passes through the half mirror 3, and enters the lens 4 and the TS lens 4 '. The lens 4 and the TS lens 4'are coated with an antireflection film according to the wavelength of the light source, but since only the emitting side surface of the TS lens 4'is not coated, a part of it is reflected as the reference light to the light source side. It returns, is reflected by the half mirror 3, and heads toward the CCD camera 8. On the other hand, TS lens 4 '
The light that has passed through is reflected by the surface to be measured of the object to be measured 5 as measurement light, passes through the TS lens 4 ′ and the lens 4 again, is reflected by the half mirror 3, passes through the imaging lens 6, and passes through the CCD.
Interference fringes are formed on the image pickup surface of the camera 8 by the interference with the reference light described above.

【0010】一般に干渉測定装置においては、隣接する
画素の間隔よりも干渉縞の位相差πの幅が小さくなると
画像処理において画素間での位相のつなぎができなくな
ってしまう。そこで本装置においてはCCDカメラ8の
撮像面の前面に、図2に示すようなピンホールアレイマ
スク7を配置している。このピンホールアレイマスクに
はCCDカメラ8の二次元アレイ状(図上で横、縦のピ
ッチがそれぞれpx 、py )に配列された各画素8aに
それぞれ対応する位置に、この画素の大きさより小さな
ピンホール7aが同ピッチ(図上で横、縦のピッチがそ
れぞれpx 、py )で形成されている。このマスク7は
CCDカメラスキヤン用電歪素子11によって光軸と垂
直な方向にCCDカメラ8と一体的に移動するようにな
っている。
Generally, in an interference measuring apparatus, if the width of the phase difference π of the interference fringes becomes smaller than the interval between adjacent pixels, it becomes impossible to connect the phases between the pixels in the image processing. Therefore, in this apparatus, a pinhole array mask 7 as shown in FIG. 2 is arranged in front of the image pickup surface of the CCD camera 8. (Horizontal on the diagram, the vertical pitch of each p x, p y) two-dimensional array of the pinhole array mask CCD camera 8 at positions corresponding to the respective pixels 8a arranged, the size of the pixel (horizontal, vertical pitch p x, p y, respectively on the diagram) are formed at a smaller pinhole 7a is the same pitch of. The mask 7 is configured to move integrally with the CCD camera 8 in the direction perpendicular to the optical axis by the CCD camera scanning electrostrictive element 11.

【0011】図3は本装置における動作原理説明図で、
(a)は干渉縞とピンホール7a、素子8aとの関係を
示し、(b)は一画素からの出力信号(横軸は該画素の
x方向位置)の例を示す。同図(a)においては横方向
に細かいピッチで配列された縦方向の干渉縞が生じてい
る場合を例示しており、この場合x方向に関しては隣接
する画素間隔に対応する範囲における干渉縞の位相差は
3π近くある。この状態では前述のように通常位相のつ
なぎが不可能になる。そこで本装置では、CCDカメラ
スキヤン用電歪素子11によってx方向に画素ピッチp
x 分だけCCDカメラ7とピンホールアレイマスク7と
を一体的に光軸垂直方向に移動させ、画素8aの配列ピ
ッチよりも小さな適当な変位間隔毎にCCDカメラ8か
らの出力を取り込むようにしている。このようにするこ
とで、同図(b)に示すように、各画素からの出力は変
位中に各画素が横切る干渉縞に応じて強度変化し、最終
的に画素ピッチpx よりも小さな干渉縞を各画素の移動
中の出力変化として検出できる。すなわち隣接する画素
間にどれだけの位相差があり、かつどちらに進んでいる
のかが容易に判断できる。
FIG. 3 is an explanatory view of the operation principle of this apparatus.
(A) shows the relationship between the interference fringes and the pinhole 7a and the element 8a, and (b) shows an example of the output signal from one pixel (the horizontal axis is the position of the pixel in the x direction). FIG. 10A illustrates a case where vertical interference fringes arranged at a fine pitch in the horizontal direction are generated. In this case, in the x direction, the interference fringes in the range corresponding to the adjacent pixel interval are generated. The phase difference is close to 3π. In this state, it is impossible to connect the normal phases as described above. Therefore, in this device, the pixel pitch p is set in the x direction by the electrostrictive element 11 for CCD camera scanning.
The CCD camera 7 and the pinhole array mask 7 are integrally moved in the direction perpendicular to the optical axis by an amount of x, and the output from the CCD camera 8 is captured at appropriate displacement intervals smaller than the arrangement pitch of the pixels 8a. There is. In this way, as shown in FIG. (B), the output from each pixel intensity changes according to the interference fringes each pixel crosses during displacement, and finally small interfering than the pixel pitch p x The stripes can be detected as a change in the output of each pixel during movement. That is, it is possible to easily determine how much the phase difference is between adjacent pixels and which phase difference the pixel is advancing to.

【0012】上述説明ではCCDカメラスキヤン用電歪
素子11によってx方向に変位する場合を挙げたが、同
様の方法でy方向にも変位させることにより、図3にお
いて縦方向に細かいピッチで配列された横方向の干渉縞
を高精度に測定することも可能である。すなわち両方向
の変位を組み合わせることで二次元的に高精度な干渉縞
測定が可能になる。
In the above description, the case of displacing in the x direction by the CCD camera scanning electrostrictive element 11 has been described, but by displacing in the y direction by the same method, it is arranged at a fine pitch in the vertical direction in FIG. It is also possible to measure the horizontal interference fringes with high accuracy. That is, by combining displacements in both directions, it is possible to perform two-dimensional highly accurate interference fringe measurement.

【0013】各点における初期位相は、フリンジスキヤ
ン用電歪素子9によってTSレンズ4’を光軸方向に波
長の半分(λ/2)だけ変位させ、この間の干渉縞の変
化を測定する、いわゆる通常のフリンジスキヤン測定法
で高精度に検出できる。すなわち、このフリンジスキヤ
ンにおける各測定時点において、前述CCDカメラ8及
びマスク7の変位に基づく干渉縞の測定を行うことで各
点の干渉縞情報が高精度、高分解能に測定できる。以上
の過程により得られた画像信号の信号処理及び検出され
た干渉縞情報からの被測定物体の被検面形状測定はコン
ピュータ14によって行われる。また電歪素子9、11
の駆動は、コンピュータ14からの指令によって各ドラ
イバー10、12を用いて制御される。
For the initial phase at each point, the TS lens 4'is displaced by half the wavelength (λ / 2) in the optical axis direction by the fringe scan electrostrictive element 9, and the change in the interference fringes during this period is measured. It can be detected with high accuracy by the usual fringe scan method. That is, the interference fringe information at each point can be measured with high accuracy and high resolution by measuring the interference fringes based on the displacements of the CCD camera 8 and the mask 7 at each measurement time point in this fringe scan. The computer 14 performs the signal processing of the image signal obtained through the above process and the measurement of the surface profile of the object to be measured from the detected interference fringe information. In addition, the electrostrictive elements 9 and 11
The drive of is controlled by each driver 10 and 12 according to a command from the computer 14.

【0014】上述説明ではピンホールアレイマスク7が
CCDカメラ8の前面に配置された場合を述べたが、ピ
ンホールアレイマスク7の位置は光学系中のCCDカメ
ラ8の撮像面共役位置でもよく、その場合のピンホール
の大きさ、配列ピッチ、CCDカメラ8の移動時のマス
ク7の変位量は、マスク7のCCDカメラ8撮像面への
投影倍率によって適宜設定される。
In the above description, the case where the pinhole array mask 7 is arranged in front of the CCD camera 8 has been described. However, the position of the pinhole array mask 7 may be the image plane conjugate position of the CCD camera 8 in the optical system, In that case, the size of the pinholes, the arrangement pitch, and the displacement amount of the mask 7 when the CCD camera 8 is moved are appropriately set according to the projection magnification of the mask 7 on the imaging surface of the CCD camera 8.

【0015】[0015]

【発明の効果】以上説明したように本発明によれば、画
素ピッチよりも小さな間隔の干渉縞も無理なく測定で
き、高精度かつ高分解能な干渉測定が可能になる。
As described above, according to the present invention, interference fringes having intervals smaller than the pixel pitch can be measured without difficulty, and high-precision and high-resolution interference measurement can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願発明の一実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】干渉縞とピンホール、画素との関係を説明する
図である。
FIG. 2 is a diagram illustrating the relationship between interference fringes, pinholes, and pixels.

【図3】装置の動作原理説明図である。FIG. 3 is an explanatory diagram of an operation principle of the device.

【符号の説明】[Explanation of symbols]

1 レーザー光源 2 レンズ 3 ハーフミラー 4 集光レンズ 4’TSレンズ 5 被測定物 6 結像レンズ 7 ピンホールアレイマスク 8 CCDカメラ 9 フリンジスキヤン用電歪素子 10 フリンジスキヤン用電歪素子用ドライバー 11 CCDカメラスキヤン用電歪素子 12 CCDカメラスキヤン用電歪素子用ドライバー 13 板ばね機構 14 コンピュータ 1 Laser Light Source 2 Lens 3 Half Mirror 4 Condensing Lens 4'TS Lens 5 Object to be Measured 6 Imaging Lens 7 Pinhole Array Mask 8 CCD Camera 9 Electrostrictive Element for Fringe Scanyan 10 Driver for Electrostrictive Element for Fringe Scanyan 11 CCD Electrostrictive element for camera scanning 12 CCD driver for electrostrictive element for camera scanning 13 Leaf spring mechanism 14 Computer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 干渉計によって得られた干渉縞をアレイ
状配列された素子を有するディテクタで検出する際に、
素子の配列ピッチと同ピッチで且つ素子の大きさよりも
小さな透過部を形成したマスク手段を前記ディテクタの
受光面の前側位置ないし該位置と等価な位置に配置し、
該マスク手段と前記ディテクタとを所定の関係で光軸垂
直方向に移動させ、前記素子の配列ピッチよりも小さな
変位毎に干渉縞の検出を行うことを特徴とする干渉測定
方法。
1. When detecting interference fringes obtained by an interferometer with a detector having elements arranged in an array,
A mask means having a transmissive portion having the same pitch as the array pitch of the elements and smaller than the size of the elements is arranged at the front side of the light receiving surface of the detector or at a position equivalent to the position,
An interference measuring method characterized in that the mask means and the detector are moved in a direction perpendicular to the optical axis in a predetermined relationship, and an interference fringe is detected for each displacement smaller than the arrangement pitch of the elements.
【請求項2】 干渉計と、アレイ状配列された素子で前
記干渉計によって得られる干渉縞を検出するディテクタ
と、前記素子の配列ピッチと同ピッチで且つ前記素子の
大きさよりも小さな透過部が形成され且つ前記ディテク
タの受光面の前側位置ないし該位置と等価な位置に配置
されたマスク手段と、該マスク手段と前記ディテクタと
を所定の関係で光軸垂直方向に移動させる駆動手段と、
該駆動手段による前記素子の配列ピッチよりも小さな変
位毎に干渉縞の検出を実行する測定手段とを有すること
を特徴とする干渉測定装置。
2. An interferometer, a detector for detecting interference fringes obtained by the interferometer with elements arranged in an array, and a transmission part having the same pitch as the arrangement pitch of the elements and smaller than the size of the elements. Mask means formed and arranged at the front side of the light receiving surface of the detector or at a position equivalent to the position, and driving means for moving the mask means and the detector in a direction perpendicular to the optical axis,
An interference measuring apparatus comprising: a measuring unit that detects an interference fringe for each displacement smaller than the arrangement pitch of the elements by the driving unit.
JP10274293A 1993-04-28 1993-04-28 Method and device for interference measurement Withdrawn JPH06307809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10274293A JPH06307809A (en) 1993-04-28 1993-04-28 Method and device for interference measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10274293A JPH06307809A (en) 1993-04-28 1993-04-28 Method and device for interference measurement

Publications (1)

Publication Number Publication Date
JPH06307809A true JPH06307809A (en) 1994-11-04

Family

ID=14335694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10274293A Withdrawn JPH06307809A (en) 1993-04-28 1993-04-28 Method and device for interference measurement

Country Status (1)

Country Link
JP (1) JPH06307809A (en)

Similar Documents

Publication Publication Date Title
US5202748A (en) In situ process control system for steppers
JP3064433B2 (en) Positioning apparatus and projection exposure apparatus having the same
US5432606A (en) Interferometer for the measurement of surface profile which introduces a spatial carrier by tilting the reference mirror
US7130059B2 (en) Common-path frequency-scanning interferometer
JP3210005B2 (en) Optical inspection apparatus and method in total internal reflection holographic imaging system
US4880308A (en) Aligning apparatus
US6198527B1 (en) Projection exposure apparatus and exposure method
JP3185901B2 (en) Measurement and analysis method of interference fringes by hologram interferometer
JP2023501586A (en) Active grating position tracking in grating-based phase-contrast and darkfield imaging
JP2007298281A (en) Measuring method and device of surface shape of specimen
JPH08313205A (en) Oblique-incidence interferometer equipment
JP2000258142A (en) Non-contact method for measuring surface shape
JP2009244227A (en) Light wave interference measuring method
JPH06307809A (en) Method and device for interference measurement
JP3540004B2 (en) Grazing incidence interferometer
JP4765140B2 (en) Interference measurement method and interference measurement apparatus
JP3325078B2 (en) Non-contact three-dimensional shape measuring device
JP2595050B2 (en) Small angle measuring device
JP2966568B2 (en) Interferometer
JP2000088546A (en) Apparatus and method of measuring shape
JPH01235807A (en) Depth measuring instrument
JPH10103917A (en) Position measuring apparatus
JPH04295709A (en) Intereference measuring apparatus and method for receiving image data of interference fringe
JPH07190737A (en) Shearing interference measuring method and shearing interferometer
JP2002508838A (en) Interferometer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000704