JPH06306635A - Heat resistant steel member - Google Patents
Heat resistant steel memberInfo
- Publication number
- JPH06306635A JPH06306635A JP11935593A JP11935593A JPH06306635A JP H06306635 A JPH06306635 A JP H06306635A JP 11935593 A JP11935593 A JP 11935593A JP 11935593 A JP11935593 A JP 11935593A JP H06306635 A JPH06306635 A JP H06306635A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- weight
- sintered layer
- chromium
- steel member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、加熱炉用熱間ガイドロ
ール、熱間圧延用ガイドシュー、溶融ガラス成形用工
具、熱間ダイス等の、熱間で繰り返し荷重が加わる用途
に適した耐熱性鋼部材に関する。FIELD OF THE INVENTION The present invention relates to a heat-resistant roller suitable for applications such as hot guide rolls for heating furnaces, guide shoes for hot rolling, tools for forming molten glass, hot dies, etc. Steel members.
【0002】[0002]
【従来の技術】熱間で繰り返し荷重が加わるため、基材
が靱性を有し、かつ熱間での耐衝撃性、耐摩耗性等が要
求される耐熱性鋼部材、例えば熱間圧延用ガイドシュー
として、鋳鋼基材等の表面に、Cr3C2と、Co基また
はNi基の耐熱合金(例えば0.02C−16Cr−1
6Mo−4W−Ni)バインダーをプラズマパウダーウ
エルディング、いわゆる溶射により肉盛りしてなるもの
が提案されている(特開昭63−18044号)。この
種の溶射により形成された耐熱性被膜は、基材との拡散
時間が極く短いため、基材と被膜との拡散による一体化
が不十分であり、また溶射の際閉じこめられたガスに基
づく多数の微細気孔が存在するため、繰り返し荷重によ
って、基材からの被膜剥離や、気孔を起点とする被膜の
破壊が起こり易いという問題を有する。2. Description of the Related Art A heat-resistant steel member, for example, a guide for hot rolling, in which a base material has toughness and is required to have impact resistance and wear resistance during hot work because a load is repeatedly applied hot. As a shoe, on the surface of a cast steel substrate or the like, Cr 3 C 2 and a Co-based or Ni-based heat-resistant alloy (for example, 0.02C-16Cr-1)
6Mo-4W-Ni) has been proposed in which a binder is formed by plasma powder welding, so-called thermal spraying (JP-A-63-18044). The heat-resistant coating formed by this type of thermal spraying has an extremely short diffusion time with the base material, so integration by the base material and the coating is not sufficient, and the gas trapped during the thermal spraying is Since there are a large number of fine pores based on the above, there is a problem that the coating film is easily peeled from the base material and the coating film starting from the pores is easily broken by the repeated load.
【0003】[0003]
【発明が解決しようとする課題】本発明は、熱間での繰
り返し荷重が加わっても、耐熱性被膜の剥離や破壊、あ
るいは鋼基材の破損が起こり難い、高温耐摩耗性に優れ
た耐熱性鋼部材を提供することを目的とする。DISCLOSURE OF THE INVENTION The present invention provides a heat-resistant material which is resistant to peeling or breakage of the heat-resistant coating or damage to the steel base material even when subjected to repeated hot load, and which is excellent in high-temperature wear resistance. An object of the present invention is to provide a heat resistant steel member.
【0004】[0004]
【課題を解決するための手段】本発明の第1の耐熱性鋼
部材は、クロム炭化物、金属硼化物およびニッケルより
なる液相焼結層が表面に形成されている。この焼結層
は、Cr3C2粉末50〜85重量%、金属硼化物粉末
0.5〜6重量%およびNi粉末14.5〜44重量%
よりなる有機溶剤スラリーを、鋼基材表面に塗布、自然
乾燥後、液相焼結することにより形成されることが好ま
しい。本発明の第2の耐熱性鋼部材は、クロム炭化物、
金属硼化物、ニッケルおよびクロムよりなる液相焼結層
が表面に形成されている。この場合の焼結層は、Cr3
C2粉末50〜85重量%、金属硼化物粉末0.5〜6
重量%、Ni粉末およびCr粉末(の和が)14.5〜
44重量%よりなり、かつCr重量%とNi重量%の比
(Cr/Ni)が0.25〜0.33である有機溶剤ス
ラリーを、鋼基材表面に塗布、自然乾燥後、液相焼結す
ることにより形成されることが好ましい。The first heat resistant steel member of the present invention has a liquid phase sintered layer made of chromium carbide, metal boride and nickel formed on the surface thereof. This sintered layer is composed of 50 to 85% by weight of Cr 3 C 2 powder, 0.5 to 6% by weight of metal boride powder and 14.5 to 44% by weight of Ni powder.
It is preferable that the organic solvent slurry is applied to the surface of the steel base material, naturally dried, and then liquid-phase sintered to form. The second heat resistant steel member of the present invention is a chromium carbide,
A liquid phase sintered layer made of metal boride, nickel and chromium is formed on the surface. The sintered layer in this case is Cr 3
C 2 powder 50 to 85% by weight, metal boride powder 0.5 to 6
% By weight, Ni powder and Cr powder (sum of) is 14.5-
An organic solvent slurry consisting of 44 wt% and having a Cr wt% to Ni wt% ratio (Cr / Ni) of 0.25 to 0.33 is applied to the surface of a steel substrate, air-dried, and then liquid-phase fired. It is preferably formed by binding.
【0005】クロム炭化物、特にCr3C2は融点が約1
900℃と高く、かつ硬度や耐酸化性も高いので、その
焼結体は高温耐摩耗性に優れているが、単独では焼結は
実質的に不可能である。そのためバインダーとしてニッ
ケル、またはニッケル+クロムを使用する。この場合で
も実質的に空孔のない、焼結層を形成するための液相焼
結温度は約1275℃となる(図2、図3参照)。金属
硼化物は一般に融点が高い(例えばWBの場合、280
0℃)が、比較的低温(WBの場合約1050℃)にニ
ッケルとの共晶領域があるので、比較的微量の金属硼化
物の添加により液相焼結温度を低下させることができる
(図2参照)。その低下温度分だけ鋼基材の焼結時の温
度が低下して、鋼基材の結晶粒粗大化に伴う靱性の低下
が減少して、熱間での繰り返し荷重が加わっても、鋼基
材の破損が起こり難くなる。以上のように焼結層(すな
わち耐熱性被膜)は、液相焼結によって形成されるの
で、比較的短時間(例えば約30分)の焼結中に空孔を
有しない緻密な被膜となる。また焼結材と鋼基材は液相
の存在下で拡散反応して、両者は完全に一体化するの
で、繰り返し荷重が加わっても焼結層の剥離や破壊が起
こり難い。また液相焼結温度が比較的低いので、焼結中
に焼結層の鋼基材への溶け込みによる形崩れが起こるお
それがなく、満足な形状の焼結層を得ることができる。
なおバインダーに適量のクロムを含む場合(第2の耐熱
性鋼部材)は、高温耐酸化性がより向上する。Chromium carbide, especially Cr 3 C 2, has a melting point of about 1.
Since it is as high as 900 ° C. and has high hardness and high oxidation resistance, the sintered body has excellent high-temperature wear resistance, but sintering alone is substantially impossible. Therefore, nickel or nickel + chromium is used as a binder. Even in this case, the liquid phase sintering temperature for forming a sintered layer having substantially no pores is about 1275 ° C. (see FIGS. 2 and 3). Metal borides generally have a high melting point (eg 280 for WB).
Since 0 ° C has a eutectic region with nickel at a relatively low temperature (about 1050 ° C in the case of WB), the liquid phase sintering temperature can be lowered by adding a relatively small amount of metal boride (Fig. 2). The temperature at the time of sintering the steel base material decreases by the amount of the lowering temperature, the decrease in toughness due to the coarsening of the crystal grains of the steel base material decreases, and even if a hot cyclic load is applied, The material is less likely to be damaged. Since the sintered layer (that is, the heat resistant coating) is formed by liquid phase sintering as described above, it becomes a dense coating having no pores during sintering for a relatively short time (for example, about 30 minutes). . Further, since the sintered material and the steel base material undergo a diffusion reaction in the presence of a liquid phase and both are completely integrated, peeling or breakage of the sintered layer is unlikely to occur even when a repeated load is applied. Further, since the liquid phase sintering temperature is relatively low, there is no possibility that the sintered layer will lose its shape due to melting into the steel substrate during sintering, and a sintered layer having a satisfactory shape can be obtained.
When the binder contains an appropriate amount of chromium (second heat resistant steel member), the high temperature oxidation resistance is further improved.
【0006】鋼基材としては、耐熱性鋼部材の用途に応
じて適宜の鋼、例えば低炭素鋼、中炭素鋼、高炭素鋼、
工具鋼、ステンレス鋼、あるいはそれらの組み合せ複合
材等が用いられる。クロム炭化物の原料粉としては、商
業的に入手が容易なCr3C2粉が用いられる。金属硼化
物の原料粉としては、WB、CrB、CrB2、Mo
B、TiB2 、HfB2 、ZrB2 、NbB2 、TaB
2 、FeB等の、耐熱性鋼部材の用途に応じて適宜のも
のが用いられる。As the steel base material, appropriate steels such as low carbon steel, medium carbon steel, high carbon steel, depending on the use of the heat resistant steel member,
Tool steel, stainless steel, or a combination material thereof is used. As the raw material powder of chromium carbide, commercially available Cr 3 C 2 powder is used. Raw material powders of metal borides include WB, CrB, CrB 2 , Mo
B, TiB 2 , HfB 2 , ZrB 2 , NbB 2 , TaB
2 , an appropriate material such as FeB is used depending on the application of the heat resistant steel member.
【0007】焼結層における、クロム炭化物の量は50
〜85重量%であることが好ましい。50重量%より少
ないと、高温耐摩耗性が低下し、一方85重量%を越え
ると、焼結性が低下して、焼結層の高温強度が低下する
からである。金属硼化物の量は、0.5〜6重量%、よ
り好ましくは1〜4重量%であることが望ましい。0.
5重量%より少ないと、液相焼結可能な温度の低下が小
さく、従って焼結温度が高くなるため、鋼基材の焼結時
における劣化が大きくなり、一方6重量%を越えると、
焼結層の強度(抗折力)が低下し、脆くなり易くなり、
更に高温耐酸化性が低下するからである(図2参照)。
残りのニッケル(14.5〜44重量%)は、被膜に靱
性を付与するためのバインダーとして作用する。The amount of chromium carbide in the sintered layer is 50.
It is preferably about 85% by weight. If it is less than 50% by weight, the high-temperature wear resistance is lowered, while if it exceeds 85% by weight, the sinterability is lowered and the high-temperature strength of the sintered layer is lowered. It is desirable that the amount of the metal boride is 0.5 to 6% by weight, more preferably 1 to 4% by weight. 0.
If it is less than 5% by weight, the decrease in the temperature at which liquid phase sintering is possible is small, and therefore the sintering temperature becomes high, so that the deterioration during the sintering of the steel base material becomes large, while if it exceeds 6% by weight,
The strength (flexural strength) of the sintered layer decreases and it becomes brittle,
This is because the high temperature oxidation resistance is further lowered (see FIG. 2).
The remaining nickel (14.5-44% by weight) acts as a binder to impart toughness to the coating.
【0008】バインダーとして、クロムを添加する場合
は、ニッケルとクロムの合計量が14.5〜44重量%
の範囲内で、Cr/Niが0.25〜0.33であるこ
とが好ましい。Cr/Niが0.25より小さいと、ニ
ッケルのみの場合よりも耐酸化性が劣り、一方Cr/N
iが0.33を越えるまでクロムを添加しても、耐酸化
性の向上はあまりみられず、しかも機械的強度が低下す
るからである。When chromium is added as a binder, the total amount of nickel and chromium is 14.5 to 44% by weight.
Within the range, it is preferable that Cr / Ni is 0.25 to 0.33. When Cr / Ni is less than 0.25, the oxidation resistance is inferior to that of nickel alone, while Cr / N
This is because even if chromium is added until i exceeds 0.33, the oxidation resistance is not improved so much and the mechanical strength is lowered.
【0009】焼結層の平均厚さは、0.3〜2.0mm
であることが好ましい。0.3mmより薄いと、耐熱性
表面被覆としての性能が十分に発揮できず、一方2.0
mmより厚いと、焼結層と鋼基材との熱膨張係数の差に
基づく残留応力が高くなるため、繰り返し荷重が加わる
と、焼結層が破壊し易くなるためである。The average thickness of the sintered layer is 0.3 to 2.0 mm.
Is preferred. If the thickness is less than 0.3 mm, the performance as a heat resistant surface coating cannot be fully exerted, while 2.0
This is because if the thickness is larger than mm, the residual stress due to the difference in thermal expansion coefficient between the sintered layer and the steel base material becomes high, so that if the repeated load is applied, the sintered layer easily breaks.
【0010】次に耐熱性鋼部材の製造法の例について述
べる。3μm以下の粒径にボールミルで粉砕された、C
r3C2、ニッケル、(クロム)、金属硼化物の混合原料
粉と、有機溶剤(例えばポリビニルブチラール、ジブチ
ルフタレート、エチルアルコール等の混合溶剤)を混合
攪拌して、粘度約150〜200c.pの低粘度スラリ
ーを作製し、真空脱泡する。このスラリーを、鋼基材の
焼結層を形成すべき表面部分に、浸漬、刷毛塗り等の適
宜の手段で、塗布、自然乾燥(乾燥時間は通常約30
分)の操作を繰り返すことにより、所定の厚さの乾燥ス
ラリー層を形成させる。乾燥スラリー層の厚さは通常、
形成されるべき焼結層の厚さの約2倍である。このスラ
リーを形成された鋼基材を真空炉、または不活性ガス炉
で、約1175〜1200℃で所定時間焼結した後、炉
冷する。炉から取り出した後、所定の表面形状、粗度に
仕上げ加工する。なお自然乾燥を行うのは、熱風乾燥の
ような急速乾燥を行なうと、スラリー層に、ひび割れや
空孔等の欠陥が発生するからである。Next, an example of a method for manufacturing a heat resistant steel member will be described. C crushed with a ball mill to a particle size of 3 μm or less, C
A mixed raw material powder of r 3 C 2 , nickel, (chromium), and a metal boride and an organic solvent (for example, a mixed solvent of polyvinyl butyral, dibutyl phthalate, ethyl alcohol, etc.) are mixed and stirred, and a viscosity of about 150 to 200 c. A low viscosity slurry of p is made and vacuum degassed. This slurry is applied to the surface portion of the steel substrate on which the sintered layer is to be formed, by appropriate means such as dipping or brushing, and naturally dried (drying time is usually about 30
By repeating the operation of (min), a dry slurry layer having a predetermined thickness is formed. The thickness of the dry slurry layer is usually
It is about twice the thickness of the sintered layer to be formed. The steel substrate on which this slurry is formed is sintered in a vacuum furnace or an inert gas furnace at about 1175 to 1200 ° C. for a predetermined time, and then cooled in the furnace. After taking out from the furnace, finish processing to a predetermined surface shape and roughness. Natural drying is performed because rapid drying such as hot air drying causes defects such as cracks and voids in the slurry layer.
【0011】[0011]
【実施例】次に実施例について述べる。 実施例1 Cr3C2粉を60.5重量%、ニッケル粉を30重量
%、クロム粉を8重量%、WB粉を1.5重量%、これ
等にアセトンを配合し、振動ボールミルで平均粒径1.
5μmに湿式粉砕した後、乾燥した混合原料粉末100
部に対し、ポリビニルブチラール2.5部、ジブチルフ
タレート0.6部、エチルアルコール7部の混合溶剤を
加えて、25℃で攪拌機により1時間混合した後、真空
脱泡し、粘度180c.p.の低粘度のスラリーを作製
した。ブロー(blow)−ブロー(blow)ガラス
成形機の粗型用プランジャーのヘッド先端部(SS41
材)を、上記スラリー中に、浸漬、引き上げ、自然乾燥
する操作を25回繰り返し行って、先端部に平均厚さ約
2mmの、比較的均一な厚さの乾燥スラリー層を形成し
た。上記プランジャーを真空焼結炉で、1200℃で3
0分間加熱して、スラリー層を液相焼結した後炉冷し
た。焼結層の平均厚さは約1mmであり、硬度は85R
Aであった。焼結層を平均厚さ約0.5mmになるまで
研削加工し、鏡面に仕上げた。EXAMPLES Next, examples will be described. Example 1 Cr 3 C 2 powder was 60.5% by weight, nickel powder was 30% by weight, chromium powder was 8% by weight, WB powder was 1.5% by weight, and acetone was added to these, and averaged by a vibrating ball mill. Particle size 1.
100 μm of mixed raw material powder dried by wet pulverization to 5 μm
To 2.5 parts by weight, a mixed solvent of 2.5 parts of polyvinyl butyral, 0.6 part of dibutyl phthalate and 7 parts of ethyl alcohol was added and mixed with a stirrer at 25 ° C. for 1 hour, followed by vacuum defoaming and a viscosity of 180 c. p. A low viscosity slurry was prepared. Blow-Blow Glass Molding Machine Coarse Mold Plunger Head Tip (SS41
The material) was immersed in the above slurry, pulled up, and naturally dried 25 times to form a dry slurry layer having an average thickness of about 2 mm and a relatively uniform thickness at the tip. The above plunger was placed in a vacuum sintering furnace at 1200 ° C for 3
After heating for 0 minutes, the slurry layer was subjected to liquid phase sintering and then cooled in a furnace. The average thickness of the sintered layer is about 1 mm and the hardness is 85R.
It was A. The sintered layer was ground to an average thickness of about 0.5 mm and mirror-finished.
【0012】このプランジャーの先端部の、鋼基材1と
焼結層2の界面近傍部の走査型電子顕微鏡観察による断
面組織図(倍率:2000)を図1に示す。3角形状、
台形形状、正方形状、長方形状、多角形状等の粒状部分
がクロム炭化物3であり、その間を埋める不定形の部分
が、ニッケル、クロム、WBよりなる結合相4である。
結合相4中のニッケルおよびクロムは固溶体を形成して
いるものと推測される。WBも、この場合は少量なの
で、上記固溶体中に固溶しているものと推測される。こ
の図面から鋼基材1と焼結層2が溶融拡散して完全に一
体化しており、また焼結層2に空孔が実質的に無いのが
分かる。さらにX線回折の結果、焼結中にクロム炭化物
3に、結合相4中のクロムが若干浸透して、クロム炭化
物3には、Cr3C2の他に、微量のCr7C3およびCr
23C6 が含まれることが判明した。FIG. 1 shows a cross-sectional structural view (magnification: 2000) of a portion of the tip of this plunger near the interface between the steel substrate 1 and the sintered layer 2 observed by a scanning electron microscope. Triangular shape,
The granular portion having a trapezoidal shape, a square shape, a rectangular shape, a polygonal shape, or the like is the chromium carbide 3, and the amorphous portion filling the space between them is the binder phase 4 made of nickel, chromium, and WB.
It is presumed that nickel and chromium in the binder phase 4 form a solid solution. Since WB is also a small amount in this case, it is presumed that WB also forms a solid solution in the solid solution. From this drawing, it can be seen that the steel base material 1 and the sintered layer 2 are melt-diffused and completely integrated, and that the sintered layer 2 has substantially no pores. Further, as a result of X-ray diffraction, chromium in the binder phase 4 slightly penetrated into the chromium carbide 3 during sintering, and the chromium carbide 3 contained a small amount of Cr 7 C 3 and Cr in addition to Cr 3 C 2.
It was found to contain 23 C 6 .
【0013】このプランジャーを用いて、ガラス成形の
実用化試験を行った所、成形時(成形温度約1100
℃)に、プランジャー表面に発生する酸化異物の壜内部
に付着する量が、従来のステライト等の溶射層を形成さ
れたプランジャーを使用した場合に比べて、約100分
の1に激減した。上記の壜内部に付着した酸化異物は壜
破損の起点となるので、壜破損を招き易い故、少ない程
好ましい。なお混合原料粉末にWB粉を添加しなかった
場合は、前記のように焼結温度が約1275℃と高いた
め、Cr3C2と鋼基材の間に直接液相反応が著しく進行
して、溶け込みが激しく、満足な焼結層(焼結被膜)を
有するプランジャーを形成することができなかった。A practical test of glass molding was conducted using this plunger, and it was found that the glass was molded (molding temperature of about 1100).
(° C), the amount of foreign matter generated on the surface of the plunger adhering to the inside of the bottle was drastically reduced to about 1/100 compared to the case of using a conventional plunger with a sprayed layer such as stellite. . The oxide foreign matter adhered to the inside of the bottle becomes the starting point of the bottle damage, and therefore the bottle is likely to be damaged. When WB powder was not added to the mixed raw material powder, the sintering temperature was as high as about 1275 ° C. as described above, and therefore the direct liquid phase reaction between the Cr 3 C 2 and the steel base material proceeded significantly. However, the penetration was so strong that a plunger having a satisfactory sintered layer (sintered coating) could not be formed.
【0014】実施例2 何れもNi30重量%、Cr8重量%で、Cr3C2が6
2.0重量%、WBが0重量%(試料No.1)、Cr
3C2が60.5重量%、WBが1.5重量%(試料N
o.2)、Cr3C2が59.0重量%、WBが3.0重
量%(試料No.3)、Cr3C2が57.0重量%、W
Bが5.0重量%(試料No.4)、Cr3C2が54.
0重量%、WBが8.0重量%(試料No.5)、およ
びCr3C2が52重量%、WBが10重量%(試料N
o.6)よりなる、長さ30mm,幅10mm、厚さ5
mmの、各試料について複数個の圧粉体を、一軸プレス
成形法によって作製した。成形前の、各原料粉の平均粒
径は3μmであった。Example 2 In each case, Ni was 30% by weight, Cr was 8% by weight, and Cr 3 C 2 was 6%.
2.0 wt%, WB 0 wt% (Sample No. 1), Cr
3 C 2 is 60.5 wt% and WB is 1.5 wt% (Sample N
o. 2), Cr 3 C 2 is 59.0 wt%, WB is 3.0 wt% (Sample No. 3), Cr 3 C 2 is 57.0 wt%, W
B is 5.0% by weight (Sample No. 4) and Cr 3 C 2 is 54.
0 wt%, WB 8.0 wt% (Sample No. 5), Cr 3 C 2 52 wt%, WB 10 wt% (Sample N)
o. 6), length 30mm, width 10mm, thickness 5
mm, a plurality of green compacts for each sample were produced by a uniaxial press molding method. The average particle size of each raw material powder before molding was 3 μm.
【0015】各圧粉体を真空焼結炉で、1100℃、1
125℃、1150℃、1175℃、1200℃、12
25℃、1250℃、1275℃および1300℃で3
0分間加熱、焼結した後炉冷して、試料No.1、N
o.2、No.3、No.4、No.5およびNo.6
の焼結温度の異なる焼結片を作製し、表面をダイアモン
ド砥石によって研削仕上げした。各試料No.1、2、
3、4、5、6の焼結片について抗折力を測定した結果
を図3に示す。各試料No.1、2、3、4、5、6に
おいて、最も高い抗折力が得られた温度を最適焼結温度
として図2に示した。焼結温度が最適焼結温度より低い
場合および高い場合はそれぞれ、主として不完全焼結の
ためおよびCr3C2が粗大化するために、抗折力が低下
するものと推測される。図2に、各試料No.1、2、
3、4、5、6の最適焼結温度で作製された焼結片の抗
折力、硬度および酸化増量(大気中で900℃×50時
間加熱後)を示した。Each green compact was placed in a vacuum sintering furnace at 1100 ° C. for 1
125 ° C, 1150 ° C, 1175 ° C, 1200 ° C, 12
3 at 25 ° C, 1250 ° C, 1275 ° C and 1300 ° C
After heating and sintering for 0 minutes, the furnace was cooled, and the sample No. 1, N
o. 2, No. 3, No. 4, No. 5 and No. 6
Sintered pieces having different sintering temperatures were prepared, and the surface was ground and finished with a diamond grindstone. Each sample No. 1, 2,
The results of measuring the transverse rupture strength of the sintered pieces of 3, 4, 5, and 6 are shown in FIG. Each sample No. The temperatures at which the highest transverse rupture strength was obtained in Nos. 1, 2, 3, 4, 5, and 6 are shown in FIG. 2 as optimum sintering temperatures. When the sintering temperature is lower or higher than the optimum sintering temperature, it is speculated that the transverse rupture strength decreases mainly due to incomplete sintering and coarsening of Cr 3 C 2 . 2, each sample No. 1, 2,
The transverse rupture strength, hardness and oxidation weight increase (after heating in air at 900 ° C. for 50 hours) of the sintered pieces produced at the optimum sintering temperatures of 3, 4, 5, and 6 are shown.
【0016】[0016]
【発明の効果】本発明の耐熱性鋼部材は、高温での繰り
返し荷重が加わっても、耐熱性被膜の剥離や破壊、ある
いは鋼基材の破損が起こり難く、かつ高温耐摩耗性に優
れている。EFFECTS OF THE INVENTION The heat-resistant steel member of the present invention is resistant to peeling or breakage of the heat-resistant coating or damage to the steel base material even under repeated load at high temperature, and is excellent in high-temperature wear resistance. There is.
【図1】鋼基材と焼結層の界面近傍部の拡大組織図であ
る。FIG. 1 is an enlarged structural diagram of a portion near an interface between a steel base material and a sintered layer.
【図2】金属硼化物の量と、焼結材の最適焼結温度、機
械的性質および酸化増量の関係を示す図面である。FIG. 2 is a drawing showing the relationship between the amount of metal boride and the optimum sintering temperature of the sintered material, mechanical properties, and the amount of increased oxidation.
【図3】金属硼化物の量の異なる焼結材の、焼結温度と
抗折力との関係を示す線図である。FIG. 3 is a diagram showing a relationship between sintering temperature and transverse rupture strength of sintered materials having different amounts of metal borides.
1 鋼基材 2 焼結層 3 クロム炭化物 4 結合相(ニッケル、クロム、金属硼化物) 1 Steel Base Material 2 Sintered Layer 3 Chromium Carbide 4 Binder Phase (Nickel, Chromium, Metal Boride)
Claims (4)
よりなる液相焼結層が表面に形成されていることを特徴
とする耐熱性鋼部材。1. A heat-resistant steel member having a liquid phase sintered layer formed of chromium carbide, metal boride and nickel formed on the surface thereof.
%、金属硼化物粉末0.5〜6重量%およびNi粉末1
4.5〜44重量%よりなる有機溶剤スラリーを、鋼基
材表面に塗布、自然乾燥後、液相焼結することにより形
成される請求項1記載の耐熱性鋼部材。2. The sintered layer comprises 50 to 85% by weight of Cr 3 C 2 powder, 0.5 to 6% by weight of metal boride powder, and 1% of Ni powder.
The heat-resistant steel member according to claim 1, which is formed by applying an organic solvent slurry of 4.5 to 44% by weight to the surface of a steel base material, naturally drying and then performing liquid phase sintering.
びクロムよりなる液相焼結層が表面に形成されているこ
とを特徴とする耐熱性鋼部材。3. A heat resistant steel member having a liquid phase sintered layer formed of chromium carbide, metal boride, nickel and chromium formed on the surface thereof.
%、金属硼化物粉末0.5〜6重量%、Ni粉末および
Cr粉末14.5〜44重量%よりなり、かつCr重量
%とNi重量%の比(Cr/Ni)が0.25〜0.3
3である有機溶剤スラリーを、鋼基材表面に塗布、自然
乾燥後、液相焼結することにより形成される請求項3記
載の耐熱性鋼部材。4. A sintered layer comprises 50 to 85% by weight of Cr 3 C 2 powder, 0.5 to 6% by weight of metal boride powder, 14.5 to 44% by weight of Ni powder and Cr powder, and Cr. The ratio of wt% to Ni wt% (Cr / Ni) is 0.25 to 0.3
The heat-resistant steel member according to claim 3, which is formed by applying the organic solvent slurry of No. 3, which is applied to the surface of a steel substrate, naturally drying, and then performing liquid phase sintering.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11935593A JP2971288B2 (en) | 1993-04-23 | 1993-04-23 | Heat resistant steel members |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11935593A JP2971288B2 (en) | 1993-04-23 | 1993-04-23 | Heat resistant steel members |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06306635A true JPH06306635A (en) | 1994-11-01 |
JP2971288B2 JP2971288B2 (en) | 1999-11-02 |
Family
ID=14759444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11935593A Expired - Fee Related JP2971288B2 (en) | 1993-04-23 | 1993-04-23 | Heat resistant steel members |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2971288B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999000534A1 (en) * | 1997-06-27 | 1999-01-07 | Firma Hermann Heye | Method for producing a hard layer on tools, device for inductive sintering or sealing in hard layers on plungers and plugs, and plungers and plugs for producing hollow glassware |
EP1010674A2 (en) * | 1998-12-14 | 2000-06-21 | Praxair S.T. Technology, Inc. | Release coating for glass molds |
-
1993
- 1993-04-23 JP JP11935593A patent/JP2971288B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999000534A1 (en) * | 1997-06-27 | 1999-01-07 | Firma Hermann Heye | Method for producing a hard layer on tools, device for inductive sintering or sealing in hard layers on plungers and plugs, and plungers and plugs for producing hollow glassware |
EP1010674A2 (en) * | 1998-12-14 | 2000-06-21 | Praxair S.T. Technology, Inc. | Release coating for glass molds |
EP1010674A3 (en) * | 1998-12-14 | 2000-12-20 | Praxair S.T. Technology, Inc. | Release coating for glass molds |
Also Published As
Publication number | Publication date |
---|---|
JP2971288B2 (en) | 1999-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9463489B2 (en) | Process for coating a part with an oxidation-protective coating | |
WO2005019133A1 (en) | Silicon nitride based sintered material and method for producing the same, and molten-metal-resistant member and wear-resistant member using the same | |
JPH07232959A (en) | Alumina-based ceramics and its production | |
JP4193958B2 (en) | Molten metal member having excellent corrosion resistance against molten metal and method for producing the same | |
JP6108260B1 (en) | Mold for hot forging, method for producing forged product using the same, and method for producing hot forging die | |
JP2003205352A (en) | Member for molten metal, composed of sintered alloy having excellent corrosion resistance and wear resistance to molten metal, its producing method and machine structural member using it | |
CN107790730B (en) | Method for preparing high-temperature oxidation-resistant coating on Nb-Si-based alloy | |
JP2971288B2 (en) | Heat resistant steel members | |
JP2005262321A (en) | Composite roll made of cemented carbide | |
JP4526343B2 (en) | WC-SiC sintered body with high hardness, high Young's modulus, and high fracture toughness | |
JP3543032B2 (en) | Laminated structure sintered body for cutting tool and method for producing the same | |
JP4409067B2 (en) | Molten metal member having excellent corrosion resistance against molten metal and method for producing the same | |
JP3538524B2 (en) | Ceramic rolling element and method of manufacturing the same | |
JP4347949B2 (en) | Particle-dispersed silicon carbide sintered body, method for producing the same, and wire rod rolling guide roller | |
JP2994637B2 (en) | Silicon nitride sintered body with controlled microstructure of inner and outer layers and method for producing the same | |
JP2009209022A (en) | WC-SiC-Mo2C-BASED SINTERED BODY AND ITS MANUFACTURING METHOD | |
JP5150064B2 (en) | Method for manufacturing wear-resistant member | |
JPH01255643A (en) | Composite material for supporting member for material to be heated in heating furnace | |
Soloviova et al. | Spark Plasma Sintering of Cu-(LaB 6-TiB 2) Metal-Ceramic Composite and Its Physical-Mechanical Properties | |
JP3690618B2 (en) | Cemented carbide composite roll | |
JP2664759B2 (en) | Ceramic composite material and method for producing the same | |
JP4081574B2 (en) | Method for manufacturing heat-resistant coated member | |
JP2881189B2 (en) | Method for producing silicon nitride-silicon carbide composite ceramics | |
JP2600116B2 (en) | Superplastic silicon nitride sintered body and its manufacturing method | |
Kobayashi et al. | Microstructure and high-temperature property of reaction HIP-sintered SiC-AlN ceramic alloys |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990817 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |