JPH01255643A - Composite material for supporting member for material to be heated in heating furnace - Google Patents

Composite material for supporting member for material to be heated in heating furnace

Info

Publication number
JPH01255643A
JPH01255643A JP8073588A JP8073588A JPH01255643A JP H01255643 A JPH01255643 A JP H01255643A JP 8073588 A JP8073588 A JP 8073588A JP 8073588 A JP8073588 A JP 8073588A JP H01255643 A JPH01255643 A JP H01255643A
Authority
JP
Japan
Prior art keywords
ceramics
composite material
heat
heated
heating furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8073588A
Other languages
Japanese (ja)
Inventor
Shingo Izumi
真吾 泉
Masatoshi Ayagaki
昌俊 綾垣
Yoshiyasu Oguchi
善康 大口
Junji Ohori
大堀 潤二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8073588A priority Critical patent/JPH01255643A/en
Publication of JPH01255643A publication Critical patent/JPH01255643A/en
Pending legal-status Critical Current

Links

Landscapes

  • Furnace Charging Or Discharging (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To prevent the occurrence of high-temp. compressive deformation, skid marks, and wear by using ceramics in the form of powder or fiber of a specific grain size and also specifying the kind and content of the above ceramics in a composite material of sintered compact in which ceramics is dispersed in a heat-resisting alloy. CONSTITUTION:This composite material for supporting member is a composite material of sintered compact in which ceramics consisting of one or more kinds among AlN, TiN, Al2O3, and SiO2 and composed of powder or fiber of <=100mu grain size is uniformly dispersed in a Co- or Ni-base alloy or a ferrous heat- resisting alloy by 10-<50vol.%. In the above composite material, when ceramics content is >=50%, a striking energy-absorbing capacity is deteriorated and the segregation of ceramics grains is brought about, and, on the other hand, a compounding effect is insufficient when it is <10%. Further, when the size of the ceramics grains exceeds 100mu, sufficient high-temp. compressive strength cannot be produced.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は熱間圧延用または鋼材熱処理用等の加熱炉にお
ける被加熱体支持部材であるスキッドボタン、スキッド
ライダーあるいは炉内ロール用として適した、耐熱合金
中にセラミックスを分散させた焼結体複合材料に関する
[Detailed Description of the Invention] <Industrial Application Field> The present invention is suitable for use as a skid button, skid rider, or in-furnace roll that is a member to support a heated body in a heating furnace for hot rolling or steel heat treatment. , relates to a sintered composite material in which ceramics are dispersed in a heat-resistant alloy.

〈従来の技術〉 一般に加熱炉内でスラブなど被加熱体を保持するための
加熱炉用支持部材は、炉の安定操業を行うため900°
Cを超える温度での耐高温圧縮性、耐酸化性、耐高温ス
ケール反応性、耐衝撃性、耐磨耗性が要求される。
<Prior art> Generally, a heating furnace support member for holding a heated object such as a slab in a heating furnace is rotated at 900° to ensure stable operation of the furnace.
High-temperature compression resistance, oxidation resistance, high-temperature scale reactivity resistance, impact resistance, and abrasion resistance at temperatures exceeding C are required.

従来、これら加熱炉用被加熱体支持部材としては、主に
耐熱合金が使用されているが、900°C以上の高温雰
囲気において耐高温圧縮強度を維持し、クリープ変形を
防止するために強力な内部水冷を施していた。
Conventionally, heat-resistant alloys have been mainly used for these heated object support members for heating furnaces. It had internal water cooling.

しかしながら、このような冷却は加熱炉のエネルギー損
失を増大し、さらに被加熱体と加熱炉支持部材との接触
面の温度を低下させることにより、スキッドマークと呼
ばれる低温スポットを形成し、被加熱材の均一加熱を困
難なものにしていた。
However, such cooling increases the energy loss of the heating furnace and further reduces the temperature of the contact surface between the heated object and the heating furnace support member, forming low-temperature spots called skid marks, which cause the heated material to deteriorate. This made uniform heating difficult.

近年、かかる問題を解決するため、セラミックス材料の
耐熱性、断熱性などに注目し、これを加熱炉における被
加熱体支持部材として利用することが提案されている。
In recent years, in order to solve this problem, attention has been focused on the heat resistance, heat insulation properties, etc. of ceramic materials, and it has been proposed to utilize them as a member to support a heated body in a heating furnace.

しかし、セラミックスは一般に機械的あるいは熱的衝撃
特性が悪く、割れやすいという問題を含み、また高温で
高強度を有するSiC,Si3N、等のセラミックスに
おいては、高温でスラブのスケールと反応し、ガラス化
して割れを生じ損耗していくという問題を有している。
However, ceramics generally have poor mechanical or thermal shock properties and are easily broken, and ceramics such as SiC and Si3N, which have high strength at high temperatures, react with the scale of slabs at high temperatures and vitrify. This has the problem of cracking and wear and tear.

そこで、セラミックスと耐熱合金の利点を活用する目的
で耐熱合金中に50〜90容量%という多量のセラミッ
クスを均一分散させた複合材料を加熱炉における被加熱
体支持部材として適用する研究がなされている(例えば
特開昭60−200948号公報参照)。
Therefore, in order to take advantage of the advantages of ceramics and heat-resistant alloys, research is being conducted on applying composite materials in which a large amount of ceramics (50 to 90% by volume) is uniformly dispersed in a heat-resistant alloy as a support member for heated objects in heating furnaces. (For example, see Japanese Patent Application Laid-Open No. 60-200948).

しかしながら、セラミックスを多量に含有した複合材料
は超硬合金、サーメツト材等で既知の様に、硬度が高い
かわりに靭性が低いという問題を避は切れず、被加熱材
から受ける衝撃による加熱炉支持部材の割れやセラミッ
クスの剥離等が発生し、被加熱材表面に傷をつける恐れ
がある。
However, as is known from cemented carbide, cermet materials, etc., composite materials containing a large amount of ceramics have the problem of low toughness despite high hardness, and the heating furnace cannot be supported by the impact from the heated material. This may cause cracks in the component, peeling of the ceramic, etc., and damage to the surface of the heated material.

従って、前述した加熱炉用被加熱体支持部材の要求特性
を満足する材料を開発することは工業的に極めて重大な
意義を有する。
Therefore, it is of extremely important industrial significance to develop a material that satisfies the required characteristics of the heated object support member for a heating furnace described above.

〈発明が解決しようとする課題〉 本発明は、前述した従来の加熱炉用被加熱体支持部材の
有する問題点、即ち■耐熱合金製スキントポタンの欠点
である高温圧縮変形及びスキッドマークの発生、■セラ
ミックス単体や耐熱合金とセラミックスとの複合材料か
らなる加熱炉用被加熱体支持部材で生じる酸化スケール
との反応によるセラミックスの損耗及び、被加熱材が与
える衝撃荷重に起因する割れや破損等の問題点を解決し
ようとするものである。
<Problems to be Solved by the Invention> The present invention solves the above-mentioned problems of the conventional heated object support members for heating furnaces, namely: (1) generation of high-temperature compression deformation and skid marks, which are disadvantages of heat-resistant alloy skin topotans, (2) Problems such as wear and tear of ceramics due to reactions with oxidized scales that occur in support members for heated objects in heating furnaces made of single ceramics or composite materials of heat-resistant alloys and ceramics, as well as cracking and damage caused by shock loads applied by heated materials. This is an attempt to resolve the issue.

く課題を解決するための手段〉 本発明は、加熱炉用被加熱体支持部材における前述の問
題を解決するために、Co基合金、Ni基合金あるいは
鉄系耐熱合金中に、jV N + T f N * /
V ! 031SiO□のうちの1種または2種以上で
あって100μm以下の粉末または繊維からなるセラミ
ックス10〜50未満容量%を均一分散した焼結体複合
材料であることを特徴とする加熱炉における被加熱体支
持部材用複合材料を要旨とするものである。
Means for Solving the Problems> In order to solve the above-mentioned problems in a heated object support member for a heating furnace, the present invention incorporates jV N + T in a Co-based alloy, Ni-based alloy, or iron-based heat-resistant alloy. f N * /
V! 031 SiO The gist of this paper is a composite material for body support members.

く作 用〉 本発明材の場合、焼結体中のセラミックス含有量はその
特性に重大な影響を及ぼす。セラミックス含有量が増加
するに伴い、粒子分散による転位ループ増大が生じ、強
度が上昇し、さらにセラミックス自身の硬さにより焼結
体の硬さも上昇する。
In the case of the material of the present invention, the ceramic content in the sintered body has a significant effect on its properties. As the ceramic content increases, dislocation loops increase due to particle dispersion, and the strength increases, and the hardness of the sintered body also increases due to the hardness of the ceramic itself.

しかしながら、セラミックス含有量が50容量%以上だ
と母相となる軟らかい耐熱性合金量が減少し、衝撃エネ
ルギー吸収能力が低下するとともにセラミックス粉末粒
子間に耐熱性合金粒子を十分充填することが困難となり
、局部的にセラミックス粒子の偏析が生じる。このため
、破壊靭性、及び熱衝撃特性の劣化が起こる。一方、セ
ラミックス含有量が10容量%を下まわる場合、セラミ
ックス含有による効果が焼結体特性に十分反映されない
。従って、本発明材の場合、セラミックス含有量は10
〜50未満容量%とする。
However, if the ceramic content exceeds 50% by volume, the amount of the soft heat-resistant alloy that forms the matrix decreases, reducing the impact energy absorption ability and making it difficult to fill enough heat-resistant alloy particles between the ceramic powder particles. , local segregation of ceramic particles occurs. This causes deterioration of fracture toughness and thermal shock properties. On the other hand, if the ceramic content is less than 10% by volume, the effect of containing the ceramic will not be sufficiently reflected in the properties of the sintered body. Therefore, in the case of the present invention material, the ceramic content is 10
- Less than 50% by volume.

本発明で使用される耐熱合金はNiによるセラミックス
とのぬれ性向上、及び耐熱性、耐酸化性を考慮すると、
Co基合金、Ni基合金、鉄系耐熱合金等が好ましく、
粉末粒径はセラミックスの均一混合を可能にし、機械的
特性を向上させるために200−以下が望ましい。
Considering the improved wettability with ceramics due to Ni, heat resistance, and oxidation resistance of the heat-resistant alloy used in the present invention,
Co-based alloys, Ni-based alloys, iron-based heat-resistant alloys, etc. are preferred,
The powder particle size is desirably 200 or less in order to enable uniform mixing of ceramics and improve mechanical properties.

また使用されるセラミックスとしては、種々研究の結果
、Aj N 、 T t N等の窒化物セラミックスお
よびAj t Os等の酸化物セラミックスが有効であ
ることを見いだした。セラミックス粒径は100μm以
下が望ましい。100μm超の粒径の場合、十分な高温
圧縮強度が得られないことがわかっている。
Further, as a result of various studies, it has been found that nitride ceramics such as Aj N and T t N and oxide ceramics such as Aj t Os are effective as the ceramics used. The ceramic particle size is preferably 100 μm or less. It is known that if the particle size exceeds 100 μm, sufficient high-temperature compressive strength cannot be obtained.

セラミックス粒径の下限は何ら制限するものではなく、
強度、靭性を向上するためには、できる限り粒径を小さ
くすることが望ましい。しかし、0.5−未満の粒径に
なった場合、粉末二次凝集や酸化等の対策を講じる必要
が生じ、粉末取扱いがはん雑になるため、経済性を考慮
すると0.5μmを下限とすることが望ましい。
The lower limit of the ceramic particle size is not limited in any way,
In order to improve strength and toughness, it is desirable to reduce the particle size as much as possible. However, if the particle size is less than 0.5 μm, it becomes necessary to take measures to prevent secondary powder agglomeration and oxidation, which makes handling of the powder complicated. Therefore, considering economic efficiency, the lower limit is 0.5 μm. It is desirable to do so.

本発明の加熱炉における被加熱体支持部材用複合材料は
耐熱合金とセラミックスの原料粉末を混練調整し、必要
に応じて適当な粒径に造粒した後、焼結工程を経て製造
される。焼結工程としては、加圧成形及び焼結を行う常
法を用いても何ら問題はないが、好ましくは熱間加圧焼
結法である熱間等方圧焼結法(以下HIP焼結法と略す
。)やr。
The composite material for supporting members to be heated in a heating furnace of the present invention is manufactured by kneading and adjusting the raw material powders of heat-resistant alloy and ceramics, granulating them to an appropriate particle size as necessary, and then performing a sintering process. As for the sintering process, there is no problem in using the conventional method of pressure forming and sintering, but it is preferable to use the hot isostatic pressure sintering method (hereinafter referred to as HIP sintering method), which is a hot pressure sintering method. ) and r.

間押出し、あるいは引抜き焼結法により行なわれる。H
IP焼結法の場合、温度1150°C以上、加圧力80
MPa以上、保定時間1時間以上の条件下で処理するこ
とにより好結果が得られる。
This is done by extrusion or pultrusion sintering. H
In the case of IP sintering method, the temperature is 1150°C or higher and the pressure is 80°C.
Good results can be obtained by processing under conditions of MPa or more and retention time of 1 hour or more.

このようにして得られた焼結体複合材料は、高温におけ
る優れた圧縮強度、耐スケール反応性、低熱伝導率を示
し、加熱炉における被加熱体支持部材用複合材料として
好適となる。
The sintered composite material thus obtained exhibits excellent compressive strength, scale reactivity resistance, and low thermal conductivity at high temperatures, and is suitable as a composite material for a member to support a heated body in a heating furnace.

〈実施例〉 本発明の被加熱体支持部材用焼結体複合材料の製造およ
び高温緒特性について実施例により説明する。
<Example> The production and high-temperature characteristics of the sintered composite material for a member to be heated according to the present invention will be explained with reference to an example.

■ 焼結体複合材料の製造 母相となる耐熱合金は表1に示す組成とし、C。■ Manufacture of sintered composite materials The heat-resistant alloy serving as the matrix has the composition shown in Table 1, and C.

−Ni −Cr−Fe系、Fe−Cr−Ni系及びNi
−Cr系の耐熱合金を使用した。粉末粒径は、平均粒径
が63μm以下のものを用いた。これら耐熱合金にA7
N、TiN及びM2O3の1種又は2種を種々の容量配
合率となるように添加した。
-Ni -Cr-Fe system, Fe-Cr-Ni system and Ni
-Cr-based heat-resistant alloy was used. The powder particle size used was one having an average particle size of 63 μm or less. A7 to these heat-resistant alloys
One or both of N, TiN, and M2O3 were added at various volume mixing ratios.

表2に複合材の構成を示す。Table 2 shows the composition of the composite material.

上記粉末は十分混合した後、HIP焼結法により焼成し
た。HIP焼結法について第1図に示す。
After thoroughly mixing the above powder, it was fired by HIP sintering method. The HIP sintering method is shown in FIG.

まず(イ)混合粉3を軟鋼製又はステンレス鋼製のカプ
セル1(容器)に充填した後、(ロ)カプセルに取付け
られた脱気孔2を通して脱気、真空とし、(ハ)脱気孔
2を圧接、溶接等でシールする。その後カプセルをHI
P装置に装入し、1150°C以上、1500気圧の条
件下でHIP処理することにより焼結体を得た。
First, (a) the mixed powder 3 is filled into a mild steel or stainless steel capsule 1 (container), (b) it is degassed and evacuated through the deaeration hole 2 attached to the capsule, and (c) the deaeration hole 2 is Seal by pressure welding, welding, etc. Then HI the capsule
A sintered body was obtained by charging the product into a P apparatus and subjecting it to HIP treatment under conditions of 1150°C or higher and 1500 atm.

表2の試料Nα(1)〜(8)は前記複合焼結体、試料
Nα(9)、 00)は前記焼結手法を用いて作成した
比較材、試料Nα(10は鋳造法により作成した従来材
である。
Samples Nα (1) to (8) in Table 2 are the composite sintered bodies, samples Nα (9) and 00) are comparative materials made using the sintering method, and sample Nα (10 is made by the casting method). It is a conventional material.

これら11種の試験材に対し高温圧縮試験、スケール反
応性評価試験、加工性評価試験を行なった。
A high temperature compression test, a scale reactivity evaluation test, and a workability evaluation test were conducted on these 11 types of test materials.

さらに一部の試験材について熱伝導率を測定した。Furthermore, the thermal conductivity of some of the test materials was measured.

■ 高温圧縮試験 12φx21L(nu++)の試験片を1300°C5
大気雰囲気において0.5mm/分なるクロスヘツド速
度で一軸加圧した。この時得られる0、2%耐力を圧縮
降伏力(kgf/■シ)とした。表2に示すように本発
明材は従来材に比較して、1300°Cにおける圧縮降
伏力が1.9倍から6.3倍以上に上昇した。従って、
本発明材を例えばスキッドボタンに適用することにより
、従来材で起きていた使用中スキッドボタンの変形によ
る高さ低減を抑止できるとともに、従来材よりも高い高
さを有するスキッドボタンの供給が可能となる。一方、
同じ複合焼結材であるにもかかわらず、比較材の試料N
o、Q■に示すようにセラミックス粒径が大きい場合高
温圧縮降伏力は従来材より低下した。
■ High temperature compression test A 12φ x 21L (nu++) test piece was heated to 1300°C5.
Uniaxial pressure was applied at a crosshead speed of 0.5 mm/min in an air atmosphere. The 0.2% yield strength obtained at this time was defined as the compressive yield strength (kgf/■shi). As shown in Table 2, the compressive yield strength of the material of the present invention at 1300°C increased from 1.9 times to more than 6.3 times compared to the conventional material. Therefore,
By applying the present invention material to skid buttons, for example, it is possible to prevent the reduction in height due to deformation of skid buttons during use, which occurs with conventional materials, and it is also possible to supply skid buttons with a higher height than conventional materials. Become. on the other hand,
Despite being the same composite sintered material, comparative material sample N
As shown in o and Q■, when the ceramic grain size was large, the high temperature compression yield strength was lower than that of the conventional material.

■ スケール反応性評価試験 12φ×5L(躯)の試験片上にφ8×3L(n+m)
の5341M材を相手材として静置し、1300°C1
大気雰囲気中に於て2時間放置した。表2において冷却
後相手材が人力によりはく離した場合○、工具によりは
く離した場合△とした。本発明材の場合、従来材と同等
以上の耐スケール反応性を有していることがわかった。
■ Scale reactivity evaluation test φ8×3L (n+m) on a 12φ×5L (body) test piece
5341M material was left still as a mating material and heated to 1300°C1.
It was left in an air atmosphere for 2 hours. In Table 2, when the mating material was peeled off by hand after cooling, it was marked as ○, and when it was peeled off using a tool, it was marked as △. It was found that the material of the present invention has scale reactivity resistance equal to or higher than that of the conventional material.

■ 熱伝導率測定 表2の本発明材:試料Nα(4)及び従来材;試料No
■ Thermal conductivity measurement table 2: Inventive material: Sample Nα (4) and conventional material: Sample No.
.

(11)の熱伝導率をレーザーフラッシュ法により測定
した。第2図に結果を示すように本発明材である試料N
α(4)は従来材に比べ1000°Cにおいて熱伝導率
が約%になっている。このことは本発明材を例えばスキ
ッドボタンに適用することによりスキッドボタンの断熱
性を向上せしめ、スキッドボタン表面と接触する被加熱
体の温度低下を抑制することが可能となる。
The thermal conductivity of (11) was measured by the laser flash method. As shown in the results in Figure 2, sample N, which is the material of the present invention,
α(4) has a thermal conductivity of approximately % at 1000°C compared to conventional materials. This means that by applying the material of the present invention to, for example, a skid button, it is possible to improve the heat insulation properties of the skid button and to suppress a decrease in the temperature of the heated object that comes into contact with the surface of the skid button.

■ 放電加工性評価試験 一般に、セラミックス含有複合材料は硬いセラミックス
部と軟らかい金属、あるいは合金部を有しているため、
難加工性材料とされており、その加工にはバイト加工よ
り放電加工の方が望ましい。
■ Electric discharge machinability evaluation test Generally, ceramic-containing composite materials have a hard ceramic part and a soft metal or alloy part.
It is considered to be a difficult-to-process material, and electrical discharge machining is more desirable than cutting tool machining.

φ60X100L (鴫)試験材を径方向に15■。φ60X100L (Pink) test material 15 mm in the radial direction.

50Aなる条件で放電加工を施した。放電加工後切断面
に0.5M深さ以上のクラックが発生した場合×、導通
不良を起こした場合Δ、クラックの発生がないか、又は
発生しても0.5 mm深さ以内で、かつ導通不良のな
い場合Oとした。本発明材の場合、放電加工性は全て良
好であったが、比較材である試料Nα(9)の場合深い
クラックが発生し、また比較材である試料No、Oωの
場合、導通不良が発生した。
Electric discharge machining was performed under the condition of 50A. × if a crack of 0.5 mm or more depth occurs on the cut surface after electrical discharge machining; Δ if a conduction failure occurs; no crack occurs, or if it occurs, the depth is within 0.5 mm, and It was set as O when there was no conduction defect. In the case of the materials of the present invention, the electric discharge machinability was good in all cases, but deep cracks occurred in the comparative material Sample Nα (9), and poor conductivity occurred in the comparative materials Samples No. and Oω. did.

一般に加熱炉におけるスキッドボタン材料に対して、1
300°Cにおける面圧が0.1〜0.2kgf/−以
上であることが要求されている。本発明材の試料Nα(
1)〜(8)の場合1300°Cにおける高温圧縮降伏
力は4.0〜13.2kgf/−以上であり、要求高温
圧縮強度は従来付以上に十分満足している。耐スケール
反応性も従来材に比べ優れており、スキッドボタン用材
料として使用するために極めて有用であることがわかる
。一方、比較材の試料No、(9)は高い高温強度を有
するが、セラミックス含有率が70容量%と高いため靭
性が劣化し、放電加工の如きわずかな熱衝撃においても
大きなりラックを生じてしまう。また比較材のNo、 
Oωは良好な耐スケール反応性を示すが従来材より低い
高温圧縮降伏力しか示さず、さらに導電性が金属あるい
は合金に劣る平均粒径295μmなる大きなセラミック
ス粒子が点在するため、導通不良を誘起し、放電加工性
が劣化する。従って、これら比較材はスキッドボタン用
材料として不適であることがわかる。
Generally for skid button material in heating furnace, 1
It is required that the surface pressure at 300°C is 0.1 to 0.2 kgf/- or more. Sample Nα of the present invention material (
In the case of 1) to (8), the high temperature compressive yield strength at 1300°C is 4.0 to 13.2 kgf/- or more, which satisfies the required high temperature compressive strength better than that of conventional products. The scale reaction resistance is also superior to conventional materials, making it extremely useful for use as a material for skid buttons. On the other hand, comparative material sample No. (9) has high high-temperature strength, but its toughness deteriorates due to the high ceramic content of 70% by volume, and even a slight thermal shock such as during electrical discharge machining causes large racks. Put it away. Also, the comparison material No.
Although Oω exhibits good scale reactivity resistance, it only exhibits a high-temperature compressive yield strength that is lower than that of conventional materials.Furthermore, it is dotted with large ceramic particles with an average grain size of 295 μm, which has inferior conductivity to metals or alloys, which induces conductivity failure. However, the electrical discharge machinability deteriorates. Therefore, it can be seen that these comparative materials are unsuitable as materials for skid buttons.

〈発明の効果〉 以上述べたように、本発明の焼結体複合材料は卓越した
高温圧縮強度を有するため、加熱炉内において背丈の高
いスキッドボタンを長期間保持することが可能となりス
キッドボタンの耐用寿命を従来品より長くすることがで
きる。また、加熱炉内の輻射熱をむらなく被加熱体に供
給でき、かつ優れた断熱性により、スキッドボタンの冷
却による被加熱体の局部的降温を抑制できることにより
、被加熱体を均一に加熱でき、従来材を用いたスキッド
ボタンで大きな問題となっていたスキッドマークの低減
が可能となり、被加熱体品質の向上がみられる。さらに
、高い断熱性により炉内熱損失を減少せしめ大幅な省エ
ネルギーとなる。
<Effects of the Invention> As described above, since the sintered composite material of the present invention has excellent high-temperature compressive strength, it is possible to hold a tall skid button in a heating furnace for a long period of time, which makes it possible to maintain a high skid button in a heating furnace. The service life can be made longer than conventional products. In addition, the radiant heat in the heating furnace can be evenly supplied to the heated object, and the excellent heat insulation properties can suppress the local temperature drop of the heated object due to cooling of the skid button, so that the heated object can be heated uniformly. It has become possible to reduce skid marks, which were a major problem with skid buttons using conventional materials, and the quality of the heated object has improved. Furthermore, the high heat insulation properties reduce heat loss within the furnace, resulting in significant energy savings.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)〜(ニ)は、焼結体複合材料を作成するた
めのHIP焼結法概略図、第2図は本発明材及び従来材
の熱伝導率をレーザーフラッシュ法により測定した結果
を示す図である。 1・・・金属カプセル、2・・・脱気パイプ、3・・・
金属セラミックス混合粉末。 第1図 (イ)      (ロ)     (ハ)     
 (ニ)3合」鶴、せラミ、7グ人乳峠末 第2図 益  度  (’C)
Figures 1 (a) to (d) are schematic diagrams of the HIP sintering method for creating sintered composite materials, and Figure 2 shows the thermal conductivity of the inventive material and conventional material measured by the laser flash method. It is a figure showing a result. 1... Metal capsule, 2... Deaeration pipe, 3...
Metal-ceramic mixed powder. Figure 1 (a) (b) (c)
(d) 3-go" Crane, Serami, 7-gu Jinchiu Pass end 2nd figure profit degree ('C)

Claims (1)

【特許請求の範囲】[Claims] Co基合金、Ni基合金あるいは鉄系耐熱合金中に、A
lN、TiN、Al_2O_3、SiO_2のうちの1
種または2種以上であって100μm以下の粉末または
繊維からなるセラミックス10〜50未満容量%を均一
分散した焼結体複合材料であることを特徴とする加熱炉
における被加熱体支持部材用複合材料。
A in Co-based alloy, Ni-based alloy, or iron-based heat-resistant alloy.
One of lN, TiN, Al_2O_3, SiO_2
A composite material for a member to support a heated body in a heating furnace, characterized in that it is a sintered composite material in which 10 to less than 50% by volume of ceramics consisting of one or more kinds of powders or fibers of 100 μm or less are uniformly dispersed. .
JP8073588A 1988-04-01 1988-04-01 Composite material for supporting member for material to be heated in heating furnace Pending JPH01255643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8073588A JPH01255643A (en) 1988-04-01 1988-04-01 Composite material for supporting member for material to be heated in heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8073588A JPH01255643A (en) 1988-04-01 1988-04-01 Composite material for supporting member for material to be heated in heating furnace

Publications (1)

Publication Number Publication Date
JPH01255643A true JPH01255643A (en) 1989-10-12

Family

ID=13726645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8073588A Pending JPH01255643A (en) 1988-04-01 1988-04-01 Composite material for supporting member for material to be heated in heating furnace

Country Status (1)

Country Link
JP (1) JPH01255643A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0437250U (en) * 1990-07-19 1992-03-30
JPH0437251U (en) * 1990-07-19 1992-03-30
JPH0437249U (en) * 1990-07-19 1992-03-30
JPH04325641A (en) * 1991-04-26 1992-11-16 Daido Steel Co Ltd Material with high young's modulus
CN108656663A (en) * 2018-05-11 2018-10-16 苏州明上系统科技有限公司 A kind of heat resistant type composite material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200948A (en) * 1984-03-23 1985-10-11 Sumitomo Metal Ind Ltd Composite material for supporting member of heating furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200948A (en) * 1984-03-23 1985-10-11 Sumitomo Metal Ind Ltd Composite material for supporting member of heating furnace

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0437250U (en) * 1990-07-19 1992-03-30
JPH0437251U (en) * 1990-07-19 1992-03-30
JPH0437249U (en) * 1990-07-19 1992-03-30
JPH04325641A (en) * 1991-04-26 1992-11-16 Daido Steel Co Ltd Material with high young's modulus
CN108656663A (en) * 2018-05-11 2018-10-16 苏州明上系统科技有限公司 A kind of heat resistant type composite material

Similar Documents

Publication Publication Date Title
EP1027946A2 (en) Method for electric sintering and mold for use in the method
EP1657316B1 (en) Method for producing reinforced platinum material
EP1957687B1 (en) Method of fabricating a target.
JPS60200948A (en) Composite material for supporting member of heating furnace
JPH01255643A (en) Composite material for supporting member for material to be heated in heating furnace
EP1469961B1 (en) Articles for casting applications comprising ceramic composite and methods for making articles thereof
JPH1149568A (en) Graphite-silicon carbide crucible for nonferrous molten metal and its production
JP3260210B2 (en) Die casting injection sleeve and method of casting aluminum or aluminum alloy member
RU2266270C1 (en) METHOD OF PRODUCTION OF COMPOSITE MATERIAL Al2O3-Al
JPH01215923A (en) Heat resistant support member
JP2971288B2 (en) Heat resistant steel members
JPH05148037A (en) Mullite/yttria-stabilized zirconia/boron nitride composite material
JPS6310115B2 (en)
JP3998872B2 (en) Cemented carbide manufacturing method
JPS6310114B2 (en)
JP2599729B2 (en) Ingot making method for alloy articles
JP2004183011A (en) Roll for continuous hot dip metal plating
JPH04301049A (en) Heat resisting alloy for support surface member for steel material to be heating in heating furnace
JPH0297614A (en) Steel material transferring member in heating furnace
Kusaka et al. Ceramic mold-HIP processing of Nb-Al intermetallic powder
JPS62238011A (en) Core bar for steel tube rolling mill
JPH11300461A (en) Sleeve for die casting machine
JPH11300459A (en) Sleeve for die casting machine
JPH04301047A (en) Heat resisting alloy for support surface member for steel material to be heated in heating furnace
JP2802768B2 (en) Composite sintered alloy and steel support in heating furnace